Chapter 3
The Ellipsoid Method

In 1979 a note of L. G. Khachiyan indicated how an algorithm, the so-called
ellipsoid method, originally devised for nonlinear nondifferentiable optimization,
can be modified in order to check the feasibility of a system of linear inequalities
in polynomial time. This result caused great excitement in the world of math-
ematical programming since it implies the polynomial time solvability of linear
programming problems.

This excitement had several causes. First of all, many researchers all over the
world had worked hard on the problem of finding a polynomial time algorithm
for linear programming for a long time without success. So a really major open
problem had been solved.

Secondly, many people believe that # = A2 N co-A#2P — cf. Section 1.1 —
and the linear programming problem was one of the few problems known to
belong to A2 N co- A2 but that had not been shown to be in £. Thus, a further
indication for the correctness of this conjecture was obtained.

Thirdly, the ellipsoid method together with the additional number theoret-
ical “tricks” was so different from all the algorithms for linear programming
considered so far that the method itself and the correctness proof were a real
surprise.

Fourthly, the ellipsoid method, although “theoretically efficient”, did not prove
to be “practically efficient”. Therefore, controversies in complexity theory about
the value of polynomiality of algorithms and about how to measure encoding
lengths and running times — cf. Chapter 1 — were put into focus.

For almost all presently known versions of the simplex method, there exist a
few (artificial) examples for which this algorithm has exponential running time.
The first examples of this type have been discovered by KLEE and MINTY (1972).
Such bad examples do not exist for the ellipsoid method. But the ellipsoid
method has been observed to be much slower than the simplex algorithm on the
average in practical computation. In fact, BORGWARDT (1982) has shown that
the expected running time of a version of the simplex method is polynomial and
much better than the running time of the ellipsoid method. Although the ellipsoid
method does not seem to be a breakthrough in applied linear programming, it
is of value in nonlinear (in particular nondifferentiable) optimization — see for
instance ECKER and KUPFERSCHMID (1983).

As mentioned, nonlinear optimization is one of the roots of the ellipsoid
method. The method grew out of work in convex nondifferential optimization
(relaxation, subgradient, space dilatation methods, methods of central sections)
as well as of studies on computational complexity of convex programming
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problems. The history of the ellipsoid method and its antecedents has been
covered extensively by BLAND, GOLDFARB and TopD (1981) and SCHRADER (1982).
Briefly, the development was as follows.

Based on his earlier work, SHOR (1970a,b) described a new gradient projection
algorithm with space dilatation for convex nondifferential programming. YuDIN
and NEMIROVSKIT (1976a,b) observed that Shor’s algorithm provides an answer
to a problem discussed by LEVIN (1965) and - in a somewhat cryptical way
— gave an outline of the ellipsoid method. The first explicit statement of the
ellipsoid method, as we know it today, is due to SHOR (1977). In the language of
nonlinear programming, it can be viewed as a rank-one update algorithm and is
quite analogous to a variable metric quasi-Newton method — see GOFFIN (1984)
for such interpretations of the ellipsoid method. This method was adapted by
KHACHIYAN (1979) to state the polynomial time solvability of linear programming,.
The proofs appeared in KHACHIYAN (1980). Khachiyan’s 1979-paper stimulated
a flood of research aiming at accelerating the method and making it more stable
for numerical purposes - cf. BLAND, GOLDFARB and Tobp (1981) and SCHRADER
(1982) for surveys. We will not go into the numerical details of these modifications.
Our aim is to give more general versions of this algorithm which will enable us
to show that the problems discussed in Chapter 2 are equivalent with respect
to polynomial time solvability and, by applying these results, to unify various
algorithmic approaches to combinatorial optimization. The applicability of the
ellipsoid method to combinatorial optimization was discovered independently by
KARP and PAapADIMITRIOU (1980), PADBERG and Rao (1981), and GROTSCHEL,
LovAsz and SCHRUVER (1981).

We do not believe that the ellipsoid method will become a true competitor of
the simplex algorithm for practical calculations. We do, however, believe that the
ellipsoid method has fundamental theoretical power since it is an elegant tool for
proving the polynomial time solvability of many geometric and combinatorial
optimization problems.

YaMNITSKI and LEVIN (1982) gave an algorithm - in the spirit of the ellipsoid
method and also based on the research in the Soviet Union mentioned above —
in which ellipsoids are replaced by simplices. This algorithm is somewhat slower
than the ellipsoid method, but it seems to have the same theoretical applicability.

Khachiyan’s achievement received an attention in the nonscientific press that
is — to our knowledge — unpreceded in mathematics. Newspapers and journals
like The Guardian, Der Spiegel, Nieuwe Rotterdamsche Courant, Népszabadsag,
The Daily Yomiuri wrote about the “major breakthrough in the solution of
real-world problems”. The ellipsoid method even jumped on the front page
of The New York Times: “A Soviet Discovery Rocks World of Mathematics”
(November 7, 1979). Much of the excitement of the journalists was, however, due
to exaggerations and misinterpretations — see LAWLER (1980) for an account of
the treatment of the implications of the ellipsoid method in the public press.

Similar attention has recently been given to the new method of KARMARKAR
(1984) for linear programming. Karmarkar’s algorithm uses an approach different
from the ellipsoid method and from the simplex method. Karmarkar’s algorithm
has a better worst-case running time than the ellipsoid method, and it seems that
this method runs as fast or even faster than the simplex algorithm in practice.
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But Karmarkar’s algorithm requires — like the simplex method — the complete
knowledge of the constraint system for the linear programmming problem. And
thus — as far as we can see — it cannot be used to derive the consequences to be
discussed in this book.

The unexpected theoretical and practical developments in linear programming
in the recent years have prompted a revival of research in this area. The nonlinear
approach to linear programming — using techniques like the Newton method and
related descent procedures — receives particular attention. A number of further
polynomial time methods for the solution of linear programming problems have
been suggested — see for instance IRi and Imar (1986), bE GHELLINCK and
ViaL (1986), BETKE and GRITZMANN (1986), and SONNEVEND (1986) — and are
under investigation with respect to their theoretical and practical behaviour.
It is conceivable that careful implementations of these methods and, possibly,
combinations of these methods with the simplex algorithm will lead to good codes
for linear programming problems. Such codes may become serious competitors
for the simplex codes that presently dominate the “LP-market”. A thorough
computational and theoretical study of such prospects is the recent paper GILL,
MURRAY, SAUNDERS, TOMLIN and WRIGHT (1986), where variants of Karmarkar’s
algorithm are discussed in a general framework of projected Newton barrier
methods and where these are compared with several versions of the simplex
method with respect to practical efficiency for various classes of LP-problems.

3.1 Geometric Background and an Informal Description

The purpose of this section is to explain the geometric idea behind the ellip-
soid method, to give an informal description of it, to demonstrate some proof
techniques, and to discuss various modifications. We begin by summarizing well-
known geometric facts about ellipsoids. Then we describe the ellipsoid method
for the special case of finding a point in a polytope that is explicitly given by
linear inequalities and known to be empty or full-dimensional. We also present
proofs of a few basic lemmas, and finally, computational aspects of the ellipsoid
method are discussed, in particular questions of “rounding” and quicker “shrink-
ing”. Proofs of more general results than described in this section can be found
in Sections 3.2 and 3.3.

The problems we address are trivial for the case of one variable. So we
assume in the proofs throughout Chapter 3 that n > 2.

Properties of Ellipsoids

A set E < IR" is an ellipsoid if there exist a vector a € R" and a positive definite
n X n-matrix A such that

(3.1.1) E=E,a) :={xeR"|(x—a)Ta(x—a) < 1}.

(It will become clear soon that using A~! here, which is also a positive definite
matrix, is more convenient than using 4.) Employing the ellipsoidal norm || | 4
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defined in Section 0.1 we can write equivalently
(3.1.2) E(A,a) ={xeR" | ||x—al4 <1},

that is, the ellipsoid E(A4,a) is the unit ball around a in the vector space R"
endowed with the norm || | 4. So in particular, the unit ball S(0, 1) around zero
(in the Euclidean norm) is the ellipsoid E(I,0). Note that E determines 4 and a
uniquely. The vector a is called the center of E, and we say that E(A4,a) is the
ellipsoid associated with A and a.

For every positive definite matrix 4 there exists a unique positive definite
matrix, denoted by A'/2, such that A = 4'/241/2, 1t follows by a simple calculation
that

(3.1.3) E(A,a) = AY?5(0,1) +a.

Thus every ellipsoid is the image of the unit ball under a bijective affine trans-
formation.

There are some interesting connections between geometric properties of the
ellipsoid E = E(A,a) and algebraic properties of the matrix A which we want to
point out here. Recall from (0.1.3) that all eigenvalues of 4 are positive reals.
The diameter of E is the length of a longest axis and is equal to 2v/A, where A is
the largest eigenvalue of 4. The longest axes of E correspond to the eigenvectors
belonging to A. The width of E is the length of a shortest axis which is 2v/4,
where A is the smallest eigenvalue of A. These observations imply that the ball
S(a,v/7) is the largest ball contained in E(A4,a) and that S(a,v/A) is the smallest
ball containing E (A4, a). In fact, this is the geometric contents of inequality (0.1.9).
‘Moreover, the axes of symmetry of E correspond to the eigenvectors of A.

Figure 3.1 shows an ellipsoid graphically. It is the ellipsoid E(4,0) = R? with
A = diag((16,4)7). The eigenvalues of A are A = 16 and A = 4 with corresponding
eigenvectors e; = (1,0)7 and e, = (0,1)7. So the diameter of E(4,0) is 2vVA =8,
while the width is 2v/1 = 4.

| —

length /A 7]
ﬁ—

Figure 3.1

The volume of an ellipsoid E = E(A, a), denoted by vol(E), depends only on
the determinant of 4 and on the dimension of the space. More exactly, we have

(3.1.4) vol(E(A,a)) = VdetA -V,
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where V), is the volume of the unit ball S(0, 1) in R". It is well known that

n? 1 /2em\n/2
1, V= ~ Zemyn/2
(3.1.5) I'(n/2+1) ,/nn( n )
where -
I(x) := V/‘e"t"‘1 dt, for x>0
0

is the gamma-function. The gamma-function satisfies
I'(n) =(n—1)! forall neN.

We will frequently need bounds on V,. It turns out that for our purposes it will
be enough to use the very rough estimates

(3.1.6) nt<V, <2,

which are derived from the facts that S(0, 1) contains {x e R" |0 < x; < 1/n,i =
1, ..., n} and that §(0, 1) is contained in {x e R" | | x|, < 1}.

If x = Dx +d is a bijective affine transformation T then vol(T(E(A4,a))) =
det Dv/det A - V,,. This in particular shows that

vol(E(4,a)) _ vol(T(E(A,a)))
vol(E(B,b)) ~ vol(T(E(B,b)))’

that is, the quotient of the volumes of two ellipsoids is invariant under bijective
affine transformations.

It will be necessary for us to optimize linear objective functions over ellipsoids.
This is easy and can be derived from the obvious fact that, for ¢ # 0, max ¢ x,
x € S(a, 1) is achieved at the vector a+c/||c|. Namely, suppose that E(4,a) =< R"
is an ellipsoid and let ¢ € R"\ {0}. Set Q := A2, Recall from (3.1.3) that
0'E(4,0) =S(0,1) +Q'a=S(Q 'a,1) and thus

max{c’x | x € E(4,a)} = max{c"QQ 'x | 0"'x e 0 'E(4, a)}
=max{c"Qy|yeS(Q'a1)}

AT 1 T —1
=c Qg deteoa

1
=cT Ac+cTa

veT Ac
=cTa+VeT Ac.

By setting

1
3.1.7 b= ——Ac,
( ) VT Ac

Zmax ‘= a+b,
Zmin :=a—b,
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we therefore obtain

(3.1.8) cTzpmax = max{cx | xe E(4,a)} =cTa+VcTAc =cTa+ |cl 4,
T zmin =min{cx | xe E(4,a)} =cTa—VcTAc =cTa— || 4.

This means that zpn,, maximizes and zp;, minimizes ¢’ x over E(4,a). The line
connecting zmax and zmin goes through the center a of E(A, a) and has direction b.
In Figure 3.2 we show the ellipsoid E(A4,a) with 4 = diag((16,4)7), a” = (1,0.5)
and objective function ¢’ = (—2,—3). From (3.1.7) we obtain b7 = (-3.2,—1.2),
2l = (1,0.5) + (=3.2,—-1.2) = (-2.2,—0.7) and zI. = (1,0.5) — (-3.2,—1.2) =

4.2,1.7).

Figure 3.2

It is a well-known fact that every convex body is contained in a unique
ellipsoid of minimal volume and contains a unique ellipsoid of maximal volume.
Apparently, these two results have been discovered independently by several
mathematicians — see for instance DANZER, GRUNBAUM and KLEE (1963, p. 139).
In particular, these authors attribute the first result to K. Lowner. JoHN (1948)
proved the following more general theorem, the “moreover” part of which will
be of interest later.

(3.1.9) Theorem. For every convex body K = R" there exists a unique ellipsoid
E of minimal volume containing K. Moreover, K contains the ellipsoid obtained
from E by shrinking it from its center by a factor of n. O

Let us call the minimum volume ellipsoid containing a convex body K the
Lowner-John ellipsoid of K. In formulas, the second part of Theorem (3.1.9)
states that, if E(A,qa) is the Lowner-John ellipsoid of K, then K contains the
ellipsoid E(n~24, a).

For a regular simplex S, the Lowner-John ellipsoid is a ball E(R?I,a) with
an appropriate radius R around the center of gravity a of S. The concentrical
ball E(n™2R%1,a) is the largest ellipsoid contained in S. This shows that the
parameter n in Theorem (3.1.9) is best possible.
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(@ (b)
Figure 3.3

In general, the Lowner-John ellipsoid of a convex body K is hard to compute.
We will, however, show in Section 4.6 that, under certain assumptions on K, good
approximations of it can be computed in polynomial time. In the ellipsoid method
and its variants, Lowner-John ellipsoids of certain ellipsoidal sections are used;
and for these Lowner-John ellipsoids, explicit formulas are known: We will
describe some of them.

Suppose E(A,a) is an ellipsoid and ¢ e R" \ {0}. Set

(3.1.10) E'(A,a,c) =E(A,a)N{xeR" | cTx < c"a}.

So E’(A,a,c) is one half of the ellipsoid E(4,a) obtained by cutting E(A, a)
through the center a using the hyperplane {x € R" | ¢c"x = c¢"a}. The Léwner-
John ellipsoid of E’(4, a,c) is the ellipsoid E(A’,a’) given by the following formu-
las:

. 1
(3.1.11) d =a n+1b’
’ n2 2 T
(3.1.12) 4= (4 b7,

where b is the vector defined in (3.1.7). In Figure 3.3 we show the Lowner-
John ellipsoids E(A’,a’) of two halfellipsoids E’(4,a,c), where in (a), 4 =
diag((1,25/4)T), a = 0, ¢ = (25,—4) and in (b), A = diag((16,4)7), a = 0,
¢ = (—2,-3)". The halfellipsoids E’(4, a,c) are the dotted regions.

Note that the center a’ of the Lowner-John ellipsoid E(4’,d’) of E'(4, a, c) lies
on the line through the vectors zpy.x and zmyi, — see (3.1.7). More exactly, one can
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get from a to @’ by making a step from a towards z,, of length ﬁllzmin —al.
Moreover, the boundary of E(A’,a) touches E’(A4,a,c) in the point zy;, and in
the set {x | |[x —all4 = 1} N{x | c"x = cTa}. In IR? the last set consists of two
points only — see Figure 3.3 — while in IR? this is an ellipse.

We will see later that the algorithm described by Khachiyan makes use of
the Lowner-John ellipsoid of E’(4, a,c). There are modifications of this method
using Lowner-John ellipsoids of other ellipsoidal sections. Here we will describe
those that we use later — see BLAND, GOLDFARB and Topp (1981) for further
details. So suppose E(A,a) is an ellipsoid and ¢ e R"\ {0}, y € R. It follows from
(3.1.8) that the hyperplane

H:={xeR"|cTx=19}
has a nonempty intersection with E (4, a) if and only if ¢” zmin <y < T Zmax, that
is, if and only if
lcTa—y| < VT Ac.
For notational convenience, let us set

cla—y
VcTdc
Then H intersects E(4, a) if and only if

(3.1.13) o=

(3.1.14) “1<a<l.

The number « can be interpreted as the signed distance of the center a from the
boundary of the halfspace {x | ¢”x < y} in the space R" endowed with the norm
Il l4-1. (The distance is nonpositive if a is contained in the halfspace.)

We want to cut E(A4,a) into two pieces using H and to compute the Lowner-
John ellipsoid of the piece contained in {x | ¢”x < y}. For

(3.1.15) E'(4,a,¢,y) = E(4,aN{xeR" | c"x <y},
the Lowner-John ellipsoid E(4’,d’) can be determined as follows.

If-1 <a<—1/n then E(A',d) = E(A4, a).
If-1/n < a <1 then E(A,d) is given by

re_ o 1+ na
(3.1.16) ad =a il b,
2
;. n v, 2(+na) T
(3.1.17) A = —n2_1(1 «’)(A4 ————(n+ D +2) ),

where b is the vector defined in (3.1.7). Note that if y = c”a then E’'(4,4a,c,7) =
E'(A,a,c) and formulas (3.1.16) and (3.1.17) reduce to formulas (3.1.11) and
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(3.1.12). So in formulas (3.1.11) and (3.1.12) we compute the Lowner-John
ellipsoid of the section E(A,a,c) of E(A,a) that is obtained by cutting with H
through the center a. We call this a central cut. If 0 < a < 1 then E'(4,a,c,7)
is strictly contained in E’(4,a,c). This means that we cut off a larger piece of
E(A, a), and therefore ¢ x <y is called a deep cut. If —1/n < o < 0 then we leave
more of E(A,a) than the “half” E’(4,a,c), and we call ¢’x < y a shallow cut;
but in this case the Lowner-John ellipsoid of E’(4,a,c,7) is still strictly smaller
than E(A,a), in the sense that it has a smaller volume. (We shall see later that
a volume reduction argument will prove the polynomial time termination of the
ellipsoid method.)

It is also possible to compute explicit formulas for the Lowner-John ellipsoid
of E(4,a) N {x | ¥ < cTx < v}, i. e, for an ellipsoidal section determined by
parallel cuts. However, the formulas are quite horrible — see BLAND, GOLDFARB
and TopD (1981). We will need a special case of this, namely the Lowner-John
ellipsoid of an ellipsoidal section determined by centrally symmetric parallel cuts,
i e, of

(3.1.18) E"(A,a,c,y) =E(A,aN{xeR"|cTa~y<cTx<cTa+y},

where y > 0. Similarly as in (3.1.13), let « = —y/v/cT Ac. It turns out that the
Lowner-John ellipsoid of E”(4, a,c,7) is the ellipsoid E(4’,a’) defined as follows.
Ifoa < —1/+/n then E(A,d') = E(A, a).
If—1/v/n < a <0 then E(A',d) is given by

'(3.1.19) d =a,

n —n

2
& T
_azbb)'

, 1
(3.1.20) A = n_l(l—az)(A— ;

[

(@) (b) (c) @
Figure 3.4a—d

Figure 3.4 shows the four types of cuts used in various versions of the ellipsoid
method. In all cases we assume that E(A4,a) is the unit ball §(0,1). Let ¢ :=
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(—1,0)7 be the vector used to cut through E(A4, a). Picture (b) shows the Lowner-
John ellipsoid of the dotted area E’(4,a,c¢) = S(0,1) N {x | x; > 0}, a central cut.
Picture (a) shows the Léwner-John ellipsoid of the dotted set E'(4,a,¢,—1/2) =
S$(0,1)N{x | x; > 1/2}, a deep cut. Picture (c) shows the Lowner-John ellipsoid of
E'(A4,a,¢,1/3) = S(0,1) N {x | x; > —1/3}, a shallow cut; while the Léwner-John
ellipsoid of E"(4,a,c,1/4) = S(0,1) N {x | —1/4 < x; < 1/4} is displayed in
picture (d). This set is determined by a centrally symmetric parallel cut.

Description of the Basic Ellipsoid Method

To show the basic idea behind the ellipsoid method, we describe it now as a
method to solve the strong nonemptiness problem for explicitly given polytopes
that are either empty or full-dimensional. The input for our algorithm is a system
of inequalities ciT x <7;,i=1,...,m, with n variables in integral coeflicients. We
would like to determine whether

(3.1.21) P={xeR"|cfx<y,i=1,...,m}={x|Cx <d}

is empty or not, and if it is nonempty, we would like to find a point in P. In
order to get a correct answer the input must be accompanied by the following
guarantees:

(3.1.22) P is bounded.
(3.1.23) If P is nonempty, then P is full-dimensional.

It will turn out later that the certificates (3.1.22) and (3.1.23) are not necessary. The
(appropriately modified) method also works for possibly unbounded polyhedra
‘that are not full-dimensional. Moreover, we can handle polyhedra defined by
inequalities that are provided by a separation oracle, that is, the inequalities need
not be given in advance. To treat all these additional possibilities now would
only obscure the lines of thought. Thus, in order to explain the ideas underlying
the ellipsoid method, we restrict ourselves to the special case described above.

Recall the well-known method of catching a lion in the Sahara. It works as
follows. Fence in the Sahara, and split it into two parts; check which part does
not contain the lion, fence the other part in, and continue. After a finite number
of steps we will have caught the lion — if there was any — because the fenced-in
zone will be so small that the lion cannot move anymore. Or we realize that the
fenced-in zone is so small that it cannot contain any lion, i. e., there was no lion
at all. In order to illustrate the ellipsoid method by this old hunter’s story we
have to describe what our Sahara is, how we split it into two parts, how we fence
these in, and when we can declare the lion caught or nonexistent.

For the Sahara we choose a ball around the origin, say S (0, R), that contains
our polytope P, the lion. If the system of inequalities (3.1.21) contains explicit
upper and lower bounds on the variables, say I; < x; < u;, i=1, ..., n then a
radius R with P < S(0, R) is easily found. Take for instance

(3.1.24) R = /30, max{u?, ).

If bounds on the variables are not given explicitly we can use the information
that C and d are integral and that P is a polytope to compute such a radius R,
namely we have:
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(3.1.25) Lemma. P < S(0,R), where R := /n 2(C4—"", 0

Recall that (C,d) denotes the encoding length of C and d — see Section 1.3.
(Since we do not want to interrupt the flow of thought, the proofs of all lemmas
stated in this subsection are postponed to the next subsection.)

Now we have the starting point for the ellipsoid method. We know that P is
in S$(0,R) with R given by (3.1.24) or (3.1.25). This ball around the origin will
be our first ellipsoid E(Ao,ao) (which is clearly given by setting Ag := R*I and
ap = 0).

Let us now describe the k-th step, k > 0, of the procedure. By construction,
the current ellipsoid

(3.1.26) Ey := E(Ak, ax)

contains P. The ellipsoid E, has one distinguished point, its center a;, and we
have it explicitly at hand. So we can substitute g, into the inequality system
(3.1.21) and check whether all inequalities are satisfied. If this is the case, we can
stop, having found a feasible solution. If the center is not feasible, then at least
one inequality of the system (3.1.21) must be violated, let us say ¢’ x < 7. So we
have c¢’a; > y. The hyperplane {x | ¢"x = c"a;} through the center a; of E;
cuts E; into two “halves”, and we know from the construction that the polytope
P is contained in the half

(3.1.27) E'(Ay,ai,c) = {x € E(A,a) | cTx < cTay}.

Therefore we choose, as the next ellipsoid Ei,; in our sequence, the Lowner-John
ellipsoid of E’(Ay, ai, c), which is given by formulas (3.1.11) and (3.1.12). And we
continue this way by successively including P into smaller and smaller ellipsoids.

The question to be answered now is: When can we stop? Clearly, if we find
a point in P, we terminate. But how long do we have to continue the iterations
if no feasible point is obtained? The stopping criterion comes from a volume
argument. Namely, we know the initial ellipsoid S(0,R) and therefore we can
estimate its volume, e. g., through (3.1.6). In each step k we construct a new
ellipsoid E;.; whose volume is strictly smaller than that of E,. More precisely,
one can show:

(3.1.28) Lemma.

v:(l)(ll(EEk::)l) _ ((n: 1)n+1(nz l)n—l)l/Z Sy

a

By our guarantees (3.1.22) and (3.1.23) we are sure that our polytope P has
a positive volume, unless it is empty. One can use the integrality of the data and
the fact that-P is a polytope to prove
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(3.1.29) Lemma. If the polytope P is full-dimensional, then
VOI(P) > 2—(n+1)(C)+n3.

O

Now we can finish our analysis. We can estimate the volume of the initial
ellipsoid from above, and the volume of P, if P is nonempty, from below; and
we know the shrinking rate of the volumes. Therefore, we iterate until the present
ellipsoid has a volume that is smaller than the lower bound (3.1.29) on the volume
of P. If we have reached this situation, in step N say, we can stop since we know
that

(3.1.30) P c Ey,
vol(Ey) < vol(P).

This is clearly impossible, and we can conclude that P is empty. The number N
of iterations that have to be done in the worst case can be estimated as follows.
If we choose

(3.1.31) N :=2n(2n+ 1){C) + n{d) — n*)

then it is easy to see that vol(Ey) < 2=+ (for an elaboration, see Lemma
(3.1.36)). Combining this with (3.1.29) we see that (3.1.30) holds for this N.
Our description of the ellipsoid method (except for implementational details) is
complete and we can summarize the procedure.

(3.1.32) The Basic Ellipsoid Method (for the strong nonemptiness problem for
full-dimensional or empty polytopes).

Input: An mxn-inequality system Cx < d with integral coefficients. We assume
that the data are accompanied by a guarantee that P = {x e R" | Cx < d} is
bounded and either empty or full-dimensional.

Initialization: Set
(@ k:=0,
(b) N :=2n((2n+ 1){C) + n{d) — n’),
(©) Ao := R2I with R := /n2{C=" (or use any valid smaller R
as, for example, given in (3.1.24)),
ap =0 (so Eo := E(Aop, ap) is the initial ellipsoid).

General Step:

(d) Ifk=N, STOP! (Declare P empty.)

(¢) Ifaye P, STOP! (A feasible solution is found.)

(f) Ifa; ¢ P, then choose an inequality, say cTx <7,
of the system Cx < d that is violated by ay.
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Set
1
(g) b= \/—cT:Ak;Akc (see (3.1.7)),
1
(h) Ayl =ag — " (see (3.1.11)),
. n’ 2 T
(l) Ak+[ = n—Zj——l (Ak - mbb ) (Sec (3.1.12)),
and go to (d). O

We call algorithm (3.1.32) the basic ellipsoid method since it contains all the
fundamental ideas of the procedure. To make it a polynomial time algorithm or
to make it more efficient certain technical details have to be added. For instance,
we have to specify how the vector a4 in (h) is to be calculated. Our formula on
the right hand side of (h) leads to irrational numbers in general since a square
root is computed in the formula for b in (g). Nevertheless, the lemmas stated
before prove that the basic ellipsoid method works — provided that the single
steps of algorithm (3.1.32) can be implemented correctly (and efficiently). We will
discuss this issue in the subsection after the next one.

Proofs of Some Lemmas

We now give the proofs of the lemmas stated above. We begin with a slight.
generalization of Lemma (3.1.25).

(31.33) Lemma. IfP = {x e R" | Cx < d} is a polyhedron and C, d are
integral, then all vertices of P are contained in the ball around 0 with radius
R = \/7:2<C*d>‘"2. In particular, if P is a polytope then P < S(0, R).

Proof. In order to show that the vertices of P are in S(0,R) with the R given
above, we estimate the largest (in absolute value) component of a vertex of P.
Clearly, if we can find a number ¢t > 0 such that no vertex of P has a component
which (in absolute value) is larger than t, then the vertices of P are contained
in{x|—t<x;<ti=1,...,n}, and thus in S(0,+/nt). From polyhedral theory
we know that for each vertex v of P there is a nonsingular subsystem of Cx < d
containing n inequalities, say Bx < b, such that v is the unique solution of
Bx = b. By Cramer’s rule, each component v; of v is given by

_ det Bi
" detB

Ui

where we obtain B; from B by replacing the i-th column of B by the vector b. Since
B is integral and nonsingular, we have that [det B| > 1, and so |v;| < |det B;|. By
(1.3.3) (¢

|det B;| < 2/B—" _ 1,
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And thus, since (B;) < (C,d),
| det B;| < 264",

Therefore, setting R := V24" we can conclude that all vertices of P are
contained in S(0, R). O

The reader is invited to find better estimates for R, for instance by using the
Hadamard inequality (0.1.28) directly and not only via (1.3.3).

Next we prove (3.1.28) and estimate how much the volume of the Lowner-
John ellipsoid of the halfellipsoid E’(Ay, ax,c) shrinks compared with the volume
of E(Ay, ax).

(3.1.34) Lemma. Let E < R" be an ellipsoid and E’' be the ellipsoid obtained
from E using formulas (3.1.7), (3.1.11), (3.1.12) for some vector c € R"\ {0}. Then

iy = ()" G)) <o <n

Proof. To estimate the volume quotient, let us assume first, that the initial
ellipsoid is F := E(I,0) i. e., the unit ball around zero, and that the update vector
c used to compute b in (3.1.7) is the vector (—1,0, ..., 0)T. In this case we obtain
from (3.1.7), (3.1.11), and (3.1.12):

b=(-1,0, ...,07,

d=a—— b= (FIJ’O’ ...,o)T,

n? 2 r
I = — — -1,0,...,0
A =——(1 —H(10, ..., 0710, ...,0)

2 2 2
=diag(((n:‘_1)2,n2"_l, nzn_l)r).

From this and (3.1.4) we conclude for the volumes of F and F' := E(4,d'):

2n

vol(F')  vdetd' V,  Vderd - ( n n~1)1/2
vol(F) ~ vdetAV, “\@+D)"n=1)" n+1

(GG

Hence, by taking the natural logarithm In, we obtain:

vol(F') 1 0m 1n n+ 1\ rn—1yn-1
vol(F) =¢ =€ <(n) (n)

== <O+ DI+ )+ Din(t— )
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Using the power series expansion Inx = Y 5, (—1)*!(x — 1)*/k for 0 < x < 2,
we obtain

m+ D+ +@m—1ma-1)=
n n
n+1 > n—1

5
— (_1)k+1 -
“~ kn* & kn*

s 2 &2n-1)
_\ k1 4 \4n—l)
_l;( 1 knk Z-: 2kn2k

S 2 N 2 S| 1
= - - +

— % —
I; 2k — 1)n2k-1 1; 2kn? 1; kn2k-1 kz::l kn2k
1 1

o

2k — 1)k nZ-1

x
Il
—

\
S |-

>

and thus the claim is proved for our special choice of the initial ellipsoid and c.

Now let E = E(A,a) be any ellipsoid and E' = E(A’,d’) be an ellipsoid
constructed from E using the formulas (3.1.7), (3.1.11), and (3.1.12) for some
vector ¢ € R"\ {0}. By (3.1.3), E = AY2E(1,0) + a = A'/?F + a. Clearly, there
is an orthogonal matrix, say Q, which rotates 4'/%¢ into a positive multiple of
(=1,0, ..., 0), that is, there is an orthogonal matrix Q such that

1

1,0, ...,0)" = ———
( " = foar

04Y%¢.
Then
T(x) :=AY2QTx +a

is a bijective affine transformation with 7-!(x) = Q4~1/2(x — a). Now

T(F)={TWy) |y"y<1}
= x 1T NI < 1}
={x|(x—a)TA72QTQ4A "} (x —a) < 1}
={x|x—a)TA(x—a) <1}
=E,
and similarly for the ellipsoid F’ defined above, we obtain T(F’) = E’. In the
subsection about properties of ellipsoids we have seen that the quotient of the

volumes of two ellipsoids is invariant under bijective transformations. Thus we
have

vol(E') _ vol(T(F')) _ vol(F') _ no\mle n N2
vol(E) ~ Vol(T(F)) _ vol(F) ((n+1) (n—l) ) <e /e,

which completes the proof. O
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The following lemma proves (3.1.29) and shows the interesting fact that the
volume of a full-dimensional polytope cannot be “extremely small”, that is, a
lower bound on vol(P) can be computed in polynomial time.

(3.1.35) Lemma. IfP = {x e R" | Cx < d} is a full-dimensional polytope and
the matrix C and the vector d are integral then

vol(P) > 2~ (+IXCn’

Proof. From polyhedral theory we know that every full-dimensional polytope P
in R" contains n+ 1 vertices v, vy, ..., vy, say, that are affinely independent. The
convex hull of these vertices forms a simplex S that is contained in P. Thus,
the volume of P is bounded from below by the volume of S. The volume of a
simplex can be determined by a well-known formula, namely we have

1 1 1 ... 1
vol(S)=m|det<UO o v,,)l'

Now recall that, for every vertex v;, its i-th component is of the form :e”;" by
Cramers rule where B; is a submatrix of C and B;; a submatrix of (C,d). So we
obtain
1 ... 1 _ 1 detBy ... detB,
|det (vo v,,)l—ldetBou..- © ( o ... Uy I
where uy, ..., u, are integral vectors in IR". Since the last determinant above is
a nonzero 1nteger and since by (1.3.3) (c), |det B;j| < 2AC)—n? holds, we get
1 ... 1 1 2
t . > > (2(C)—n*\—(n+1)
Ide (vo v,,)l_|detB0|-...-|detB,,|_( )
Therefore, using n! < 2”2, we obtain
1 2\ — 3
vol(P) > vol(S) > m(2<C> YO > g=HIXOHR
O

The last lemma in this sequence justifies the choice (3.1.31) of the number N
of iterations of the general step in the basic ellipsoid method.

(3:1.36) Lemma. Suppose P = {x e R" | Cx < d} is a full-dimensional polytope
and Cx < d is an integral mequahty system. If Ey = E(Ao,a0) with ap = 0,
Ao = R*I and R = \/n2C4~" js the initial ellipsoid, and if the general step of
the basic ellipsoid method (3.1.32) is applied N = 2n((2n + 1){C) + n{d) — n%)
times then

vol(Ey) < 21O < yo)(P).
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Proof. Since Eg < {x e R" | | x|l < R}, we have

VOl(Eo) < 2"R" = nn/2 2n(C,d)—n3+n — 2n((C,d)—n2+1+log(n)/2) < 2n(C,d) .

By (3.1.34), in each step of the basic ellipsoid method the volume of the next
ellipsoid shrinks at least with the factor e~1/2". Thus after N steps we get

VOl(Ey) < e N/@0 yol(Eg) < 27N/@n+n(Cd) _ a=(ntIXCHn’ o y61(p),

where the last inequality follows from (3.1.35). The equality above is, in fact, the
defining equality for N. This proves our claim. O

The reader will have noticed that most of the estimates in the proofs above
are quite generous. By a somewhat more careful analysis one can improve all
crucial parameters slightly to obtain a smaller upper bound N on the number of
iterations of the ellipsoid method. Since our main point is that the upper bound
is polynomial we have chosen a short way to achieve this. As far as we can see,
however, the order of magnitude of N, which is O(n?(C,d)), cannot be improved.

Implementation Problems and Polynomiality

To estimate the running time of the basic ellipsoid method (3.1.32) in the worst
case, let us count each arithmetic operation as one elementary step of the
algorithm. The initialization (a), (b), (c) can obviously be done in O(m - n) .
elementary steps. In each execution of the general step (d), ..., (i) of (3.1.32) we
have to substitute a; into the system Cx < d which requires O(m - n) elementary
steps, and we have to update a; and A4, in (h), (i). Clearly (h) needs O(n)
elementary steps while (i) requires O(n?) elementary steps. The maximum number
of times the general step of (3.1.32) is executed is bounded from above by
N = 2n((2n + 1){C) + n{d) — n’) = 0(n*(C,d)). Since P is a polytope we have
m > n, and thus the total number of elementary steps of the basic ellipsoid
method is O(mn*(C,d)). So we have found a polynomial upper bound on the
number of elementary steps of the basic ellipsoid method.

However, there are certain problems concerning the implementation of some
of the elementary steps. We take a square root in step (c) to calculate R, so we
may obtain an irrational number. One can take care of this by rounding R up
to the next integer. But, in fact, we only need the rational number R? in the
initialization of A4y, so we do not have to compute R at all. A more serious
problem comes up in the general step. The vector b calculated in (g) is in general
irrational, and so is a4;. Since irrational numbers have no finite representation in
binary encoding, we are not able to calculate the center a1 exactly. Thus, in any
implementation of the ellipsoid method we have to round the coefficients of the
entries of the center of the next ellipsoid. This causes difficulties in our analysis.
Namely, by rounding a;,; to some vector &, € Q", say, we will translate the
ellipsoid Ej,; slightly to the ellipsoid Ei.; := E(Axs1,dk41). Recalling that E,,,
is the ellipsoid of minimum volume containing the halfellipsoid E’(Ay,ax,c) —
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cf. (3.1.27) — we see that E;,; does not contain E’(Ay,ax,c) any more. So it
may happen that the polytope P < E'(Ay, a,c) is not contained in E, either.
And therefore, our central proof idea of constructing a sequence of shrinking
ellipsoids each containing P is not valid any more.

There is a further issue. Observe that the new matrix A, calculated in (i)
is rational, provided A, and c are. But it is not clear a priori that the entries of
Ai+1 do not grow too fast.

All these difficulties can be overcome with some effort. We will describe
here the geometric ideas behind this. The concrete mathematical analysis of the
correctness and implementability of these ideas will be given in Section 3.2.

We have seen that rounding is unavoidable in the calculation of the center
ar+1. We will do this as follows. We write each entry of a,,; in its binary
representation and cut off after p digits behind the binary point, where p is to
be specified. In other words, we fix a denominator 2? and approximate each
number by a rational number with this denominator. To keep the growth of the
encoding lengths of the matrices 4,1 under control, we apply the same rounding
method to the entries of 4. As remarked before, rounding of the entries of the
center results in a translation of the ellipsoid. By rounding the entries of A,
we induce a change of the shape of the ellipsoid in addition. The two roundings
may produce a new ellipsoid which does not contain P. Moreover, by rounding
a positive definite matrix too roughly positive definiteness may be lost. So we
also have to take care that the rounded matrix is still positive definite. It follows
that we should make p large enough, subject to the condition that all numbers
coming up during the execution of the algorithm are of polynomial encoding
length.

We still have to find a way to keep P inside the newly calculated ellipsoid.
Since we cannot move P, we have to do something with the new ellipsoid. One
idea that works is to maintain the (rounded) center and to blow up the ellipsoid
obtained by rounding the entries of A4;.; in such a way that the blow-up will
compensate the translation and the change of shape of the Léwner-John ellipsoid
induced by rounding. The blow-up factor must be so large that the enlarged
ellipsoid contains P. Clearly, we have to blow up carefully. We know from
(3.1.28) that the shrinking rate is below 1; but it is very close to 1. In order to
keep polynomial time termination, we have to choose a blow-up factor that on
the one hand gives a sufficient shrinking rate and on the other, guarantees that
P is contained in the blown-up ellipsoid. This shows that the blow-up factor and
the number p determining the precision of the arithmetic influence each other,
and they have to be chosen simultaneously to achieve all the goals at the same
time.

It turns out that appropriate choices of N, p, and the blow-up factor ¢ can
be made, namely if we choose

(3.1.37) N :=50(n+ 1)*(C,d),
p =8N,
1
é .

1
METCESEk
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we can make all the desired conclusions. These modifications turn the basic
ellipsoid method (3.1.32) into an algorithm that runs in polynomial time.

From the practical point of view these considerations and modifications
seem quite irrelevant. Note that the ellipsoid method requires problem-specific
precision. But usually, our computers have fixed precision. Even software that
allows the use of variable precision would not help, since the precision demands of
the ellipsoid method in this version are so gigantic that they are hardly satisfiable
in practice. Thus, in a computer implementation of the ellipsoid method with
fixed precision it will be possible to conclude that one of the calculated centers is
contained in P, but by stopping after N steps we cannot surely declare P empty.
To prove emptiness, additional tests have to be added, based for instance on the
Farkas lemma.

By looking at the formulas we have stated for Lowner-John ellipsoids of
various ellipsoidal sections — see (3.1.11), (3.1.12); (3.1.16), (3.1.17); (3.1.19),
(3.1.20) — one can immediately see that a speed-up of the shrinking can be
obtained by using deep or other cuts. There are many possibilities to “play” with
the parameters of the ellipsoid method. To describe some of them let us write
the basic iteration of the ellipsoid method in the following form

1
3.1.38 a = a — p———Axc,
( ) k+1 k pm k
1
3.1.39 Aiyr = E-0(Ay —1———ArecTA
( ) k1 2~ & o (A T T4 e ke k)>

‘where “a” means cutting off after the p-th digit behind the point in the binary
representation of the number on the right hand side. Following BLAND, GOLDFARB
and Topp (1981) we call p the step parameter (it determines the length of the
step from a; in the direction of —b to obtain ay1), o the dilatation parameter,
7 the expansion parameter and ¢ the blow-up parameter (this is the factor used
to blow up the ellipsoid to compensate for the rounding errors). The ellipsoid
method in perfect arithmetic (no rounding) as stated in (3.1.32) is thus given by

1 o 2
A L

1.4 = R
(3.140) p n+1

E=1.

It is a so-called central-cut method since it always uses cuts through the center
of the current ellipsoid. The ellipsoid method with rounding and blow-up, i. e.,
the polynomial time version of (3.1.32) is thus defined by

n? 2 1

(3141) p 'n—le‘, T = m, é =1+ m .

= —0, g =
n+1

If ¢c"x <y is the violated inequality found in (f) of (3.1.32), then defining a :=
(cTax —y)/V/cT Akc as in (3.1.13) and setting

1+ na n?(1 —a?) 2(1 + na)
p=—rp o0i=—r—, T i1=——7— (=1

142 : , Ti= ,
(3.1.42) ntl’ n—1 (n+ 1)1 + )
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we obtain the deep-cut ellipsoid method (in perfect arithmetic). Note that since
cTay > v, the hyperplane {x | ¢Tx =y} is indeed a deep cut, and so the Lowner-
John ellipsoid of E’(Ag,ax,c,y) — see (3.1.15) — which is given through formulas
(3.1.38), (3.1.39) (without rounding), and (3.1.42) has indeed a smaller volume
than that of E’(Ay, ax,c) used in (3.1.32).

The use of deep cuts will — due to faster shrinking — in general speed up the
convergence of the ellipsoid method. But one can also easily construct examples
where the standard method finds a feasible solution more quickly. However,
the use of deep cuts does not seem to change the order of magnitude of the
number N of iterations of the general step necessary to correctly conclude that
P is empty. So from a theoretical point of view, deep cuts do not improve the
worst-case running time of the algorithm.

Using a number a in (3.1.42) with —1/n < &« < 0 we obtain a shallow-cut
ellipsoid method. Although — from a practical point of view — it seems ridiculous
to use a shallow-cut method, since we do not shrink as much as we can, it will
turn out that this version of the ellipsoid method is of particular theoretical
power. Using this method we will be able to prove results which — as far as we
can see — cannot be derived from the central-cut or deep-cut ellipsoid method.

Some Examples

The following exarhples have been made up to illustrate the iterations of the
ellipsoid method geometrically. Let us first consider the polytope P < R?.
defined by the inequalities

(1) — x1— x<-2
2 3x; < 4
(3) —2x142x;< 3.

This polytope is contained in the ball of radius 7 around zero. To find a point in
P, we start the basic ellipsoid method (3.1.32) with E(A4y, ag) where

49 0 0
A"‘(o 49)’ “°=(0)’

see Figure 3.5. The center aq violates inequality (1). One iteration of the algorithm
yields the ellipsoid E(A;,a;) also shown in Figure 3.5. The new center a; violates
(2). We update and continue this way. The fifth iteration produces the ellipsoid
E(As,as) displayed in Figure 3.6. In the 7-th iteration the ellipsoid E(A47,a7)
shown in Figure 3.7 is found. Its center a; = (1.2661,2.3217)7 is contained in
P. The whole sequence of ellipsoids E(Ao,ap), ..., E(A7,a7) produced in this
example is shown in Figure 3.8.
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Figure 3.6
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The pictures of the iterations of the ellipsoid method show clearly that in
an update the ellipsoid is squeezed in the direction of ¢ while it is expanded
in the direction orthogonal to c¢. If many updates are done with one and the
same vector ¢ the ellipsoids become “needles”. To demonstrate this effect, let us
consider the polytope P < R? defined by

1—7<x <18
20 =71=
1

th'—‘l\)l
. (=]

—=— < X2
5

IA

Starting the basic ellipsoid method with E(Ag,ap) = S(0,1), we make five it-
erations until the center as = (211/243,0)7 of the fifth ellipsoid E(As,as) is
contained in P. The six ellipsoids E(Ao,ao), .., E(As,as) of this sequence are
displayed in Figure 3.9 (a). If the ellipsoid method receives “flat” polytopes as
its input, it is likely that the algorithm produces extremely flat ellipsoids, say of
several kilometers length and a few millimeters width. This inevitably leads to
numerical difficulties in practice. In such cases, some variants of the ellipsoid
method frequently perform better empirically. For instance, the deep-cut ellipsoid
method finds a feasible point of the polytope P defined above in one iteration.
This iteration is shown in Figure 3.9 (b). But there is no general result quantifying
this improvement in performance.

-+ —

l |
T F [l T T H T
)

(a

Figure 3.9 ®)

%3.2 The Central-Cut Ellipsoid Method

We shall now give a description and analysis of the version of the basic ellipsoid
method (3.1.32) where arithmetic operations are performed in finite precision
and the errors induced by rounding are compensated for by blowing up the
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“rounded” Lowner-John ellipsoid. This section provides proofs of the claims
about this method made in the previous section. In particular, the polynomial
running time is established. Moreover, we do not restrict ourselves to the case
of an explicitly given polytope, but we treat the general case of a circumscribed
closed convex set given by a certain separation oracle. Our main result of this
section can be stated as follows.

(3.2.1) Theorem. There exists an oracle-polynomial time algorithm, called the
central-cut ellipsoid method, that solves the following problem:

Input: A rational number ¢ > 0 and a circumscribed closed convex set (K ;n, R)
given by an oracle SEPx that, for any y € Q" and any rational number 6 > 0,
either asserts that y € S(K,8) or finds a vector c € " with |c| = 1 such that
cTx<cTy+6 forevery xe K.

Output: One of the following:

(i) a vectorae S(K,¢),
(i) a positive definite matrix A € Q" and a point a € Q" such that K < E(A, a)
and vol(E(A,a)) < &.

Whenever we speak of the ellipsoid method without referring to a special
version we will mean the central-cut ellipsoid method, to be described in the proof
of Theorem (3.2.1). This method specifies a sequence of ellipsoids Ey, E;, ..., Ey
(i. ., a sequence of positive definite matrices 4y, A4, ..., An, and a sequence of
centers ag,ai, ..., ay, with Ey = E(Ay,ar), k =0, ..., N), that contain the given
set K, such that either at least one of the centers a; satisfies a; € S(K,¢) (so
alternative (i) of (3.2.1) is achieved), or the last ellipsoid Ey has volume at most
&

Proof of Theorem (3.2.1). The proof will be given in several steps. We first
describe the method, then prove its correctness assuming that several lemmas
hold. Finally the truth of the lemmas will be established.

So let numbers n, R, ¢ and an oracle SEP be given as required in the theorem.
Without loss of generality ¢ < 1.

I. For the precise description of the algorithm we need the following parameters:

(3.2.2) N := [5n|loge| + 51| log(2R)|],
(3.2.3) p =8N,
(3.24) 0 :=27P

The integer N is the maximum number of iterations of the central-cut ellipsoid
method, the rational number § is the error we allow the oracle SEPk to make, and
the integer p is the precision parameter for representation of numbers. We assume
throughout the algorithm that all numbers occurring are represented in binary
form and are rounded to p digits behind the point. Clearly, for every rational
number given by a numerator and denominator, this binary approximation can
be easily computed.
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We initialize the procedure by setting:

(3.2.5) ap =0,
Ao := R,

so that E; = S(0,R) and hence K < E,.

Assume ay, A, are found for some k > 0. If k = N, then the ellipsoid Ey =
E(An,ayn) has the property required in (ii) of (3.2.1) (we shall prove this later),
and we stop.

If k < N, we call the oracle SEPx with y = a;, and the error parameter &
defined in (3.2.4).

If SEPk concludes that a; € S(K, ), then by the choice of §, a, € S(K,¢),
and we stop having achieved (i) of (3.2.1).

If SEPk gives a vector ¢ € Q" with |c|le = 1 and ¢"x < c¢Ta, + 6 for all
x € K, then we do the following computations:

1 Agc

3.2.6 o — — ——,
( ) Ak+1 ag S r_cTAkc

2n? +3 2 AkCCTAk
327 Apy1 'R ——— _—
(3.2.7) ket 2n? ( *Th+1 TAee )

where the sign “x” in (3.2.6), (3.2.7) means that the left hand side is obtained by
cutting the binary expansions of the numbers on right hand side after p digits
behind the binary point. This finishes the description of the central-cut ellipsoid
method.

II. To prove the correctness of the algorithm, we establish the following facts.
(Recall that for a vector x, | x| denotes the Euclidean norm, and for a matrix A4,
||A|l denotes the spectral norm (0.1.16).)

(3.2.8) Lemma. The matrices Ao, Ay, ... are positive definite. Moreover,

lacll < R2*, ||Akll < R?2%, and |lA;'| < R7%4~.

(329) Lemma. K < E; fork=0,1,...

(3.2.10) Lemma. vol(E;, )/ vol(Ex) < e /"  fork =0,1,...

We shall prove these lemmas in IIL, IV, and V below.

It follows from Lemma (3.2.8) that all the formulas on the right hand sides
of (3.2.6), (3.2.7) are meaningful (no division by 0) and that the intermediate
numbers (entries of a, and A;) do not grow too large, i. e., have polynomial
encoding lengths. This shows that all the arithmetic operations can be carried
out in polynomial time.

If the algorithm stops with a;, € S(K,¢), then of course we have nothing to
prove. If it stops with k = N, then by Lemma (3.2.9), Ey indeed contains K.
Moreover, by Lemma (3.2.10) the volume of Ey satisfies

vol(Ex) < e /6" yol(Ey).
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Ey is the ball around zero with radius R, so Eg is contained in the hypercube
Q={xeR"|—-R <x; <R, i=1,...,n. From the very rough estimate
vol(Ep) < vol(Q) = (2R)" we get

(3.2.11) Vol(Ey) < e N/CMQR)" < 27N/BMR)" < &.

The last inequality in (3.2.11) in fact is the inequality from which the value of
N is derived. So the truth of this inequality directly follows from the choice of
N. This finishes the proof of Theorem (3.2.1) subject to the correctness of (3.2.8),
(3.2.9), (3.2.10), which we show now. a

ITI. Proof of Lemma (3.2.8). We prove the lemma by induction on k. Since
ap = 0 and since the largest eigenvalue of 4y is R?, all the statements of (3.2.8)
are clearly true for k = 0. Assume that they are true for k > 0. Let a, ,, 4, be
the right hand sides of (3.2.6) and (3.2.7) without rounding, i. e.,

. 1 Agc
3.2.12 =ag = i
( ) Gt = O T T Ao
. 2n* +3 2 AwccT Ay
. . A := T nxl TAe
(3.2.13) k+1 2 ( kT cTAic )
Then note first that
2n? 2 T
. -1 _ -1 -
(3.2.14) A = M2 +3 (Ak + n—1 cTAkC) ’

which is easy to verify by computation. Thus, (4;,,)~" is the sum of a positive
definite and a positive semidefinite matrix, and so it is positive definite. Hence
also A, is positive definite.

Equation (0.1.17) immediately implies that for positive semidefinite matrices
A and B, |A| < ||A+ B| holds. Using this, the fact that 4, is positive definite,
and the induction hypothesis, we have:

(3.2.15) ||A;+,|I=2n2+3“ - Aue A “

2n? T n+1 cTAke
2n% +3 1,
< Ai| £ —R“2%.
< S M < 3

Further, since each entry of A differs from the corresponding entry of 4, by
at most 277 (due to our rounding procedure) we have from (0.1.23)

(3.2.16) lert — Apyy | < Ikt — Ay lmax < 0277

So (3.2.15), (3.2.16), and the choice of p give

. . o, 1
G217 AAkstl] < kst = Ayl + Iy | < n27° + 2 R?2E < RP24
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This proves the second claim of Lemma (3.2.8).

Moreover, setting Q = A,lc/ 2, using formula (3.2.12) and the definition of the
spectral norm (0.1.16) we obtain

. 1 || Agcll 1 cTAic 1 (cTQT) A (Qc)
3.2.18 - = = =
( ) Naks —ad n+1ycTA,e n+1\ cTAye n+1 cTQTQc

1
< Al £ ——R2K1,
S ar Vi =5
Our rounding procedure and (0.1.7) give
(32.19) lak+t = @i | < Vallaker — a; o < VA27P5

and therefore, by the induction hypothesis, the choice of p, and the inequalities
(3.2.18) and (3.2.19) derived above we get

(3220 laketll < l@kst — @y | + lagyy — axll + lla|

1
< Vn2P + ——_R2¥1 4 ROK
n+1

< R2k+1 .
This proves the first claim of (3.2.8). Finally, we observe that
2n? 2 JlecT|
1
(3:2.21) 1™ < 5 (4 + o o)
2
<" -1 e gt
< 2n2+3(“A" I+ =14
n +1
IIAk‘II
< 3R"24".

(The first inequality above follows from (3.2.14). To get the second inequality,

note that (0.1.16) immediately yields [lcc” || = ¢Tc. Setting @ = AL/% by (0.1.18)

we have leeT |l Te

cTAie  cTQ%

The last inequality in (3.2.21) follows from n > 2 and our induction hypothesis.)

Let 4o denote the least eigenvalue of Ay and let v be a corresponding
eigenvector with |jv|| = 1. Then by (3.2.16), (3.2.21), and (0.1.17), (0.1.23), and the
choice of p:

(3.2.22) Ao =0T Ao =T Ay v+ 0T (Akr — Ay, )0
2 (A ) ™ 17 = ks — A5

> %R24"‘ —n27?

< 10712 = 1470

> R24~+D

From 4y > 0 we can conclude that A4, is positive definite. Moreover, by (0.1.18)
and (3.2.22),
ALl = 49" < R724k+1,

This proves the third assertion of (3.2.8). O
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IV. Proof of Lemma (3.2.9). By induction on k. The claim holds by construction
for k = 0. Suppose the claim is true for k, and let a;,, and A;,, be the vector
resp. matrix defined in (3.2.12) and (3.2.13) in the proof of the previous lemma.
Take any x € K. We have to prove that

(3.2.23) (¢ — @) T Al (x — aig) < 1.

We shall estimate the left-hand side of (3.2.23) in several steps. Using (3.2.14) we
get

(3224) (x—ap,) A ) (x—aj,y) =

2 ( L 1 Ayc )T
T 2243 i + 1 \/cTAkc

T 1 Akc
(Ak n——lcTA;c )(x~ak n+1\/m)
2n? _
=573 3 ((x - ak)TAk Yx — ap)+
1 + 2 cT(x—ap 4 2 (cT(x—ak))z)
n—1 n—1 T4 n—1 cTAxc ’

By induction hypothesis, we know that K < E;. So x belongs to Ei, and thus
the first term in the last formula of (3.2.24) above is at most 1. Setting

+

c’(x —ay)

3.2.25 t .= s
( ) VT Are

we therefore obtain

2n? n? 2
L] T * —1 L]
(3226 (=) (i)~ G1) < 373 (n2 el 1).

To estimate t(¢+1), we proceed as follows. Using the fact that A, can be written as
QQ, where Q = A,lc/ 2, we can bound ¢ from above employing the Cauchy-Schwarz

inequality (0.1.26):
" (x — a)| = 7 Q@' (x — aw))|
< ["QIIQ (x — ayl
=/cT00c vV (x — a)TQ 10" (x — a)
= VT Age \/(x - ak)TAk‘l(x —a),

and hence, since x € E;,

(3.2.27) |t|_{c T "")| <\x—a)Ta x—a) < 1.
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The oracle SEPk guarantees that ¢’ (x — ax) < 8, and so

cT(x —ay) P Lk
t= < <d\/147 ) < 6R712%:
velAe e /147t

Using this estimate and (3.2.27), we can conclude
tt+1) <26R7'2V.

Substituting this upper bound for t(t + 1) in (3.2.26), we get

. . . 2n? n’ _
(3228) (x—a), ) (A},) (x—a,) < 273(——“51{ V)

n?—1
2n*
< ————— +456R712V,
T 2nt+n2-3 + 2
The rest of the proof is standard error estimation:
A =|(x~— ak+1)TA1:4l.1(x — Q1) — (x — a/:+1)T(A;¢+1)_1(x - a;+1)| :

T 4—1 —1
<N = arin)” Ay @y — @) + 1@y — Grs ) Apyy (X — agy)l
Ty 4-1 -1 ~
+ 1 = )" (A — (Agy) )= apy)]
~1 -1
< lx — agtll 1A I lagyy — Gt + llagy — @t ll Ay Il X —ag |l
2y 41 -1
+ 1% = ap g P 1Ay 1A )™M 1Ay — Ak -

To continue the estimation, we observe that by Lemma (3.2.8), by the choice of
p, and by the facts that x € S(O,R) and k < N —1:

1% — akes | < Ixl + lagsr | < R+ R2 < ROV,

Ix — ap Il < % — aerall + lakss — ap, | < R+ R2T 4 /n27P < RV,
So again by (3.2.8) and by (3.2.21), we conclude:
(3229) A < (R2V*YR24N)(vn27?) + (vVn27P)(R™24N)(R2V )
+ (R222N+2)(R-24N)(R——24N)(nz*p)
—<_ nR-—123N+2—p + nR—226N+2—p.
Now we can put the estimates (3.2.28) and (3.2.29) together to get (3.2.23):
(x— ak+1)T Ak_i1(x — A1) <
< e — arpn) T Ay (6 — arg) — (x — a3 ) (Ary ) ™ (6 — gyl
+ (0= ) () (e — ayy)
4
<
T 2nt+n2-3
<1,

+ 45R_12N + nR—123N+2—p + nR_226N+2—p

where the last inequality follows from the choice of p. ‘ O
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V. Proof of Lemma (3.2.10).  As mentioned in (3.1.4), the volume of an ellipsoid
E(A,a) = R" is known to be /det(4) vol(S(0, 1)). Hence we obtain

(3.2.30) Vol(Eit1) _ [det(Air) _ det(4;,,) [det(Ais1)
o vol(Ey) det(Ax) det(A;) '\ det(4;,,)’
where A, is the matrix defined in (3.2.13). To estimate the first factor on the

right hand side of (3.2.30), write A; = QQ where Q = A,lc/ 2 and use the definition
of Ap,;:

det(A;,,)
dCt(Ak)

. ~ 2 2 3\ " 2 r
= det(Q_lAHlQ 1) = ( nzn_; ) det(l B n+1 CQTC&QQC)

Since Qcc”Q/c” QQc has rank one and trace one, the matrix in the last determi-
nant has eigenvalues 1, ..., 1,1 —2/(n+ 1). So

det(4;,,) 2n2 +3\nn— 1
231 +) _ 23/ g=2/n _ o~1/(2n)
(323 ) det(Ak) ( 2n? ) n+ 1 =€

To obtain the last estimate we have used the well-known facts that 1 + x < &*
for all x e R and (1 + -%;)" > €, for n > 2 — cf. POLYA and SzEGO (1978), L. 172.

To estimate the second factor of (3.2.30) write it as follows (and recall
inequality (3.2.21) and the fact that det B < ||B||"):

det Ak+]

3232
( ) det A,

= det(I + (A/:+1)_1(Ak+l - Al.c+1))

<+ (Apyy) (A — A3 DI
< (I + 1Ap )" T A — Ag g )"
< (1 + (R™24+1)(n27py)

< enZ 22N—pR—2

< el/ti0m),

where the last inequality follows from the choice of N and p. Thus, from the
estimates (3.2.31) and (3.2.32) we get

VOl(Ej41) < detd, ., [detAiy < o1/ @n)+1/Q0n) _ —~1/(5n)
vol(Ey) ~ \ detd, \/detd;,, ~ '

This finishes the proof of Lemma (3.2.10). O

Thus the proof of Theorem (3.2.1) is complete.
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(3.2.33) Remark. Suppose that, instead of the oracle SEPk in the input of
Theorem (3.2.1), we have an oracle SEPk k, (for some fixed subset K; < K),
which is weaker than SEPk in the following sense: for any y € @" and any
rational 6 > 0, SEPg g, either asserts that y € S(K,d) or finds a vector ¢c € @"
with ¢l = 1 such that ¢Tx < c¢Ty+4 for every x € K;. Then we obtain the same
conclusion as in (3.2.1) except that we can only guarantee that K; is contained
in E(A,a). O

(3.2.34) Remark. For technical reasons, the “separation” oracle used in Theorem
(3.2.1) is slightly stronger than a weak separation oracle. However, for well-
bounded convex bodies (where we know an inner radius for the convex set), any
weak separation oracle can be turned into one necessary for Theorem (3.2.1).
This is immediate from the following lemma. O

(3.2.35) Lemma. Let (K;n,R,r) be a well-bounded convex body, ¢ € R" with
lelo = 1, and y,6 € R with r > 8 > 0. Suppose that cTx < vy is valid for
S(K,—90). Then

R
chsy+2—ré\/h' for all x € K.

Proof. Let x( be a point in K maximizing c” x over K. By definition (2.1.16), there
is a point ap € R" with S (ag,r) < K. Consider the function f(x) := 5;x+(1 — %)xo.
Set a := f(ao), then f(S(ao,r)) = S(a,d), and moreover, S(a,d) is contained in
conv({xp} U S(ap,r)). Since xp € K, and S(ao,r) < K, S(a,d) is contained in K
by convexity. Hence a € S(K,—6), and so we know that ¢’a < y. Now note
that xo = a + %(xo — ap). Thus in order to estimate ¢Txy, we have to find a
bound on ¢7(xy — ap). Since xo,a0 € K and K < S(0, R), we can conclude that
lxo — aoll < 2R, and since |ic|o = 1, we know that |c|| < /n. Putting this
together and using the Cauchy-Schwarz inequality (0.1.26) we get:

o 0 o ]
¢"xo < cT(a+ ~(x0—ao)) <7+ ;CT(Xo—ao) <v+licllixo—aoll < v+ ;s/ﬁZR,

and the claim is proved. O

%3.3 The Shallow-Cut Ellipsoid Method

We have already mentioned before that the central-cut ellipsoid method as
described in the previous section does not make full use of the geometric idea
behind it. It has been observed by many authors that, for instance, using deep
cuts can speed up the method (see SHOR and GerSHOVICH (1979), and BLAND,
GoLDFARB and TopD (1981) for a survey). A deeper idea due to YUDIN and
NEMIROVSKIT (1976b) is the use of shallow cuts. These provide slower (though
still polynomial time) termination but work for substantially weaker separation
oracles. This method will allow us to derive (among other results) the polynomial
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time equivalence of the weak membership (2.1.14) and weak separation problems
(2.1.13) for centered convex bodies.

To formulate this method precisely, we have to define a shallow separation
oracle for a convex set K. Before giving an exact definition, we describe the
geometric idea on which the shallow-cut method is based. In the central-cut
ellipsoid method we stop as soon as we have found a point almost in the convex
set K. Now we want to find a point deep in K — even more, we are looking for an
ellipsoid E (A, a) containing K such that the concentrical ellipsoid E((n+ 1)~24, a)
is contained in K. The method stops as soon as such an ellipsoid E (4, a) is found.
If an ellipsoid E(A4,a) does not have this property, then E((n+ 1)24,a) \ K is
nonempty, and we look for a halfspace ¢”x <y which contains K but does not
completely contain E((n+ 1)~24,a). Such a halfspace will be called a shallow cut
since it may contain the center a of E(A4,a) in its interior — see Figure 3.10.

b

Figure 3.10

The method proceeds by determining the minimum volume ellipsoid containing

(3.3.1) E(A,9N{x|c"x<cTa+ L 1\/cTAc}

n+

and continues this way. Of course, since irrational numbers may come up, it will
be necessary to round, and therefore the Lowner-John-ellipsoid has to be blown
up a little bit as in the central-cut ellipsoid method.

Note that, by (3.1.8), the right hand side c”a+(n+1)"'vcT Ac = cTa+(n+1)"!
llell 4=t in (3.3.1) is the maximum value the linear function ¢Tx assumes on the
ellipsoid E((n+1)724, a). So the halfspace {x e R" | ¢"x < cTa+(n+1)"'vcT Ac}
contains this ellipsoid and supports it at the point a + ((n + 1)vcT Ac)~1 Ac.

(3.3.2) Definition. A shallow separation oracle for a convex set K = R" is an
oracle whose input is an ellipsoid E(A,a) described by a positive definite matrix
A e Q" and a vector a € Q)". A shallow separation oracle for K can write one
of the following two possible answers on its output tape:
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(i) a vector c € Q", ¢ # 0, so that the halfspace H := {x e R" | ¢"x <
cTa+ (n+1)"'vcT Ac} contains K N E(A,a) (a vector ¢ with this property is
called a shallew cut for K and E(A,a)),

(i) the assertion that E(A,a) is tough.

]

At least two remarks are necessary to explam this definition. In answer
(i), the inequality ¢"x <y with y = ¢Ta + 7 VcT Ac defining the halfspace H
containing K N E(A,a) has an irrational rlght hand side in general. But note
that this right hand side y is not written on the output tape. The oracle only
confirms that H contains K N E(4,a). In answer (ii) we have used the yet
undefined word “tough”. Loosely speaking, the word “tough” stands for “cutting
is impossible”. “Toughness” is a parameter left open, and in every instance of a
shallow separation oracle the particular meaning of “tough” has to be specified.
For instance, in the example described above a tough ellipsoid would be an
ellipsoid E(A4, a) such that E((n+ 1)724, a) is contained in K. But there are other
meaningful and interesting definitions of toughness possible.

We assume, as usual, that with each shallow separation oracle a polynomial
function ®@ is associated such that for every input to the oracle of encoding length
at most L the encoding length of its output is at most ®(L).

The aim of this section is to prove the following.

(3.3.3) Theorem. There exists an oracle-polynomial time algorithm, called the
shallow-cut ellipsoid method, that, for any rational number ¢ > 0 and for any
circumscribed closed convex set (K;n,R) given by a shallow separation oracle,
finds a positive definite matrix A € Q" and a point a € Q" such that one of the
following holds:

(i) E(A,a) has been declared tough by the oracle,
(i) K < E(A,a) and vol(E(A4,q)) < «.
a

Before giving a proof of a slightly more general version of this theorem, we
want to illustrate it by three special cases.

(3.3.4) Example. Suppose that K = R", n > 2, is a full-dimensional polytope
given as the solution set of a system of linear inequalities

aiTxSai, i=1...,m,
where g, e @, ; € Q@ for i = 1, ..., m. We design a shallow separation oracle as
follows. Let E(A, a) be an ellipsoid given by 4 and a. For i = 1, ..., m, determine

whether all points in the ellipsoid E((n+1)24, a) satisfy a7 x < a;. It follows from
(3.1.8) that this can be done by checking whether (n+ 1)~2af Aa; < (¢ — a7 a)?
holds. If an index i is found for which this inequality does not hold, then the
oracle gives the shallow cut a; as answer. If all inequalities of the given system
are satisfied by all points in E((n + 1)724,a), then the oracle declares E(A4,a)
tough.
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If L denotes the encoding length of the inequality system afx < o, i =

1, ..., m, then we know from Lemma (3.1.33) that K = S(0, R(K)) with R(K) :=
V/n2=" and from Lemma (3.1.35) that vol(K) > &(K) := 2+ DL+r Qo
by running the shallow-cut ellipsoid method of Theorem (3.3.3) with input
(K;n,R(K)) and ¢ = ¢(K) and with the shallow separation oracle defined above,
we will obtain an ellipsoid E(A4,a) containing K such that the concentrical
ellipsoid E((n + 1)724, a) is contained in K. O

Example (3.3.4) applies to more general situations. Namely, if for a circum-
scribed convex set K we have a shallow separation oracle where toughness of
an ellipsoid E(A4,a) means that E((n+ 1)724,a) < K, then the shallow-cut ellip-
soid method solves the weak nonemptiness problem for K with the additional
advantage that it gives a point deep inside K.

(3.3.5) Example. The central-cut ellipsoid method can be simulated by the
shallow-cut ellipsoid method, and Theorem (3.2.1) is a consequence of Theorem
(3.3.3). In fact, suppose that we have an oracle SEPx as in (3.2.1) for a
circumscribed closed convex set (K;n,R) and that a positive rational number
¢ > 0 is given. Then we can design a shallow separation oracle for K as follows.
Let an ellipsoid E(4,a) be given by A and a. Compute a positive strict lower
bound ¢, for the square root of the least eigenvalue A of A. Let 6’ := min{e, &}
and 8 := (n+ 1)"18’. Call the oracle SEPx for K with input y := a and error
parameter §. If the oracle SEPk asserts that y € S(K,J), then we declare the
ellipsoid E(A4,a) tough. If SEPx finds a vector ¢ € Q" with |c[lo = 1 and
cTx < cTy+ 6 for all x € K, then we take the vector ¢ as output of the shallow
separation oracle. By the choice of d, the vector c is indeed a shallow cut for K
and E(4, a), namely, for all x € K we have

(3.3.6) Tx<cTa+d<cTa+t(m+1)'eg <cla+@m+1)"'Va
=cTa+@m+1)""Vilclo < cTa+ n+1)"Vic|
<cTa+ (n+ D)7 el 4,

where the last inequality follows from (0.1.9). In this case, toughness implies that
the center of the tough ellipsoid is in S(K,8) and hence in S(K,¢). O

(3.3.7) Example. We can also turn a weak separation oracle into a shallow
separation oracle provided an inner radius r for K is known. This follows
directly by combining Remark (3.2.33) with Example (3.3.5). O

By definition (3.3.2), a shallow cut for K and E(4,q) is a vector ¢ € @" such
that ¢”x < cTa+ (n+1)~! vVcT Ac for all x € K N E(4, a). The parameter (n+ 1)~}
used in the right hand side of this inequality is just a convenient choice out of an
interval of possible parameters with which a shallow-cut method can bg defined
and for which it works. For our applications, greater generality is not necessary.
But we will state and prove a slightly more general theorem to show what can
be done.
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(3.3.8) Definition. For any rational number B with 0 < B < 1/n a shallow
B-separation oracle for a convex set K = R" is an oracle which, for an input a,
A, where a € Q" and A is a rational positive definite nxn-matrix, writes one of
the following two answers on its output tape:

(i) a vector c € Q, ¢ # 0, such that the halfspace {x | c"x < cTa+ BvcT Ac}
contains K N E(A,a) (such a vector ¢ is called a shallow f-cut for K and
E(A,a)),

(ii) the assertion that E(A,a) is tough. O

Observe that the halfspace {x € R" | ¢"x < cTa+ B V/cTAc} contains and
supports the ellipsoid E(B%4,a). Clearly a shallow separation oracle as defined
in (3.3.2) is a shallow —-oracle as defined above.

(3.3.9) Theorem. There exists an algorithm, called the shallow-B-cut ellipsoid
method, that, for any $ € @, 0 < B < 1/n, and for any circumscribed closed
convex set (K ;n, R) given by a shallow f-separation oracle, and for any rational
& > 0, finds, in time oracle-polynomial in n+ (R) + (&) + [(1 — np)~'], a positive
definite matrix A € Q™" and a vector a € Q" such that one of the following
holds:

(i) E(A,a) has been declared tough by the oracle;
(i) K < E(A4,a) and vol(E(A4,a)) < .

Note that the algorithm we are going to design is not polynomial in the
encoding length () of B. But if we choose B such that the encoding length
of the number (1 —np)~! is bounded by a polynomial in the encoding length-
n+(R)+ (e) of the other input (e. g., if we set # := (n+1)~'), then the algorithm
is truely oracle-polynomial. So Theorem (3.3.3) directly follows from Theorem
(3.3.9).

Proof of Theorem (3.3.9). As in the proof of Theorem (3.2.1) we are going
to describe a sequence of ellipsoids Eg, Ei,... ,i. e., we are going to construct a
sequence of positive definite matrices 4o, Ay, ... and a sequence of centers ag, ay, . . .
such that E; = E(Ay, ay). The algorithm we describe is the shallow-B-cut ellipsoid
method. Set

(33.10) N = |'(1 ﬁ)2|1ogs|+(
(33.11)  p:=8N.

W |10g(2R)| + [log(1 — np)| |

We initialize the procedure by setting
ag = 0

3.3.12
( ) Ay == R?I.

Assume ay, Ay are defined for some k > 0. If k = N, we stop. In this case the
ellipsoid Ey contains K and has volume at most ¢, so alternative (ii) of (3.3.9)
is achieved. If k < N, we call the shallow B-separation oracle with a = a; and
A = Ay
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If the oracle concludes that E(A, a) is tough, then E; has the desired property.
If the oracle gives a shallow f-cut c, then we perform the following compu-
tations.

(33.13) Gest 7 G — p \/EMT:,E ,
(33.14) Ak Ay = G(Ak -1 Az_;c%),
where
(3.3.15) o= 12—+ nlﬂ’
— R2
(3.3.16) n '(fl—f ),
(3.3.17) _ (ﬁ%ﬂjﬂ) ’
(33.18) I /5

2n2

Again “~” means that the left hand side is obtained by rounding the right hand
side to p digits behind the point. (Note that without rounding and without
blowing-up (i. e., with setting { := 1) the update formulas above determine the
‘'Lowner-John-ellipsoid of Ej(A4,a,c,y) with y := cTay + Bv/cT Axc — cf. (3.1.15),
(3.1.16), (3.1.17).) )

Similarly as in the case of the central-cut ellipsoid method, to establish the
correctness of the algorithm we need the following lemmas.

(3.3.19) Lemma. The matrices Ay, Ay,... are positive definite. Moreover,

laell < R2*, | Al < R?2%,and|| 4} < R4~
k

(3.3.20) Lemma. K< E; fork=0,1,....

(3.3.21) Lemma. vol(Ei,;)/ vol(Ex) < e==mP"/" for k =0,1,....

The first two of these lemmas can be proved along the same lines as Lemmas
(3.2.8) and (3.2.9). We will prove Lemma (3.3.21), where the crucial condition
B < 1/n plays a role.

Proof of Lemma (3.3.21). As in the proof of Lemma (3.2.10) we write

vol(Ex1)  [det(4;,;) [det(Ais1)
(3.3.22) vol(Ex) ~ V Tdet(ay) Y/ det(ar,,)’
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where Ay, is defined in (3.3.14), and we obtain for the first factor in (3.3.22)

(3.3.23) dst(:f)l) Co)r(1 —1) = {26 V2 /a(1—1)

(1= nB)2\#2 (r2(1 — B2 6-1/2n(1 + )
=(1+ 2n? ) ( n?—1 ) n+1 °

The first of the three factors in (3.3.23) can be easily estimated as follows:
(1 —np)?\n2 (1=nB)%/ (4n)
(3.3.24) (1 + T) <e .

To derive an upper bound for the last two factors in (3.3.23) take the natural
logarithm In (and recall the power series expansion of In(1 + x) and In(1 — x)):

201 _ A2\« (ne
(3.3.25) 1n((_n'(;Tﬂ))( b2 n(nl:f)) )

= "= (10t = 4 (1= 1)) +In(t+ ) ~1n(1+ - 1y

= n;l(gi(% _ﬁzk)) +Z (_l:)k (;li_ﬁk)

& AC) “;il_“l(,,zi_l )

-2 T(zk":ll_)nm(@" — (B)* — 2k(nf)*~" + 1)

k=1
L —(L=npy’
B 2n

The last inequality follows from the observation that each term of the series on
the left hand side is negative as n < 1. Hence the first term —(1 —nf)?/(2n) of
this last sum is an upper bound for it.

Thus, from (3.3.24) and (3.3.25) we get

(3.3.26) %ﬁ'l_) =B /(4n) ,—(1-nB)2/(2n) _ ,—(1-—np)*/(4n)
det(4y)

The second factor in (3.3.22) can be estimated just like in the proof of Lemma
(3.2.10), and we obtain

det(Ar41) 1=nB)?/(20
(33.27) [detie) _ anp/com,
det(4,,)

Combining inequalities (3.3.26) and (3.3.27) gives the desired result. This com-
pletes the proof of Lemma (3.3.21) and, by the same argument as in the proof of
Theorem (3.2.1), also the proof of Theorem (3.3.9). O
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As mentioned above, we will only use the shallow S-cut ellipsoid method for
B = n}r—l in the sequel, and that is what we call the shallow-cut ellipsoid method.
Similarly, if g = HLI, a shallow f-separation oracle is called just a shallow
separation oracle. The parameters used in the shallow-cut ellipsoid method are
the following (compare with (3.3.10), ..., (3.3.18) and (3.2.2),..., (3.2.7)):

N :[5n(n + 1)*|log ] + Sn*(n + 1)?|log(2R)| + log(n + 1],

p =8N,
1
P=mr)>
. n*n+2)
T hr)n—1)
2
= nin+1)’
¢ = 1

=14 .
+ 2n?(n + 1)?

So, in particular one can see that the number N of iterations of the shallow-cut
ellipsoid method is about (n + 1) times as large as the number of iterations of
the central-cut ellipsoid method. This, of course, matters for practical purposes,
but is of no significance if one is only interested in polynomial time solvability.



