1 Maxflow Mincut Theorem by Dual Analysis

Consider the following LP for flows and its cut dual.

(FLOW-LP) max
$$
\sum_{uv \in \delta^+(s)} x(uv) - \sum_{uv \in \delta^-(s)} x(uv)
$$

s.t. $x(uv) \le c(uv)$ for all $uv \in E$

$$
\sum_{uv \in E} x(uv) = \sum_{vw \in E} x(vw)
$$
 for all $v \in V \setminus \{s, t\}$
 $x \ge 0$

(CUT-LP) min
$$
\sum_{uv \in E} c(uv)y(uv)
$$

s.t. $z(v) - z(u) \le y(uv)$ for all $uv \in E$
 $z(s) = -1$
 $z(t) = 0$
 $y(uv) \ge 0$ for all $uv \in E$
 $y \in [0, 1]^{|E|}, z \in \mathbb{R}^{|V|}$

Let x^* be the optimal solution for the (FLOW-LP) and (y^*, z^*) be the optimal solution for the (CUT-LP). Let us recall the complimentary slackness conditions:

- If $y^*(uv) > 0$, then $x^*(uv) = c(uv)$.
- If $x^*(uv) > 0$, then $z^*(v) z^*(u) = y^*(uv)$.

We will directly construct a cut U whose cost achieves the optimal of the primal LP, therefore establishing the max-flow/min-cut theorem, as well as the integrality of (CUT-LP).

Define the cut $U = \{v : z^*(v) < 0\}$. The cost of this cut is equal to:

$$
c(U) = \sum_{uv \in \delta^+(U)} c(uv)
$$

Observe that $y^*(uv) > 0$ for all edges $uv \in \delta^+(U)$: Otherwise, we must have $z^*(v) \leq z^*(u) < 1$, contradicting to the choice of $v \notin U$. This implies that $x^*(uv) = c(uv)$ for all such edges uv leaving set U. Therefore, $c(U) = \sum_{uv \in \delta^+(U)} c(uv) = \sum_{uv \in \delta^+(U)} x^*(uv)$.

Now, the second observation is that $x^*(uv) = 0$ for all $uv \in \delta^-(U)$: Otherwise, we must have $z^*(v) = z^*(u) + y^*(uv) \geq z^*(u)$, a contradiction. Combining this with the previous equation, we have:

$$
c(U) = \sum_{uv \in \delta^+(U)} x^*(uv) - \sum_{uv \in \delta^-(U)} x^*(uv)
$$

Using the fact that flow across every cut is the same, we have $c(U) = \sum_{uv \in \delta^+(s)} x^*(uv)$ $\sum_{uv \in \delta^-(s)} x^*(uv)$, as desired.