
1 Maxflow Mincut Theorem by Dual Analysis

Consider the following LP for flows and its cut dual.

(FLOW-LP) max
∑

uv∈δ+(s)

x(uv)−
∑

uv∈δ−(s)

x(uv)

s.t. x(uv) ≤ c(uv) for all uv ∈ E∑
uv∈E

x(uv) =
∑
vw∈E

x(vw) for all v ∈ V \ {s, t}

x ≥ 0

(CUT-LP) min
∑
uv∈E

c(uv)y(uv)

s.t. z(v)− z(u) ≤ y(uv) for all uv ∈ E
z(s) = −1

z(t) = 0

y(uv) ≥ 0 for all uv ∈ E
y ∈ [0, 1]|E|, z ∈ R|V |

Let x∗ be the optimal solution for the (FLOW-LP) and (y∗, z∗) be the optimal solution for the
(CUT-LP). Let us recall the complimentary slackness conditions:

• If y∗(uv) > 0, then x∗(uv) = c(uv).

• If x∗(uv) > 0, then z∗(v)− z∗(u) = y∗(uv).

We will directly construct a cut U whose cost achieves the optimal of the primal LP, therefore
establishing the max-flow/min-cut theorem, as well as the integrality of (CUT-LP).

Define the cut U = {v : z∗(v) < 0}. The cost of this cut is equal to:

c(U) =
∑

uv∈δ+(U)

c(uv)

Observe that y∗(uv) > 0 for all edges uv ∈ δ+(U): Otherwise, we must have z∗(v) ≤ z∗(u) < 1,
contradicting to the choice of v 6∈ U . This implies that x∗(uv) = c(uv) for all such edges uv
leaving set U . Therefore, c(U) =

∑
uv∈δ+(U) c(uv) =

∑
uv∈δ+(U) x

∗(uv).

Now, the second observation is that x∗(uv) = 0 for all uv ∈ δ−(U): Otherwise, we must have
z∗(v) = z∗(u) + y∗(uv) ≥ z∗(u), a contradiction. Combining this with the previous equation, we
have:

c(U) =
∑

uv∈δ+(U)

x∗(uv)−
∑

uv∈δ−(U)

x∗(uv)

Using the fact that flow across every cut is the same, we have c(U) =
∑

uv∈δ+(s) x
∗(uv) −∑

uv∈δ−(s) x
∗(uv), as desired.
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