

Lecture 4:Testing convex position

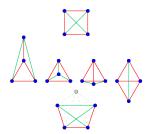
Themis Gouleakis

May 7, 2021

Convex position

Definition (completeness): A pointset $P \subseteq \mathbb{R}^d$ is in convex position if every point is a vertex of the convex hull (i.e extreme point)

- In addition, we assume the points are in general position
 - No d + 1 points on the same hyperplane.

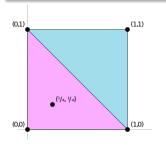


Definition (soundness): A pointset $P \subseteq \mathbb{R}^d$ is ϵ -far from convex position if $\forall Q \subseteq P, |Q| \le \epsilon n, P \setminus Q$ is not in convex position.

Caratheodory's theorem

Theorem

Let P be a set of n points in \mathbb{R}^d and $p \in CH(P)$. Then, p can be written as a convex combination of at most d + 1 points of P.



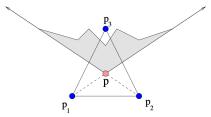
Corollary: There exist d + 2 points of *P* not in convex position.

Useful lemmas

Lemma

Let P be a set of n points in \mathbb{R}^d , $p \in CH_{int}(P)$ and $P \cup \{p\}$ in general position. There exist $W \subseteq P, U \subseteq P \setminus W$ such that |W| = d and $|U| \ge \frac{n}{d+1}$ and $p \in CH_{int}(W \cup \{q\})$ for each $q \in U$.

Proof:



Useful lemmas

Lemma

Let P be a set of n points in \mathbb{R}^d , which are ϵ -far from being in convex position and let $k = \frac{\epsilon n}{d+1}$. There exist $W_i \subseteq P, W_i \subseteq P, i \in [k]$ such that:

- 1. $|W_i| = d + 1$
- 2. For $i \neq j$: $W_i \cap W_j = \emptyset$
- 3. For $q \in U_i$: $W_i \cup \{q\}$ not in convex position.
- $4. |U_i| \ge (1-\epsilon)\frac{n}{d+1}$

Proof:

Algorithm and analysis

CONVEXTESTER (P, ϵ) let $s = 16 \left(4^{d+1} \sqrt{n^d/\epsilon} + 2d + 2 \right)$ Choose a set $S \subseteq P$ of size s uniformly at random if S is in convex position then accept else reject

Analysis:

Algorithm and analysis

Lemma

Let Ω be a set of n elements and W_1, \ldots, W_k disjoint size ℓ subsets of Ω . Also let W be a set of $s \ge \frac{2n}{(2k)^{1/\ell}}$ elements chosen u.a.r from Ω . Then,

$$\Pr[\exists j \in [k] : W_j \subseteq W] \ge \frac{1}{4}$$

Claim: The query complexity of the algorithm is $O(\sqrt[d+1]{n^d/\epsilon})$. **Proof:**

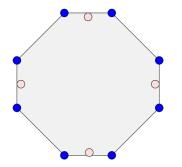
Lower bound

Canonical testers:

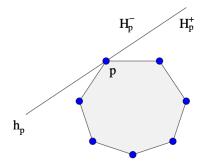
Lemma

Let A be a property tester for convex position of point sets with query complexity $q(\epsilon, n)$. Then, there is a property tester A' for convex position that samples a set S of size $q(\epsilon, n)$ u.a.r and accepts iff S is in convex position.

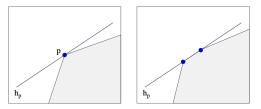
High level:



More details:



Constructing facets:



Adding more points:

