

Lecture 2: Introduction to sublinear algorithms

Themis Gouleakis

April 20, 2021

Sublinear-time algorithms (examples)

Problem: Compute the diameter of a point set

- m points in metric space X.
- Distances given by: L.

$$
D = \begin{bmatrix} 0 & d_{12} & \dots & d_{1m} \\ d_{21} & 0 & & \vdots \\ \vdots & & \ddots & \\ d_{m1} & \dots & & 0 \end{bmatrix}
$$

- $-$ Symmetric: $d_{ii} = d_{ii}$ $-$ Triangle inequality: $d_{ii} < d_{ik} + d_{ki}$
- Input size: $n = \Theta(m^2)$

Algorithm 1: Diameter-Estimator

Input : *m* points in a metric space, matrix \bf{D} of all the pairwise distances. **Output:** Points k, ℓ and distance $\mathbf{D}_{k,\ell}$.

- 1 Pick k arbitrarily from $\{1, \dots, m\}$;
- 2 Pick ℓ that maximizes $\mathbf{D}_{k,\ell}$;
- **3** Return $k, \ell, \mathbf{D}_{k,\ell}$

Theorem

Diameter-Estimator returns a 2*-approximation to the actual diameter.*

Sublinear-time algorithms (examples)

Problem: Number of connected components

■ Input: $G = (V, E)$, $|V| = n$

Goal: Estimate $c = \frac{1}{2}$ connected components of G.

Let $n_v : \sharp$ of nodes in the connected component of *v*.

We need to estimate: $c = \sum_{\nu \in V} \frac{1}{\rho_{\text{\tiny N}}}$ *nv*

Lemma

For all v \in *V*, *it holds that* $\frac{1}{\hat{n}_v} - \frac{1}{n_v}$ $\frac{1}{n_v} \leq \epsilon/2$, where $\hat{n}_v = \min\{n_v, 2/\epsilon\}$

Algorithm

Algorithm 2: \hat{n}_v -Calculator

Input : Graph G, vertex v, ϵ

Output: \widehat{n}_{n} .

 $_1$ Initialize Breadth-first search (BFS) from v :

2 while # of unique visited nodes by *BFS* is
$$
< \frac{2}{\epsilon}
$$

- Continue BFS: \overline{a}
- if BFS finishes then \mathbf{A}
- Return number of visited nodes and abort $\overline{\mathbf{5}}$

6 Return $\frac{2}{5}$

Algorithm 3: č-Calculator

Input : Graph G , ϵ , b Output: č. $r \leftarrow b/\epsilon^3$: 2 Sample r vertices v_1, \dots, v_r from G uniformly with replacement; **3** Compute \hat{n}_{v_i} for all $1 \leq i \leq r$ using \hat{n}_v -**Calculator**; 4 Return $\tilde{c} = \frac{\tilde{n}}{r} \left(\sum_{i=1}^r 1/\hat{n}_{v_i} \right)$

Lemma

It holds that: $Pr[|\hat{c} - \tilde{c}| > \epsilon n/2] \le 1/4$

Finishing the proof

Theorem

Let c be the number of connected components of G and let \tilde{c} be *the output of Algorithm* 3*. Then,* $Pr[|c - \tilde{c}| \le \epsilon n] \ge 3/4$ *.*

Proof:

Property testing definitions

Computational problems (**exact**)

Search problems

- *x* : $R(x) = \{y : (x, y) \in R\}$
- $v: \{0, 1\}^* \to \mathbb{R}$ (value)
- Goal: Find $y^* = \max_{y \in R} \{v(y)\}$

Property testing definitions

Computational problems (**approximate**)

Search problems

- *x* : $R(x) = \{y : (x, y) \in R\}$
- $v: \{0, 1\}^* \to \mathbb{R}$ (value)

Goal: Find

$$
y^*: v(y^*) > C \cdot \max_{y \in R(x)} \{v(y)\}
$$

Definitions for property testing

Definition

Let Π_n be a set of functions $f: [n] \to R_n, n \in \mathbb{N}$. The union $\Pi = \bigcup_{n \in \mathbb{N}} \Pi_n \pi$ of these sets will be called a property.

- Oracle access: Query $i \rightarrow f(i)$
- $\textsf{Distance: Let } \delta(f,g) = \frac{|\{i \in [n]: f(i) \neq g(i)\}|}{n} = \textsf{Pr}_{i \in U_{[n]}}[f(i) \neq g(i)]$
- Distance from property $Π = ∪_{n∈N}Π_n$:
	- $\delta_{\Pi}(f) = \delta(f, \Pi) = \min_{g \in \Pi_n} \{ \delta(f, g) \}$
	- $-\delta_{\Pi}(f) = \infty$ if $\Pi_n = \emptyset$.
- Query complexity: $q : \mathbb{N} \times (0, 1] \rightarrow \mathbb{N}$

Definitions for property testing

Definition

A tester for a property π is a probabilistic oracle machine that outputs a binary verdict that satisfies the following:

- 1. If $S \in \Pi$, then the tester accepts with probability at least 2/3.
- 2. If S is ϵ -far from Π , then the tester accepts with probability at most 1/3
	- **One sided error**: Accept any *S* ∈ Π with probability 1.

Problem: Testing convex position

Definition

A point set *P* is in convex position if every point in *P* belongs to the convex hull of *P*.

Definition

A set P of *n* points is ϵ -far from convex position if no set Q of size (at most) ϵn exists such that $P \setminus Q$ is in convex position.

Goal: Design a tester that can distinguish the above in sub-linear time.

Tester

CONVEXTESTER (P, ϵ) let $s = 16\left(4\sqrt[4]{n^d/\epsilon} + 2d + 2\right)$ Choose a set $S \subseteq P$ of size s uniformly at random **if** S is in convex position **then** accept else reject

Completeness case: Clearly, if *P* is in convex position, then any *S* ⊂ *P* will also be in convex position.

Soundness case: We need to show that CONVEX TESTER rejects every point set that is ϵ -far from convex position with probability at least 2/3.

