

Lecture 2: Introduction to sublinear algorithms

Themis Gouleakis

April 20, 2021

Sublinear-time algorithms (examples)

Problem: Compute the diameter of a point set

- m points in metric space X.
- Distances given by:

$$D = \begin{bmatrix} 0 & d_{12} & \dots & d_{1m} \\ d_{21} & 0 & & \vdots \\ \vdots & & \ddots & \\ d_{m1} & \dots & & 0 \end{bmatrix}$$

- Symmetric: $d_{ij} = d_{ji}$ - Triangle inequality: $d_{ij} < d_{ik} + d_{kj}$
- Input size: $n = \Theta(m^2)$

Algorithm 1: Diameter-Estimator

- 1 Pick k arbitrarily from $\{1, \cdots, m\}$;
- **2** Pick ℓ that maximizes $\mathbf{D}_{k,\ell}$;
- ${\bf 3}$ Return $k,\ell,{\bf D}_{k,\ell}$

Theorem

Diameter-Estimator returns a 2-approximation to the actual diameter.

Sublinear-time algorithms (examples)

Problem: Number of connected components

- Input: *G* = (*V*, *E*) , |*V*| = *n*
- Goal: Estimate $c = \ddagger$ connected components of *G*.

Let n_v : \sharp of nodes in the connected component of v.

• We need to estimate: $c = \sum_{v \in V} \frac{1}{n_v}$

Lemma

For all $v \in V$, it holds that $\frac{1}{\hat{n}_v} - \frac{1}{n_v} \le \epsilon/2$, where $\hat{n}_v = \min\{n_v, 2/\epsilon\}$

Algorithm

Algorithm 2: \hat{n}_v -Calculator

 $\mathbf{Input} \hspace{0.1 in }: \operatorname{Graph} G, \operatorname{vertex} v, \hspace{0.1 in } \epsilon$

Output: \hat{n}_v .

- 1 Initialize Breadth-first search (BFS) from v;
- 2 while # of unique visited nodes by BFS is $< \frac{2}{\epsilon}$ do
- 3 | Continue BFS ;
- 4 if BFS finishes then
- 5 Return number of visited nodes and abort

6 Return $\frac{2}{\epsilon}$

Algorithm 3: *c*-Calculator

Input : Graph G, ϵ , b Output: \tilde{c} . 1 $r \leftarrow b/\epsilon^3$; 2 Sample r vertices v_1, \dots, v_r from G uniformly with replacement; 3 Compute \hat{n}_{v_i} for all $1 \le i \le r$ using \hat{n}_v -Calculator; 4 Return $\tilde{c} = \frac{\pi}{r} \left(\sum_{i=1}^r 1/\hat{n}_{v_i} \right)$

Lemma

It holds that: $\Pr[|\hat{c} - \tilde{c}| > \epsilon n/2] \le 1/4$

max planck institut informatik

Finishing the proof

Theorem

Let c be the number of connected components of G and let \tilde{c} be the output of Algorithm 3. Then, $\Pr[|c - \tilde{c}| \le \epsilon n] \ge 3/4$.

Proof:

Property testing definitions

Computational problems (exact)

Search problems

- $x : R(x) = \{y : (x, y) \in R\}$
- $v: \{0, 1\}^* \rightarrow \mathbb{R}$ (value)
- Goal: Find $y^* = \max_{y \in R} \{v(y)\}$

Property testing definitions

Computational problems (approximate)

Search problems

- $x : R(x) = \{y : (x, y) \in R\}$
- $v: \{0,1\}^* \rightarrow \mathbb{R}$ (value)
- Goal: Find

$$y^*: v(y^*) > C \cdot \max_{y \in R(x)} \{v(y)\}$$

Definitions for property testing

Definition

Let Π_n be a set of functions $f : [n] \to R_n$, $n \in \mathbb{N}$. The union $\Pi = \bigcup_{n \in \mathbb{N}} \Pi_n \pi$ of these sets will be called a property.

- Oracle access: Query $i \rightarrow f(i)$
- Distance: Let $\delta(f, g) = \frac{|\{i \in [n]: f(i) \neq g(i)\}|}{n} = \Pr_{i \in U_{[n]}}[f(i) \neq g(i)]$
- Distance from property $\Pi = \bigcup_{n \in \mathbb{N}} \Pi_n$:
 - $\delta_{\Pi}(f) = \delta(f, \Pi) = \min_{g \in \Pi_n} \{\delta(f, g)\}$
 - $-\delta_{\Pi}(f) = \infty$ if $\Pi_n = \emptyset$.
- Query complexity: $q: \mathbb{N} \times (0, 1] \rightarrow \mathbb{N}$

Definitions for property testing

Definition

A tester for a property π is a probabilistic oracle machine that outputs a binary verdict that satisfies the following:

- 1. If $S \in \Pi$, then the tester accepts with probability at least 2/3.
- If S is
 ϵ-far from Π, then the tester accepts with probability at most 1/3
 - One sided error: Accept any $S \in \Pi$ with probability 1.

Problem: Testing convex position

Definition

A point set *P* is in convex position if every point in *P* belongs to the convex hull of *P*.

Definition

A set *P* of *n* points is ϵ -far from convex position if no set *Q* of size (at most) ϵn exists such that $P \setminus Q$ is in convex position.

Goal: Design a tester that can distinguish the above in sub-linear time.

Tester

CONVEXTESTER (P, ϵ) let $s = 16 \left(4^{d+1} \sqrt{n^d/\epsilon} + 2d + 2 \right)$ Choose a set $S \subseteq P$ of size s uniformly at random if S is in convex position then accept else reject

Completeness case: Clearly, if *P* is in convex position, then any $S \subseteq P$ will also be in convex position. **Soundness case:** We need to show that **CONVEX TESTER**

rejects every point set that is ϵ -far from convex position with probability at least 2/3.

