
*Chapter 9 

Stable Sets in Graphs 

In this chapter we survey the results of the polyhedral approach to a particular 
%&-hard combinatorial optimization problem, the stable set problem in graphs. 
(Alternative names for this problem used in the literature are vertex packing, 
or coclique, or independent set problem.) Our basic technique will be to look 
for various classes of inequalities valid for the stable set polytope, and then 
develop polynomial time algorithms to check if a given vector satisfies all these 
constraints. Such an algorithm solves a relaxation of the stable set problem in 
polynomial time, i. e., provides an upper bound for the maximum weight of a 
stable set. If certain graphs have the property that every facet of the stable set 
polytope occurs in the given family of valid inequalities, then, for these graphs, 
the stable set problem can be solved in polynomial time. It turns out that there 
are very interesting classes of graphs which are in fact characterized by such a 
condition, most notably the class of perfect graphs. Using this approach, we 
shall develop a polynomial time algorithm for the stable set problem for perfect 
graphs. So far no purely combinatorial algorithm has been found to solve this 
problem in polynomial time. 

Let us mention that all algorithms presented in this chapter can be made 
strongly polynomial using Theorem (6.6.5), with the natural exception of the 
algorithm designed to prove Theorem (9.3.30), which optimizes a linear objective 
function over a non polyhedral set. 

*9.1 Odd Circuit Constraints and t-Perfect Graphs 

Throughout this chapter, G = (V, E) denotes a graph with node set V = 
{ 1,2, ... , n}. Let w : V -4 <Q+ be any weighting of the nodes of G, and let 
cx(G, w) denote the maximum weight of a stable set in G. It is well known that 
to determine cx(G, w) is .AI&-hard, even in the special case when w = 11 - see, for 
instance, GAREY and JOHNSON (1979). 

Similarly as, say, in the case of matchings - see Sections 7.3 and 8.5 - we 
introduce the stable set polytope 

STAB(G) := conv{ XS E lRv ISs V stable set} 

defined as the convex hull of the incidence vectors of all stable sets of nodes 
of G. Then cx(G, w) is equal to the maximum value of the linear function wT x 
for x E STAB(G). For this observation to be of any use, however, we need 
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9.1 Odd Circuit Constraints and t-Perfect Graphs 273 

information about inequalities defining STAB(G). So let us collect inequalities 
valid for STAB(G), and see if they are enough to describe this polytope. 

The following sets of linear inequalities are obviously all valid for STAB(G) : 

(9.1.1) Xi ;::: 0 for all i E V, 

(9.1.2) Xi + Xj ::; 1 for all ij E E. 

It is also easy to see that the integral solutions of (9.1.1), (9.1.2) are exactly the 
incidence vectors of stable sets of nodes of G. Theorem (8.2.8) implies : 

(9.1.3) Proposition. The inequalities (9.1.1), (9.1.2) are sufficient to describe 
STAB(G) ifand only ifG is bipartite and has no isolated nodes. D 

We can take care of isolated nodes by adding, for each isolated node i, the 
inequality Xi ::; 1. So in particular, we see that the stable set problem for bipartite 
graphs can be solved using linear programming, since (9.1.1), (9.1.2) is an explicit 
system of linear inequalities, whose encoding length is polynomially bounded in 
the encoding length of G. (Combinatorial polynomial time methods for the stable 
set problem for bipartite graphs were mentioned in Section 8.2.) 

The minimal graphs for which inequalities (9.1.1) and (9.1.2) are not sufficient 
to describe STAB(G) are the odd circuits. In fact, if G = (V, E) is an odd circuit, 
the point (!, ... , !)T E IRv satisfies all inequalities in (9.1.1) and (9.1.2) but is 
not in STAB(G). This suggests a new class of inequalities valid for STAB(G), the 
so-called odd circuit constraints: 

" x. < IV(C)I-1 (9.1.4) L. I - 2 for each odd circuit C. 
iEV(C) 

Let us call a graph t-perfect if (9.1.1), (9.1.2), and (9.1.4) are enough to describe 
STAB(G) (the "t" stands for "trou", the French word for hole). The study of 
these graphs was suggested by CHVATAL (1975). Although t-perfect graphs do 
not seem to occur in such an abundance as perfect graphs (to be described in 
the next section), there are some interesting classes of these graphs known. 

(a) (b) (c) 

Figure 9.1 
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(9.1.5) Examples. 

I. Bipartite graphs. This follows trivially from Proposition (9.1.3), as odd circuit 
inequalities do not occur at all. 

II. Almost bipartite graphs. A graph is almost bipartite if it has a node v such 
that all odd circuits go through v (equivalently, G - v is bipartite) - see Figure 
9.1 (a) for an example. The t-perfectness of this class was shown by FONLUPT 
and UHRY (1982). It is trivial to check if a graph is almost bipartite, and also the 
stable set problem for such graphs is easily reduced to the stable set problem for 
bipartite graphs. 

III. Series-parallel graphs. A graph is series-parallel if it can be obtained from 
a forest by repeated application of the following operations: adding an edge 
parallel to an existing edge and replacing an edge by a path. DIRAC (1952) 
and DUFFIN (1965) characterized these graphs as those containing no subdivision 
of K4. It is easy to check whether a graph is series-parallel. CHVATAL (1975) 
conjectured that series-parallel graphs are t-perfect. This was proved by BOULALA 
and UHRY (1979), who also designed a combinatorial polynomial time algorithm 
for the weighted stable set problem in series-parallel graphs. Series-parallel graphs 
include cacti which are graphs in which every block is either a bridge (i. e., an 
edge that is a cut) or a chordless circuit. A series-parallel graph is shown in 
Figure 9.1 (b). 

IV. Nearly bipartite planar graphs. These are planar graphs in which at most 
two faces are bounded by an odd number of edges - see Figure 9.1 (c).Using 
a polynomial time planarity testing algorithm (HOPCROFT and TARJAN (1974)), 
these graphs can also be recognized in polynomial time. Their t-perfectness 
follows from the results of Gerards and Schrijver (see below). 

V. Strongly t-perfect graphs. These are graphs that do not contain a subdivision of 
K4 such that all four circuits corresponding to triangles in K4 are odd. GERARDS 
and SCHRIJVER (1986) proved that these graphs are t-perfect. In fact, they proved 
that these graphs are characterized by the following property stronger than 
t-perfectness: 

Let a: V -+ 7l and b: V -+ 7l be two integral weightings of the nodes, 
and let c: E -+ 7l and d: E -+ 7l be two integral weightings of the edges. 
Consider the inequalities 

(9.1.6) av ::;; Xv ::;; bv for each v E V, 

(9.1.7) cuv ::;; Xu + Xv ::;; duv for each uv E E, 

and, for each circuit C = (VI, ... , Vk) and each choice of E; 

1, ... , k), the inequality 

(9.1.8) k l ( ) j ",+0,_1 < 1 ~ -2-XV, - 2: ~ dV,V'+1 - ~ CV,V,+I 

1-1 0,-1 0,--1 

±1 (i = 

taking indices mod k. Then the solution set of (9.1.6), (9.1.7), (9.1.8) has 
integral vertices. 
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So the inequalities (9.1.6), (9.1.7), (9.1.8) describe the convex hull of the integer 
solutions of (9.1.6), (9.1.7). 

GERARDS, LovAsz, SEYMOUR, SCHRIJVER and TRUEMPER (1987) proved that 
every strongly t-perfect graph can be "glued together" from almost bipartite 
graphs and nearly bipartite planar graphs. We do not go into the details of 
this decomposition, but remark that it yields combinatorial polynomial time 
procedures to recognize whether a graph is strongly t-perfect and to find a 
maximum weight stable set. 

Not every t-perfect graph is strongly t-perfect, as is shown by the graph 
obtained from K4 by subdividing the lines of a 4-circuit - see Figure 9.2. 0 

Figure 9.2 

Let G be any graph. We set 

(9.1.9) CSTAB(G) := {x E lRv I x satisfies (9.1.1), (9.1.2), (9.1.4) } 

(CSTAB stands for, say, circuit-constrained stable set polytope). The main result 
in this section is the following. 

(9.1.10) Theorem. The strong optimization problem forCSTAB(G) can be solved 
in polynomial time for any graph G. Moreover, an optimum vertex solution can 
be found in polynomial time. 

By Theorem (6.4.9) and Lemma (6.5.1), it suffices to prove that the strong 
separation problem can be solved in polynomial time. Thus (9.1.10) is implied by 
the next lemma. 

(9.1.11) Lemma. There exists a polynomial time algorithm that, for any graph 
G = (V, E) and for any vector y E <Qv, either 
(a) asserts that Y E CSTAB(G), or 
(b) finds an inequality from (9.1.1), (9.1.2), or (9.1.4) violated by y. 

Proof. The inequalities in (9.1.1) and (9.1.2) are easily checked by substitution. 
So we may assume that y ~ 0 and that, for each edge uv E E, Yu + Yv ::;; 1. 

Define, for each edge e = uv E E, Ze := 1 - Yu - Yv. So Ze ~ o. Then (9.1.4) is 
equivalent to the following set of inequalities : 

(9.1.12) I Ze ~ 1 for each odd circuit C. 
eEC 
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If we view Ze as the "length" of edge e, then (9.1.12) says that the length of 
a shortest odd circuit is at least 1. But a shortest odd circuit can be found 
in polynomial time (see (8.3.6) and the remarks thereafter). This proves the 
lemma. 0 

Since for t-perfect graphs CSTAB(G) = STAB(G) holds, we can conclude: 

(9.1.13) Corollary. A maximum weight stable set in a t-perfect graph can be 
found in polynomial time. 0 

Theorem (9.1.10) implies that the property of t-perfectness is in co-fig>. In 
fact, to show that G is not t-perfect, it suffices to exhibit a vertex of CSTAB(G) 
which is nonintegral, and since we can optimize over CSTAB(G) in polynomial 
time, we can prove that the exhibited vector is indeed a vertex of CSTAB(G) in 
polynomial time by Corollary (6.5.10). We do not know whether the problem of 
checking t-perfectness is in fig> or in g>. 

*9.2 Clique Constraints and Perfect Graphs 

Instead of the odd circuit constraints, it is also natural to consider the following 
system of so-called clique constraints: 

(9.2.1) x(Q) :::;; 1 for all cliques Q s; V. 

Note that (9.2.1) contains (9.1.2) as a special case, and also contains the triangle 
constraints from (9.1.4), but in general, (9.1.4) and (9.2.1) do not imply each 
other. The graphs G for which the constraints (9.1.1) and (9.2.1) suffice to 
describe STAB(G) are called perfect. 

While polyhedrally this is a natural way to arrive at the notion of perfect 
graphs, there are several equivalent definitions, some of them in terms of more 
elementary graph theory. Perfect graphs were introduced by BERGE (1961) as 
common generalizations of several nice classes of graphs (see below for these 
special cases). 

To motivate these elementary definitions of perfect graphs, observe that each 
graph G satisfies the following inequalities for the clique number w(G), the 
coloring number X(G), the stability number rx(G) and the clique covering number 
X(G) : 

(9.2.2) w(G) :::;; X(G), 

rx(G) :::;; X(G). 

The pentagon Cs shows that strict inequality can occur in both inequalities above. 
Now BERGE (1961,1962) called a graph G perfect if 

(9.2.3) w(G') = X(G') 

holds for each induced subgraph G' of G. 
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We will give a list of known classes of perfect graphs later, but observe that, 
e. g., not only bipartite graphs (trivially), line graphs of bipartite graphs (by 
Konig's edge-coloring theorem (7.4.3» and comparability graphs (trivially) are 
perfect, but so are their complements (by Konig's edge covering theorem (8.2.4), 
Konig's matching theorem (8.2.3) and Dilworth's theorem (8.3.19), respectively). 
These results made BERGE (1961,1962) conjecture that the complement of a 
perfect graph is perfect again. This was proved by LovAsz (1972). Note that this 
result generalizes the theorems of Konig and Dilworth mentioned above. 

To illustrate the ideas relating combinatorial and polyhedral properties of 
perfect graphs, we give the proof of the following theorem, which is a combination 
of results of FULKERSON (1970) and LovAsz (1972). 

Let w: V -+ 7L+ be any weighting of the nodes of the graph G, and let X(G, w) 
denote !he weighted chromatic number of G, i. e., the minimum number k of 
stable sets Sl, S2, ... , Sk such that each i E V is contained in Wi of these sets. Note 
that for w = 11 this number is just the chromatic number of G, for arbitrary w, 
it could be defined as the chromatic number of the graph obtained from G by 
replacing each i E V by a complete subgraph of Wi nodes. 

(9.2.4) Theorem. For any graph G = (V, E), the following are equivalent. 

(i) X(G') = w(G') for each induced subgraph G' ofG. 
(ii) X(G, w) = w(G, w) for each weighting w: V -+ 7L+. 
(iii) STAB(G) is determined by the constraints (9.1.1) and (9.2.1). 
(iv) The complement G ofG satisfies (i). 
(v) The complement G of G satisfies (ii). 
(vi) The complement G of G satisfies (iii) . 

Proof. (i) = (ii). We use induction on w(V) = LVEV w(v). If w ::s; 11 then (ii) 
specializes to just (i), so we may assume that there is a node io E V such that 
w(io) > 1. Consider the weights 

'(") .= { w(io) - 1 if i = io, 
WI. w(i) if i =1= io. 

Then by the induction hypothesis, X(G, Wi) = w(G, w'), that is, there exists a 
family Sl, S2, ... , SN of stable sets such that each node i is contained in Wi (i) of 
them and N = w(G, Wi). Since w'(io) = w(io) - 1 ;:::: 1, there is a stable set Sj 
containing the node io, say io E Sl. 

Now consider the weighting 

Let Q be a clique so that w"(Q) = w(G, w"). If Sl n Q = (/J then 

N N 

w(G, w") = w"(Q) = I w"(i) ::s; I w'(i) = IISj n QI ::s; I 1 = N - 1 
iEQ iEQ j=l j=2 

= w(G, w') - 1 ::s; w(G, w) - 1 . 
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If S, n Q f 0 then 

ro(G, w") = w"(Q) ::S; w(Q) -1 ::S; ro(G, w) - 1. 

So it follows that 
ro(G, w") ::S; ro(G, w) - 1. 

By the induction hypothesis, there is a family S;, S~, ... , Sro(G,w") of stable sets in 
G such that each node i is contained in w"(i) of them. Adding S, to this family, 
we see that X(G, w) ::S; ro(G, w). Since the reverse inequality holds trivially, (ii) is 
proved. 

(ii) => (iii). Let x E <Qv be any vector satisfying (9.1.1) and (9.2.1). We show that 
x E STAB(G). Let q be the least common denominator of the entries in x. Then 
qx E Zr and (9.2.1) says that ro(G, qx) ::S; q. Hence by (ii), X(G, qx) ::S; q, i. e., there 
exists a family S" S2, ... , Sq of stable sets such that each i E V is contained in 
exactly qXj of them. In other words 

which shows that x E STAB(G). 

(iii) => (iv). If STAB(G) is determined by (9.1.1) and (9.2.1) then the same is 
true for every induced subgraph G' of G. So we only have to show that G can 
be partitioned into a(G) complete subgraphs. We use induction on IV I. Let 
F be the face of STAB( G) spanned by all stable sets of size a( G); obviously, 
there is a facet of the form x(Q) ::S; 1 containing F, where Q is a clique. But 
this means that for each maximum stable set S, IS n QI = l (Q) = 1. Hence 
a(G - Q) < a(G). By the induction hypothesis, G - Q can be partitioned into 
a( G - Q) complete subgraphs. Adding Q to this system, we obtain a partition of 
G into a(G) complete subgraphs. 

The implications (iv) => (v) => (vi) => (i) follow by interchanging the roles of 
G~~ 0 

It follows from these characterizations that, for perfect graphs, the clique, 
stable set, coloring, and clique covering problems, as well as their weighted 
versions, belong to the class ..¥& n co-..¥&. 

In fact, as we shall see later, in the perfect graph case these problems belong 
to the class & of polynomially solvable problems. So this implies the polynomial 
time solvability of these four problems for several classes of graphs which were 
shown to be perfect. 

First we shall list a number of classes of perfect graphs discovered until now. 
Clearly, with each graph automatically the class of complementary graphs is 
associated, which are perfect again. At each of the classes we shall give references 
to polynomial algorithms developed for those graphs for the four combinatorial 
optimization problems mentioned above (in a combinatorial, non-ellipsoidal way). 
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One should keep in mind that for perfect graphs determining m( G) is the same 
as determining x( G). However, finding an explicit coloring of size x( G) and 
finding an explicit maximum clique may be more complex (similarly, for IX(G) 
and X(G)). Moreover, the clique problem (coloring problem) for a class of graphs 
is equivalent to the stable set problem (clique covering problem) for the class of 
complementary graphs. 

Beside the four combinatorial optimization problems mentioned, there is the 
recognition problem for a class C(I of graphs: given a graph G, does G belong 
to C(I? Clearly, one can speak of this problem being in .K&', in co-.K8fI, in 811, 
or .K8fI-complete. With each of the classes below we shall also discuss what is 
known on the complexity of the corresponding recognition problem. Obviously, 
the recognition problem for a class of graphs is equivalent to the recognition 
problem for the class of complements. 

The status of the recognition problem of the class of all perfect graphs is 
unknown. It is well-known that this problem belongs to co-.K8fI. That is, one 
can prove in polynomial time that a given graph is not perfect. This would also 
follow directly from the strong perfect graph conjecture, posed by BERGE (1962), 
which is still unsolved. 

(9.2.5) Strong Perfect Graph Conjecture. A graph is perfect if and only if it 
does not contain an odd circuit of length at least five, or its complement, as an 
induced subgraph. 0 

The content of this conjecture is that the minimal (under taking induced 
subgraphs) imperfect graphs (these graphs are also called critically imperfect 
graphs) are the odd circuits of length at least five and their complements. 

We now give a list of classes of perfect graphs. Note that each class is closed 
under taking induced subgraphs. In these notes, by perfectness we mean that 
(9.2.3) is satisfied. Since a number of perfectness results appeared before Theorem 
(9.2.4) was established, we mention the results for classes of graphs and their 
complements separately. 

(9.2.6) Classes of perfect graphs. 

I. Bipartite graphs, and their complements. Bipartite graphs are trivially perfect. 
The perfectness of their complements follows from Konig's edge covering theorem 
(8.2.4). For bipartite graphs, the weighted clique and coloring problems are 
easily polynomially solvable, while the weighted stable set and clique covering 
problems were shown to be polynomially solvable by KUHN (1955) and FORD 
and fuLKERSON (1956) - cf. Section 8.2. The recognition problem for bipartite 
graphs is easily solvable in polynomial time. 

II. Line graphs of bipartite graphs, and their complements. The perfectness of line 
graphs of bipartite graphs follows from Konig's edge-coloring theorem (7.4.3), 
and that of their complements from Konig's Matching Theorem (8.2.3). For line 
graphs of bipartite graphs, the weighted clique problem is trivial. A polynomial 
algorithm for the unweighted coloring problem follows from Konig's proof in 
KONIG (1916). The weighted case follows from the proof of Satz 15 in Kapitel 
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XI given in KONIG (1936). Polynomial algorithms for the weighted stable set and 
clique covering problems were given by KUHN (1955) and FORD and FULKERSON 
(1956) - cf. Section 8.2. VAN ROOIJ and WILF (1965) showed that line graphs 
can be recognized and that their "ancestors" can be reconstructed in polynomial 
time. Hence, the recognition problem for line graphs of bipartite graphs is 
polynomially solvable. 

III. Interval graphs, and their complements. A graph is an interval graph if its 
nodes can be represented by intervals on the real line such that two nodes are 
adjacent if and only if the corresponding intervals have a nonempty intersection. 
The perfectness of interval graphs follows from Dilworth's theorem (8.3.19). The 
perfectness of their complements was observed by Gallai. The polynomial solv­
ability of the weighted clique, stable set, coloring, and clique covering problems is 
not difficult. The recognition problem can be solved in polynomial time (FuLKER­
SON and GROSS (1965)), even in linear time - see BOOTH and LUEKER (1976) (see 
LEKKERKERKER and BOLAND (1962) and GILMORE and HOFFMAN (1964) for good 
characterizations). A graph is an interval graph if and only if it is triangulated 
and its complement is a comparability graph - see IV and V below. 

IV. Comparability graphs, and their complements. A graph is a comparability graph 
if its edges can be oriented to obtain a transitive acyclic digraph D = (V, A), i. e., 
a digraph satisfying: if (u, v) E A and (v, w) E A then (u, w) EA. The perfectness 
of comparability graphs is easy, while that of their complements is equivalent 
to Dilworth's theorem (8.3. t 9). For comparability graphs polynomial algorithms 
for the weighted clique and coloring problems are trivial. Polynomial algorithms 
for the weighted stable set and clique covering problems can be easily derived 
from min-cost flow algorithms. Such an algorithm can also be derived from any 
maximum flow algorithm by the construction of FORD and FULKERSON (1962). 
The recognition problem for comparability graphs is polynomially solvable by 
the method of GALLAI (1967) (membership in JVg'J is trivial, while membership 
in co-JVg'J was shown by GHOUILA-HoURI (1962) and GILMORE and HOFFMAN 
(1964)). 

Note that comparability graphs include bipartite graphs and complements of 
interval graphs. Another subclass is formed by the permutation graphs, which 
can be defined as those comparability graphs whose complement is again a 
comparability graph - see EVEN, PNUELI and LEMPEL (1972). 

V. Triangulated graphs, and their complements. A graph is a triangulated (or 
chordal) graph if it does not contain a circuit of length at least four as induced 
subgraph. BERGE (1960) proved perfectness of triangulated graphs, and HAJNAL 
and SURANYI (1958) proved perfectness of their complements. DIRAC (1961) 
showed that a triangulated graph always contains a node all of whose neighbors 
form a clique. This yields that an undirected graph is triangulated if and only 
if its edges can be oriented to obtain an acyclic directed graph D = (V, A) 
satisfying: if(u, v) E A and (u, w) E A then (v, w) E A or (w, v) EA. Dirac's theorem 
also gives that a graph is triangulated if and only if it is the intersection graph 
of a collection of subtrees of a tree. The polynomial solvability of the weighted 
clique, stable set, coloring, and clique covering problems was shown by GAVRIL 
(1972) and FRANK (1976) (here again Dirac's result is used). Also the recognition 
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problem can be shown to be polynomially solvable with Dirac's result. For linear 
time algorithms - see LUEKER (1974), RosE and TARJAN (1975), and RosE, TARJAN 
and LUEKER (1976). Triangulated graphs include interval graphs. They also 
include split graphs, which are graphs whose node set is the union of a clique 
and a stable set. These graphs can be characterized by the property that they are 
triangulated and their complements are triangulated. 

VI. Parity graphs, and their complements. A graph is a parity graph if each odd 
circuit of length at least five has two crossing chords. The perfectness of this class 
of graphs was shown by E. Olaru - see SACHS (1970). The polynomial solvability 
of the weighted clique, stable set, coloring, and clique covering problems was 
shown by BURLET and UHRY (1982), who also proved the polynomial time 
solvability of the recognition problem for parity graphs. Clearly, parity graphs 
include bipartite graphs. They also include line perfect graphs (which are graphs 
G for which the line graph L(G) is perfect), since TROTTER (1977) showed that a 
graph is line perfect if and only if it does not contain an odd circuit of length 
larger than three. 

VII. Gallai graphs, and their complements. A graph is a Gallai graph (or i­
triangulated graph) if each odd circuit of length at least five has two noncrossing 
chords. The perfectness of this class of graphs was shown by GALLAI (1962). 
BURLET and FONLUPT (1984) gave combinatorial algorithms that solve the un­
weighted versions of the four basic problems in polynomial time, and they also 
showed that Gallai graphs can be recognized in polynomial time. The recognition 
problem was also solved by WHITESIDES (1984). Gallai graphs include bipartite 
graphs, interval graphs, line perfect graphs, and triangulated graphs. 

VIII. Meyniel graphs, and their complements. A graph is a Meyniel graph if each 
odd circuit of length at least five has two chords. The perfectness of this class 
of graphs was shown by MEYNIEL (1976). Again BURLET and FONLUPT (1984) 
found polynomial time combinatorial algorithms for the unweighted versions 
of all problems in question. Meyniel graphs include bipartite graphs, interval 
graphs, triangulated graphs, parity graphs, and Gallai graphs. 

IX. Perfectly orderable graphs, and their complements. A graph is a perfectly 
orderable graph if its edges can be oriented to obtain an acyclic directed graph 
(V ,A) with no induced subgraph isomorphic to ({ t, u, v, w }, { (t, u), (u, v), (w, v) }). 
The perfectness of perfectly orderable graphs was shown by CHVATAL (1984). 
The recognition problem for perfectly orderable graphs trivially is in %&J, but 
no polynomial time algorithm for recognizing these graphs is known. Once 
an orientation with the above property is found, a maximum clique and a 
minimum coloring can be obtained by a greedy algorithm - see CHVATAL (1984). 
Combinatorial polynomial time algorithms for the problems in question are not 
known. Perfectly orderable graphs include bipartite graphs, interval graphs, 
complements of interval graphs, comparability graphs, triangulated graphs, and 
complements of triangulated graphs. CHVATAL, HOANG, MAHADEV and DE WERRA 
(1985) showed that a number of further classes of graphs are perfectly orderable. 

X. Unimodular graphs, and their complements. An undirected graph is unimodular 
if the matrix whose rows are the incidence vectors of its maximal cliques is 
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totally unimodular. The perfectness of unimodular graphs follows from results of 
BERGE and LAS VERGNAS (1970). The perfectness of complements of unimodular 
graphs follows from the results of HOFFMAN and KRUSKAL (1956) on totally 
unimodular matrices. W. H. Cunningham (private communication) observed that 
the recognition problem for unimodular graphs can be solved in polynomial 
time using the algorithm of SEYMOUR (1980a) to recognize totally unimodular 
matrices. The stable set and clique cover problems for unimodular graphs can be 
written as explicit linear programs with totally unimodular matrix and therefore 
they are solvable by any linear programming algorithm. MAURRAS, TRUEMPER 
and AKGlk (1981) designed a special algorithm for such linear programs while 
Bland and Edmonds (unpublished) remarked that Seymour's decomposition of 
totally unimodular matrices yields a combinatorial algorithm for such LP's. The 
clique problem is trivial, since, by a result of HELLER (1957), there are at most G) 
maximal cliques. Also the coloring problem can be reduced to linear programs 
over totally unimodular matrices. Unimodular graphs include bipartite graphs 
and their line graphs, interval graphs, and the class of graphs which do not 
contain an odd circuit of length at least five, the complement of such a circuit, 
or a K4 - e as an induced subgraph. 

XI. Parthasarathy-Ravindra graphs, and their complements. A graph is a Parthasa­
rathy-Ravindra graph if it does not contain a claw, an odd circuit of length at 
least five, or the complement of such an odd circuit as an induced subgraph. 
Perfectness of these graphs was proved by PARTHASARATHY and RAVINDRA (1976). 
SBIHI (1978, 1980) and MINTY (1980) showed that the stable set problem can be 
solved in polynomial time for claw-free (not necessarily perfect) graphs (this class 
of graphs contains the line graphs, and thus the matching problem is included). 
Minty's algorithm extends to the weighted case. For Parthasarathy-Ravindra 
graphs polynomial time algorithms for the cardinality coloring problem resp. the 
weighted clique and weighted clique covering problems were given by Hsu (1981) 
resp. Hsu and NEMHAUSER (1981, 1982). Parthasarathy-Ravindra graphs can be 
recognized in polynomial time by a method of V. Chvatal and N. Sbihi (personal 
communication). This class of graphs includes line graphs of bipartite graphs 
and complements of bipartite graphs. 

XII. Strongly perfect graphs, and their complements. A graph is strongly perfect 
if every induced subgraph contains a stable set of nodes that meets all its 
(inclusionwise) maximal cliques. Perfectness of these graphs was observed by 
BERGE and DUCHET (1984) who also proved that the recognition problem for 
strongly perfect graphs is in co-%gjl. A polynomial time algorithm for recognizing 
these graphs is not known. Moreover, combinatorial polynomial time algorithms 
for the four optimization problems in question have not been found yet. The 
class of strongly perfect graphs contains Meyniel graphs, comparability graphs, 
and perfectly orderable graphs. 

XIII. Weakly triangulated graphs. A graph is weakly triangulated if it does 
neither contain a circuit of length at least five nor the complement of a circuit of 
length at least five as an induced subgraph. HAYWARD (1985) proved that weakly 
triangulated graphs are perfect. The recognition problem for weakly triangulated 
graphs is trivially in co-%&J. No polynomial time algorithm for the recognition 
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problem, and no combinatorial polynomial time algorithm for any of the four 
optimization problems for weakly triangulated graphs is known. Triangulated 
graphs and their complements are weakly triangulated. 

XIV. Quasi parity graphs, and their complements. A graph is a quasi parity 
graph if every induced sub graph G' that is not a clique has two nodes that are 
not connected by a chordless path of odd length in G'. Perfectness of quasi 
parity graphs was shown by MEYNIEL (1985). Berge (personal communication) 
observed that this class of graphs can be enlarged by the graphs for which every 
induced subgraph G' with at least two nodes has the property that either G' or 
the complement of G' has two nodes that are not connected by a chordless path 
of odd length. The recognition problem for this class (resp. these two classes) of 
graphs is in co-,AI"[!i' but is not known to be in [!i'. No combinatorial polynomial 
time algorithm for the four optimization problems is known. Quasi parity graphs 
include Meyniel graphs, and hence parity graphs and Gallai graphs. D 

More information about perfect graphs and their properties can be found 
in GOLUMBIC (1980), LovAsz (1983a), and the collection of papers BERGE and 
CHVATAL (1984). 

Now we continue our study of the inequality systems (9.1.1) and (9.2.1). Let 
G = (V, E) be any graph. We set 

(9.2.7) QSTAB(G) := {x E lRv I x satisfies (9.1.1) and (9.2.1)}, 

and call it the clique-constrained stable set polytope. (In the literature QSTAB 
(G) is often called the "fractional stable set polytope".) The following immediate 
observation relates stable set properties of a graph G and its complement G : 

(9.2.8) Proposition. The antiblocker of STAB( G) is QSTAB(G), and the anti­
blocker ofQSTAB(G) is STAB(G). D 

By analogy with the preceding section, one may expect that the optimization 
problem over QSTAB(G) is polynomially solvable. This expectation is even more 
justified since QSTAB(G) has nice and "easily recognizable" facets. However 
GROTSCHEL, LovAsz and SCHRIJVER (1981) proved the following: 

(9.2.9) Theorem. The optimization problem for QSTAB(G) is ,AI"[!i'-hard. 

Although we usually do not prove ,AI"[!i'-hardness results in this book, we 
sketch the proof of Theorem (9.2.9) because it makes use of the ellipsoid method. 

Proof. (Sketch). The optimization problem for QSTAB(G) is polynomially equiv­
alent to the optimization problem for its antiblocker (see Exercise (6.5.18)), which 
is just the polytope STAB(G). SO this problem is equivalent to the stable set 
problem for G, which is ,AI"[!i'-hard for general graphs. D 

In the next section, however, we introduce an infinite class of valid inequalities 
for STAB(G) which includes the clique constraints (9.2.1) and for which the 
separation problem can be solved in polynomial time. 
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Antiblockers of Hypergraphs 

Before doing this let us come back - just for a side remark - to an issue raised in 
Section 8.1. We have seen there how the notion of blocking hypergraphs and its 
relation to blocking polyhedra provides a common framework for quite a number 
of combinatorial optimization problems. We now introduce the analogous notion 
of anti blocking hypergraphs and relate it to antiblocking polyhedra. It will turn 
out that this is equivalent to the study of perfect graphs. These results are due 
to FuLKERSON (1971, 1972). 

Given a hypergraph H, its antiblocker ABL(H) is the set of all inclusionwise 
maximal subsets of UH that intersect each edge of H in at most one element. So 
ABL(H) is a clutter. Define a graph G(H) on the node set UH by connecting 
two nodes if and only if they are contained in an edge of H. Then ABL(H) 
is the collection of maximal stable sets of G(H). In contrast to (8.1.1), which 
states that BL (BL(H)) = H holds for each clutter H, there are clutters H 
for which ABL(ABL(H)) =1= H; e. g., take H = {{1,2},{2,3},{1,3}}. In fact, 
ABL (ABL(H)) = H if and only if H is the clutter of all maximal stable sets of 
a graph. Such an H is called a conformal clutter. In this case, ABL(H) is just the 
clutter of maximal cliques of the graph, i. e., the clutter of maximal stable sets of 
the complementary graph. Note that this complementary graph is just G(H). 

In analogy to blocking theory we consider the antidominant in IR~H - see 
Section 0.1 - of incidence vectors of a clutter H and denote it by admt(H), i. e., 

If H is conformal then this is just the stable set polytope of the complement 
G(H) of G(H). Again valid inequalities for admt(H) are 

(9.2.10) (a) Xv ;;::: 0 for all v E UH , 

(b) x(F)::; 1 for all F E ABL(H) . 

The question when these inequalities suffice to describe admt(H) is completely 
answered by the following theorem which can easily be derived from the previous 
results on perfect graphs. 

(9.2.11) Theorem. For a clutter H the following are equivalent: 
(i) (9.2.10) suflices to describe admt(H), i. e., (9.2.10) is TPI 

(ii) (9.2.10) is TDI 
(iii) H is conformal and G(H) is perfect. 
(iv) The following system is TPI: XV ;;::: 0 for all v E UH, x(F) ::; 1 for all F E H. 
(v) The system in (iv) is TDI 

o 

So the analogue of Lehman's theorem (8.1.5) holds even with dual integrality. 
The above shows that instead of antiblocking hypergraphs it suffices to study 
stable sets in graphs. 



9.3 Orthonormal Representations 285 

* 9.3 Orthonormal Representations 

The approach described in this section is based on LovAsz (1979). The extension 
to the weighted case and a discussion of its algorithmic implications can be found 
in GROTSCHEL, LovAsz and SCHRIJVER (1981, 1984b, 1986). 

Let G = (V, E) be a graph. An orthonormal representation of G is a sequence 
(Ui liE V) of I V I vectors Ui E JRN, where N is some positive integer, such 
that Iluill = 1 for all i E V and uT Uj = 0 for all pairs i,j of nonadjacent 
vertices. Trivially, every graph has an orthonormal representation Uust take 
all the vectors Ui mutually orthogonal in JRv). Figure 9.3 shows a less trivial 
orthonormal representation of the pentagon C5 in JR3. It is constructed as follows. 
Consider an umbrella with five ribs of unit length (representing the nodes of C5) 

and open it in such a way that nonadjacent ribs are orthogonal. Clearly, this 
can be achieved in JR3 and gives an orthonormal representation of the pentagon. 
The central handle (of unit length) is also shown. 

Figure 9.3 

Let (Ui liE V), Ui E JRN, be any orthonormal representation of G and let 
C E JRN with lie II = 1. Then for any stable set S s; V, the vectors Ui, i E S, are 
mutually orthogonal and hence, 

(9.3.1 ) 

(9.3.2) 

~)CT Ui)2 ::::; 1 . 
iES 

~)CT Ua2Xi ::::; 1 
iEV 

holds for the incidence vector XS E JRv of any stable S set of nodes of G. Thus, 
(9.3.2) is a valid inequality for STAB(G) for any orthonormal representation 
(Ui liE V) of G, where Ui E JRN, and any unit vector C E JRN. We shall call (9.3.2) 
the orthonormal representation constraints for STAB(G). 

If Q is any clique of G, we can define an orthonormal representation (Ui liE V) 
as follows. Let {Ui liE V \ Q} U {c} be mutually orthogonal unit vectors and set 
Uj = C for j E Q. Then the constraint (9.3.2) is just the clique constraint (9.2.1) 
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determined by Q. The orthonormal representation of Cs depicted in Figure 9.3, 
with c pointing along its axis of symmetry, yields the inequality LiECS JsXi ~ 1 

or LiECs Xi ~ v's, which is not as strong as the odd circuit constraint but is not 
implied by the clique constraints. For any graph G = (V, E), set 

(9.3.3) TH(G) := {x E lRv I x ?: 0 and x satisfies all orthonormal represen­
tation constraints (9.3.2) }. 

(TH comes from the function "9" to be studied below.) TH(G) is the intersection 
of infinitely many halfspaces, so TH( G) is a convex set. From the remarks above, 
it follows that 

(9.3.4) STAB(G) s; TH(G) s; QSTAB(G). 

In general, TH(G) is not a polytope. In fact, we will prove later that TH(G) is 
a polytope if and only if G is perfect. The most important property of TH(G) 
- for our purposes - is that one can optimize any linear objective function over 
TH(G) in polynomial time. The algorithm to achieve this depends on a number 
of somewhat involved formulas for the maximum value of such an objective 
function. 

Given a graph G = (V,E) and weights W E lR~, we are going to study the 
value 

(9.3.5) 9(G, w) := max{ wT x I x E TH(G)}. 

Let us (temporarily) introduce a number of further values (which eventually will 
all turn out to be equal to 9(G, w)). 

Where (Ui liE V), Ui E lRN , ranges over all orthonormal representations of G 
and c E lRN over all vectors of unit length, let 

(9.3.6) (l () • Wi 
"'1 G, W := ,mIll max -( T )2' 

\c,(u,)} lEV C Ui 

The quotient in (9.3.6) has to be interpreted as follows. If Wi = 0 then we take 
w;/(cT uJ2 = 0, even if cT Ui = O. If Wi> 0 but cT Ui = 0 then we take w;/(cT Ui)2 = 
+00. For notational convenience we introduce a number of further sets associated 
with the graph G = (V, E) : 

(9.3.7) yo {A E lRvxv I A symmetric}, 

A .- {B = (bij) E yo I bij = 0 for all i,j adjacent in G}, 

A"- {A = (aij) E yo I aii = 0 for all i E V and 
aij = 0 for all i,j nonadjacent in G}, 

~ .- {A E yo I A positive semidefinite }. 

Clearly, A is a linear subspace of the space yo of symmetric I V I x I V I-matrices, 
and A"- is the orthogonal complement of A in YO. For w E lR~, let moreover 

(9.3.8) 
w:= h/wi I iE V) ElRv , 

W := W wT = (JWiWj I i,j E V) E.eI'. 
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Define 

(9.3.9) [h(G, w) := min{ A(A + W) I A E At~}, 

where A(D) denotes the largest eigenvalue of D, and 

(9.3.10) [h(G, w) := max{wTBw I B E ~ n At and tr(B) = 1}. 

Finally, let (Vi liE V) with Vi E]R.N range over all orthonormal representations 
of the complementary graph G, and dE]R.N over all vectors of Euclidean norm 
1; define 

(9.3.11) 

We now show the following result. 

(9.3.12) Theorem. For every graph G = (V, E) and every w E ]R.~ , 

Proof. First we remark that the theorem trivially holds if w = o. So we may 
assume w =1= O. The proof will consist of showing 8 :::;; 81 :::;; 82 :::;; 83 :::;; 84 :::;; 8. 
First we show 

(9.3.13) 8(G, w) :::;; 81(G, w). 

Choose a vector x E TH(G) that maximizes the linear objective function wT x. 
Let (Ui liE V) with Ui E]R.N be any orthonormal representation of G and e E ]R.N 
any vector with Ilell = 1. Then by (9.3.5) and (9.3.2) 

8(G, w) = w T X = I WiXi 

iEV 

Here we have used the convention that if eT Ui = 0, then w;/(eT Ui)2 = +00 if 
Wi> 0, while w;/(eT Ui)2 = 0 if Wi = O. By (9.3.6), this proves (9.3.13). 

Now we show 

(9.3.14) 

Choose a matrix A E At~, and set t := A(A + W). (Note that t > 0 since 
tr(A+ W) = tr(W) > 0.) Then the matrix tl-A- W is positive semidefinite. And 
so by (0.1.4) we can write tl - A - W = XTX with some matrix X E ]R.vxv. Let 
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Xi E IRv denote the column of X corresponding to i E V. Then our definitions 
imply 

(9.3.15) xT Xi = t - Wi for all i E V 

and 

(9.3.16) xT Xj = -v'WiWj for all i,j nonadjacent in G. 

Let e E IRv be a vector with Ilell = 1 and orthogonal to all Xi. i E V (such a 
vector exists since X is singular), and consider the vectors Ui := Vwjte+t-1/2Xi. 

Then for each i E V, we obtain from (9.3.15) 

T Wi TIT 
U· Ui = -e e + -x· Xi = 1 
'tt I 

and from (9.3.16) for any two nonadjacent nodes i,j, 

T v'WiWj TIT 
U· Ul' = --e e + -x· Xl' = 0 . 
'tt I 

Hence (Ui liE V) is an orthonormal representation of G, and so by (9.3.6) and 
the definition of Ui 

Wi Wi 
91(G,w)::;;max-(T )2=~ax-/ =t=A(A+W). 

leV e Ui ,eV Wi t 

Since this holds for each A E .A~, by (9.3.9) this proves (9.3.14). 
Next we show 

(9.3.17) 

This relation is the heart of the proof; it provides the good characterization of 
9(G, w) by going from "min" to "max". By the definition of 93 := 93(G, w) in 
(9.3.10) the inequality 

wT Bw ::;; 93 . tr(B) 

is valid for all matrices B E ~ n.A. But this can be viewed as a linear inequality 
for B in the space g, namely the inequality can be written as 

where "." denotes the Euclidean inner product in IRv x v, i. e., A • B = tr(AT B). 
Note that ~ and .A are cones. So ~ n .A is a cone, and recall that the cone polar 
to this cone in the linear space g is (~ n.At := {A E g I A. B ::;; 0 for all B E 

~ n .A}. Moreover, we know that (~ n .A)O = ~o + .A0; hence the inequality 
above gives 
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It is easy to see that f!)0 = -f!) and .A0 = .A~, and so we can write 

W - fhl = -D - A , 

where D E f!) and -A E .A~. So [hI - (A + W) is positive semidefinite, and hence 
:h is not smaller than the largest eigenvalue of A + W. Thus by definition (9.3.9), 
we have 

fh ~ A(A + W) ~ :h(G, w), 

which proves (9.3.17). 
We now show 

(9.3.18) 

Choose B E f!) n.A such that tr(B) = 1 and WT BW = fh(G, w) =: fh. Since B 
is positive semidefinite, we can write it in the form B = Y T Y with Y E lRv x v -
see (0.1.4). Let ei E JRv be the incidence vector of the singleton {i}, i E V. Then 
Yi := Yei is the i-th column of Y. Let P := {i E V I Yi =F O} and set Vi := 11;,IIYi 

for all i E P. Moreover, choose an orthonormal basis of (lin {Vi liE P})~ 
and let for each i E V \ P one of the elements of this basis represent i; call 
this vector Vi. Since yr Yj = bij = 0 for all i,j E V that are adjacent, we 
see that (Vi liE V) is an orthonormal representation of G. Furthermore, 
(YW)TyW = WTyTyW = WT BW =:h and hence d := vk3 YW is a vector of unit 

length. Moreover, for i E P, we have 

and so IIYilldT Vi = Ja.;WT Bei holds for all i E V. Hence 

Thus by the Cauchy-Schwarz inequality (0.1.26) and by (9.3.11) 

This proves (9.3.18). 

fh = (2: IIYillVwidT Vi) 2 

ieV 

= (tr(B)) (2: WMT Vi)2) 
ieV 

= LwMTVi)2 
ieV 
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Finally, we prove 

(9.3.19) 94 (G, w) S 9(G, w) . 

Choose an orthonormal representation (Vi liE V), Vi E JRN, ofG and a vector 
dE JRN, Ildll = 1, such that the maximum in the definition of 94 (G, w) is achieved 
- see (9.3.11). We claim that the vector (dT vif liE V)T belongs to TH(G). To see 
this, let (Ui liE V), Ui E JRN, be any orthonormal representation of G and e E JRN 
be any vector with unit length. We consider the matrices UiVr E JRN xN. Note 
that these matrices are mutually orthogonal with respect to the inner product • 
in JRNxN and have unit length, that is 

Similarly, the matrix edT has unit length with respect to this inner product. Hence 

iEV iEV 

This shows that the vector «(dT Vi)2 liE vf is in TH(G), and so 

94 (G, w) = I wMT Vi)2 S 9(G, w) 
iEV 

by the definition of 9(G, w) in (9.3.5). 
The inequalities (9.3.13), (9.3.14), (9.3.17), (9.3.18), and (9.3.19) immediately 

imply Theorem (9.3.12). D 

(9.3.20) Remarks. (a) Since we have equality in all estimates (9.3.13), (9.3.14), 
(9.3.17), (9.3.18), and (9.3.19), it follows that the inequalities in their proofs 
must be tight, and this yields a number of further structural properties of 
optimal orthogonal representations and optimal matrices. In particular, equality 
in (9.3.14) implies that for every graph G and every weighting w : V --+ JR+ there 
exists an orthonormal representation (Ui liE V), Ui E JRN, of G and a vector 
e E JRN, Ilell = 1, such that 9(G, wHeT Ui)2 = Wi for all i E V. 

(b) It is easy to see from the previous considerations - details will follow 
in Section 9.4 - that we have also obtained a lower bound on the weighted 
chromatic number of a graph, namely the following inequality holds 

W(G, w) s 9(G, w) s x(G, w) . 

In particular, we have 
W(G) s 9(G, 11) s x(G) . 

D 

The next lemma formulates a further property of orthonormal representations 
which will be needed in the sequel. 
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(9.3.21) Lemma. Let (Vi liE V), Vi E ]RN, be an orthonormal representation of 
G and dE]RN with Ildll = 1. Let w : V -+]R+ be any weighting of the nodes of 
G, and assume that 

Then 

I(dT Vi)2wi = 9(G, w). 

iEV 

I WMT Vi)Vi = 9(G, w)d. 

iEV 

Proof. By (9.3.11) and (9.3.12) we have 

I Wi(yT Vi)2 ~ 9(G, w) 
iEV 

for all unit vectors y E ]RN, and so by assumption, the left hand side is maximized 
by y = d. But the left hand side can be written as a quadratic form in y as 
follows: I Wi(yT Vi)2 = yT (I WiViVr) y , 

iEV iEV 

and so its maximum over all vectors y of unit length is attained when y is 
an eigenvector of LiEV WiViVr, and the maximum value is the corresponding 
eigenvalue. Hence d is an eigenvector of this matrix associated with the eigenvalue 
9(G, w). This implies 

I WMT Vi)Vi = (I WiViVr)d = 9(G, w)d . 

iEV iEV 

D 

Let us mention some corollaries of Theorem (9.3.12). We will first show that 
there are a number of further ways to describe the convex set TH(G) defined in 
(9.3.3). 

(9.3.22) Corollary. Each of the following expressions defines TH(G): 

(a) TH(G) = { x E]R~ I 9(G, x) ~ 1} ; 

(b) TH(G) = { x E]R~ I x T Y ~ 9(G, y) for all y E]R~ } ; 

(c) TH(G) = { ((d T Vi)2 liE V) I where (Vi liE V), Vi E ]RN, is an orthonormal 
representation ofG and d E]RN satisfies Ildll = 1 } . 

Proof. (a) follows if, using that 9 = 94 by Theorem (9.3.12), we substitute 

- " T 2 9(G, x) = max L..(C Ui) Xi , 

iEV 
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where (Uj liE V), Uj E JRN, is an orthonormal representation of G and e E JRN, 

Ilell = 1. 

(b) Each x E TH(G) satisfies xT y :::; 9(G,y) by the definition of 9(G,y) in (9.3.5). 
On the other hand, setting for each orthonormal representation (Uj liE V) and 
each vector e with Ilell = 1, Yj := (e T Uj)2 and Y := (Yj liE V), we conclude from 
(9.3.6) and (9.3.12) that 9(G, y) :::; 1. And thus the inequalities (9.3.2) are implied 
by the inequalities xTy:::; 9(G,y) for all y EJR~. 

(c) In the proof of inequality (9.3.19) we have already shown that ((dT Vj)2 I 
i E V) E TH(G) for each orthonormal representation (Vj) of G and each unit 
vector d. Conversely, let x E TH(G). Then by (a) t := 9(G, x) :::; 1. By Remark 
(9.3.20) (a), G has an orthonormal representation (Vj liE V), Vj E JRN, and there 
is a vector d E JRN, Ildll = 1 such that t(dT Vi)2 = Xi for all i E V. Let dl be a 
vector orthogonal to d, and all Vi, i E V (in any linear space containing JRN) with 
Ildlll = 1, and set do := Vi d+vr=t dl . Then lido II = 1 and (dT; V;) 2 = t(dT Vi)2 = Xi 

for all i E V. This proves (c). 0 

Combining definition (9.3.3) of TH(G) with (9.3.22) (c) we get as an immediate 
consequence: 

(9.3.23) Corollary. The antiblocker ofTH(G) is equal to TH(G). o 

We have already mentioned that TH(G) is not a polytope in general. We will 
now characterize its facets. 

(9.3.24) Theorem. If an inequality defines a facet ofTH(G), then it is a positive 
multiple of one of the nonnegativity constraints (9.1.1) or of one of the clique 
constraints (9.2.1). 

Proof. Suppose that aT x :::; IX defines a facet of TH(G), and let z be a point in 
the relative interior of F := {x E TH(G) I aT x = rx}. Then either Zj = 0 for some 
i, or 9(G, z) = 1 by (9.3.22) (a). In the first case aT x :::; IX is trivially equivalent 
to Xi Z O. So suppose that 9(G, z) = 1. Since 9 = 94 by Theorem (9.3.12), there 
exists an orthonormal representation (Ui) of G and a unit vector e such that 

L zi(eT Ui)2 = 1 . 
iEV 

Since by definition (9.3.3) the orthonormal representation constraint 

(9.3.25) L xj(eT Uj)2 :::; 1 
iEV 

is satisfied by all x E TH(G), it follows that (9.3.25) must be equivalent with 
aT x:::; IX, and hence we may assume that IX = 1 and ai = (eT Ui)2. We also see that 

(9.3.26) 
iEV 
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for all x E F, and thus by Lemma (9.3.21) 

I Xi(C T Ui)Ui = C 

iEV 

holds for all x E F, in other words, 

I Xi(C T Ui)(Ui)j = Cj 

iEV 

for all j E V. Since F is (n - I)-dimensional, these equations must follow from 
the equation (9.3.26), and hence Cj (c T Ui)2 = (c T Ui)(Ui)j for all i,j E V. Hence for 
any i E V such that cT Ui 1- 0 we have (c T uac = Ui. Since Iluill = Ilcll = 1, this 
yields that Ui = ±c. Clearly, we may assume that Ui = C. 

SO we see that for each i, either cT Ui = 0 or Ui = c. Set Q := { i E V I Ui = C }. 

Then Q is a complete subgraph, since for any two nodes i,j E Q, ur Uj = cT C = 
1 1- O. So (9.3.25) is just the clique inequality 

which proves the theorem. o 

(9.3.27) Corollary. TH(G) is a polytope if and only ifG is a perfect graph. 

Proof. If G is perfect then by definition STAB(G) = QSTAB(G). Thus by (9.3.4) 
STAB(G) = TH(G), which implies that TH(G) is a polytope. 

Conversely, suppose that TH(G) is a polytope. Then TH(G) is the solution 
set of all inequalities determining a facet of TH(G). By Theorem (9.3.24), all 
these inequalities are either nonnegativity constraints (9.1.1) or clique constraints 
(9.2.1), and so TH(G) = QSTAB(G). By Corollary (9.3.23) TH(G) = abl(TH(G», 
and hence TH(G) is also a polytope. Using the same arguments as above we 
conclude that TH(G) = QSTAB(G). But now STAB(G) = abl(QSTAB(G) 
abl(TH(G» = TH(G) = QSTAB(G), and thus G is a perfect graph. 0 

Two immediate corollaries are the following: 

(9.3.28) Corollary. TH(G) = STAB(G) if and only ifG is perfect. o 

(9.3.29) Corollary. TH(G) = QSTAB(G) if and only ifG is perfect. o 

The theorems and corollaries above show that in spite of its complicated 
definition, TH(G) does have nice and useful properties. For our purposes the 
following property of TH(G) is the most important. 
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(9.3.30) Theorem. The weak optimization problem for TH(G) is solvable in 
polynomial time. 

It is necessary to restrict our attention to weak optimization, because TH(G) is 
not a polyhedron in general and so the results of Chapter 6 do not apply. To see 
an example, let G be the pentagon Cs and let Xo E IRs be the vector maximizing 
the linear objective function 11. = (1,1,1,1, 1)T over TH(Cs). By symmetry, we 
may assume that Xo = (t, t, t, t, t) T for some t > O. So 

11. T X ::s; 11. T Xo = 5t 

is valid for all x E TH(G) and so the vector ~11. belongs to the antiblocker of 
TH(Cs). But Cs is self-complementary and hence ~11. E TH(Cs) by Corollary 
(9.3.23). Thus 1I.T (~11.) ::s; 5t, whence t ~ )s. As remarked before, the orthonor­
mal representation constraint derived from the orthonormal representation of Cs 
shown in Figure 9.3 reads LiECs Xi ::S; v's. This implies t = )s. So neither the 
maximizing vector nor the maximum value are rational. 

Another preliminary remark : it would not do much good to apply the 
optimization-separation equivalence at this point. In fact, the separation problem 
for TH(G) is equivalent to the violation problem for its antiblocker; but this is 
just TH(G), and so all we can achieve by this is to reduce the optimization (or 
violation) problem for TH(G) to the same problem for the complementary graph. 

Proof of (9.3.30). Since TH(G) is closed and convex, and it is trivial to find 
inscribed and circumscribed balls, it suffices to solve the weak validity problem. 

So let cT x ::S; y be any inequality, c E <Qv, y E <Q. If Ci ::S; 0 for some i E V then 
clearly it suffices to check whether, dropping the i-th coordinate, the remaining 
inequality is valid for TH(G - 0. So we may assume that c > O. 

By the definition of 9, our task is done if we can compute 9(G, c) in polynomial 
time (in the sense of computing real numbers in polynomial time). For this, we 
can use formula (9.3.10): 

9(G, c) = 93(G,c) = max{eTBe I B E ~ n A and tr(B) = 1}, 

where ~ and A are the sets defined in (9.3.7). To see that this maximum 
is indeed computable in polynomial time, we apply Yudin and Nemirovskii's 
theorem (4.3.2). For this, consider the affine subspace 

Al := {B E A I tr(B) = 1} 

and the set 
ff := Al n ~. 

So we have 9(G, c) = max{eT Be I B E ff}. 
Claim 1. ff is convex. 

This follows since both A I and ~ are convex. 

Claim 2. ff !:; S (0, n). 
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Indeed, let B = (bij) E.f. Since B is positive semidefinite, bii 2 O. Since 
tr B = 1, we also have bii :5: 1. Using that B is positive semidefinite again, we 
have that biibjj - bt 20, and hence Ibijl :5: Jbiibjj :5: 1. Hence IIBIlmax :5: n, and 
so by (0.1.24) BE S (0, n). 

Claim 3. S (~I,~) n.AI s;.f. 

For, let B E .A I be any symmetric matrix in IRv x v such that II ~ I - B 112 :5: ~. 
Then by (0.1.25) the largest eigenvalue of ~I - B is at most ~. So the smallest 
eigenvalue of B is at least O. Thus by (0.1.4) B E fl), and so B E fl) n .A I = .f. 

The first three claims show that .f is a centered, well-bounded, convex body 
in .A I. In what follows, we shall work in the space .A I. (To be precise, we project 
.AI (and.f) on the space IRs where S = {(i,j) I ij ¢ E, i :5:j, (i,j) =1= (n,n) }.) 

Claim 4. The weak membership problem for .f is solvable in polynomial time. 
All we have to do is to check whether a given symmetric matrix B is positive 

semidefinite. There are various characterizations of positive semidefiniteness - see 
(0.1.4) - which can be used for the design of an efficient proof of this property. 

For instance, polynomial time algorithms can be obtained from Gaussian 
elimination and Cholesky decomposition. In Gaussian elimination we allow 
pivots on the main diagonal only; if the rank of the matrix is found and only 
positive pivots have been carried out, then the matrix is positive semidefinite. 
Cholesky decomposition can be used in a similar way. A further method is 
to compute the smallest eigenvalue An; if An is nonnegative then the matrix is 
positive semidefinite. This algorithm may be fast in practice but it is not so easy 
to implement it in polynomial time. 

Let us describe in detail the algorithm based on Gaussian elimination - see 
Section 1.4. To check positive semidefiniteness we use criterion (0.1.4) (iv). So 
let B = (b ij ) be a symmetric rational n x n-matrix. If bll < 0 then B is not 
positive semidefinite. If bll = 0 but bli =1= 0 for some 2 :5: i :5: n then B is not 

positive semidefinite (in fact, its principal submatrix ( ~:: ~::) has determinant 

-bIi < 0). If bll = 0 and also bli = 0 for all i, then we can drop the first row 
and column and restrict our attention to the remaining (n - 1) x (n - I)-matrix. 
If bll > 0 then pivot on bll , i. e., consider the matrix B' = (b:)?'j=2 where 
b:j := bij - ~blj. Then B' is positive semidefinite if and only if B is, and so again 
we have reduced our task to an (n - 1) x (n - 1) problem. 

It has to be checked, however, that the entries of the smaller matrices obtained 
this way do not grow too large, i. e., their encoding lengths remain bounded by 
the encoding length of B. This is easy to see, however, since these entries are 
subdeterminants of the original matrix B - see the proof of Theorem (1.4.8). D 

(9.3.31) Remark. One could also use formula (9.3.9) 

9(G, w) = min{ A(A + W) I A E.A1-} 

to obtain 9(G, w). Namely, A(A + W) is a convex function of A, and A ranges 
through a linear space. So we obtain an unconstrained convex function minimiza­
tion problem. Using standard linear algebra, one can design an evaluation oracle 
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for A(A + W) and also derive a bound R on the Frobenius norm of the minimizing 
matrix. Then Theorem (4.3.13) can be applied to compute 8(G, w). D 

Corollary (9.3.27), Theorem (9.3.30), and Theorem (6.3.2) immediately give: 

(9.3.32) Corollary. The weighted stable set problem for perfect graphs is solvable 
in polynomial time. D 

Trivially, we also obtain the following: 

(9.3.33) Corollary. 
in polynomial time. 

The weighted clique problem for perfect graphs is solvable 
D 

*9.4 Coloring Perfect Graphs 

We shall now describe how the results of Section 9.3 can be used to solve further 
optimization problems for perfect graphs in polynomial time. Recall the following 
two problems. 

(9.4.1) Minimum Weighted Coloring Problem. Given a graph G = (V, E) with 
node weights w : V -4 7l+, find stable sets S1, ... , Sk S; V and nonnegative 
integers A1, ... , Ak such that for each node v E V the sum Li,VES, Ai is not smaller 
than w(v) and such that Al + ... + Ak is as small as possible. 

(9.4.2) Minimum Weighted Clique Covering Problem. Given a graph G = (V, E) 
with node weights w : V -4 7l+, find cliques QI, ... , Qk S; V and nonnegative 
integers A1, ... , Ak such that for each node v E V the sum Li,vEQ, Ai is not smaller 
than w(v) and such that Al + ... + Ak is as small as possible. 

As before, we denote the optimum value of (9.4.1) by X(G, w) and the optimum 
value of (9.4.2) by X(G, w). Clearly, the coloring problem (9.4.1) for G is nothing 
but the clique covering problem (9.4.2) for the complementary graph G, and vice 
versa. Both problems are .A/9-hard for general graphs. We will now show that 
they are solvable in polynomial time for perfect graphs. It suffices to discuss 
problem (9.4.2). 

(9.4.3) Theorem. There is an algorithm that solves the minimum weighted clique 
covering problem for perfect graphs in polynomial time. 

Proof. An integer programming formulation of (9.4.2) can be given as follows. 

(9.4.4) 

(i) 

min I AQ 
Qs V clique 

I AQ?: W(V) for all v E V, 
Q clique, Q3V 



(ii) 

(iii) 
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AQ ~ 0 for all cliques Q s; V, 

AQ integral for all cliques Q s; V. 

The linear program (9.4.4) without the integrality stipulation (iii) is the dual of 
the linear program 

(9.4.5) maxw T x, X E QSTAB(G) , 

where QSTAB(G) is the polytope defined by the nonnegativity and clique con­
straints - see (9.2.7). (By Theorem (9.2.9), problem (9.4.5) is AlY'-hard in general, 
hence even the LP-relaxation of (9.4.4) is AI.?J-hard.) By (9.3.28) and (9.3.29) we 
have QSTAB(G) = STAB(G) = TH(G) if and only if G is perfect, and thus by 
(9.3.32), an optimum solution of (9.4.5) can be found in polynomial time if G is 
a perfect graph. 

Therefore, our general results of Chapter 6 imply that we can find an optimum 
solution of the linear program dual to (9.4.5) in polynomial time, and thus an 
optimum solution of (9.4.4) without the integrality condition (iii) can be computed 
in polynomial time, in case G is a perfect graph. But by Theorem (9.2.4), if G 
is a perfect graph, the integrality condition (iii) of (9.4.4) is superfluous, i. e., 
the linear program (9.4.4) (i), (ii) always has an optimum solution which is 
integral. Our method, however, for finding an optimum dual solution is only 
guaranteed to find a basic optimum solution, and since (9.4.4) without (iii) may 
have nonintegral basic optimum solutions (in addition to the integral ones) we 
are not sure that the general techniques solve (9.4.4). But in this special case it is 
possible to construct an integral optimum solution from a fractional one. This 
goes as follows. 

By finding a basic optimal solution of the LP-dual of (9.4.5) we obtain a 
basic optimum solution of (9.4.4) without (iii). It is a trivial matter to modify 
this solution such that it is optimal for 

(9.4.6) 
Qs;Vclique 

(i) I AQ = w(v) for all v E V, 
Q clique. Q3V 

(ii) for all cliques Q s; V. 

Let Ql be any clique such that AQI > 0 in this optimum solution. Because 
of condition (i) of (9.4.6) we have w(q) > 0 for all q E Ql. Moreover by 
complementary slackness, Ql has a nonempty intersection with all stable sets 
S s; V satisfying w(S) = a(G, w). 

We define Wi (v) := w(v) for all v E V \ Qj, and using the algorithm of Corollary 
(9.3.32), we compute a(G - Qj, Wi). We set 

IlQl := min{ a(G, w) - a(G - Ql, Wi), min{ w(q) I q E Qd} . 

Clearly, IlQl is a positive integer. Consider the new weighting 

(9.4.7) 
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By our choice of JiQl we have WI ;::: 0, and our construction yields 

a(G, wd = a(G, w) - JiQl . 

To see that this equation holds, observe first that IX(G, wd ;::: a(G, w) - JiQp since 
there exists a stable set S with a(G, w) = w(S) ~ WI (S) + JiQl ~ a(G, wd + JiQI' To 
show the converse inequality, let S be any stable set satisfying WI (S) = a(G, wd. 
If S n QI = (/) then a(G, wd = WI(S) = w'(S) ~ IX(G - QI, w') ~ a(G, w) - JiQI' If 
S n QI =1= (/) then a(G, wd = WI (S) ~ w(S) - JiQl ~ a(G, w) - JiQl' 

If WI =1= 0 we repeat this procedure, with w replaced by WI. 
This algorithm ends up with a list of cliques QI, ... , Qk and of positive 

integers JiQl' ... , JiQk such that 

JiQ1XQ1 + ... + JiQkXQk = W 

JiQI + ... + JiQk = a(G, w). 

Thus we have found an integral solution of (9.4.6) and hence a solution of (9.4.4). 
Clearly, each step of the iteration described above can be executed in polynomial 
time. To finish the running time analysis of our algorithm we prove the following: 

Claim. The vectors XQ1 , ... , XQk are linearly independent. 
We show this by proving that for each i, 1 ~ i ~ k, there exists a vector 

orthogonal to XQ'+I, .•. , XQk but not to XQ,. Let us denote the vector WI defined in 
(9.4.7) in the i-th iteration of the algorithm by Wi, i = 1, ... , k. By the definition 
of JiQ, there are two cases. Either there is a node q E Qi such that Wi(q) = 0 or 
there exists a stable set S ~ V (G) \ Qi such that wM) = a(G, Wi). In the first 
case, Wj(q) = 0 for all i ~j ~ k -1 and hence q ¢ Qj+l. So X{q} is orthogonal to 
XQi+l , ••• , XQk but not to XQ,. In the second case observe that - by construction 
- S is a maximum weight stable set of G not only with respect to the weighting 
Wi but also with respect to Wi+l, ... , Wk-l. Hence by complementary slackness 
IS n Qj+ll = 1 for j = i, ... , k -1. If So is a maximum weight stable set of G with 
respect to the initial weighting W then ISo n Qj I = 1 for all j, and hence xSo - XS 

is a vector orthogonal to XQ'+I, ... , XQk but not to XQ,. This proves the claim. 

It follows from our claim that k ~ n, and hence the algorithm terminates 
in polynomial time. Moreover, the claim shows that JiQI' ... , JiQk yields a basic 
optimum dual solution of (9.4.5). 0 

Since the coloring problem (9.4.1) for a graph G is the clique covering problem 
(9.4.2) for the complementary graph G, and since a graph is perfect if and only 
if its complement is perfect we obtain : 

(9.4.8) Corollary. There is an algorithm that solves the minimum weighted 
coloring problem for perfect graphs in polynomial time. 0 
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*9.5 More Algorithmic Results on Stable Sets 

In this last section we survey some further classes of graphs for which the stable 
set problem can be solved in polynomial time. 

Given any class 2 of valid inequalities for STAB(G), we can consider the 
polyhedron 

(9.5.1) 2 STAB(G) := {x E JRr I x satisfies 2} , 

and ask ourselves the question whether the optimization problem for 2 STAB(G) 
can be solved in polynomial time. By the general results of Chapters 4 and 6, 
this is equivalent to checking whether or not a given vector Y E JRr belongs 
to 2 STAB(G), i. e., whether or not y satisfies all the inequalities in 2. If this 
problem can be solved in polynomial time, then the stable set problem can be 
solved in polynomial time for all graphs G such that 2 STAB(G) = STAB(G). 
Let us call a graph G 2-perfect if 2 STAB(G) = STAB(G). 

The significance of such a result depends on whether or not there are any 
interesting examples of 2-perfect graphs. In Sections 9.1, 9.2, and 9.3 we have 
studied two classes 2 of valid inequalities for which such examples do exist. 
Here we shall mention some further classes for which the membership problem 
for 2 STAB(G) can be solved in polynomial time, even though we do not know 
really interesting classes of 2-perfect graphs. 

As a first remark, note that if the membership problem is solvable for 
21 STAB( G) and 22 STAB( G) in polynomial time then it is also solvable for 
21 STAB(G) n 22 STAB(G) = (ft'J U ft'2) STAB(G). So we may take the 
nonnegativity constraints (9.1.1) and the odd circuit constraints (9.1.4) together 
with the orthonormal representation constraints (9.3.2) and obtain a convex 
set containing STAB(G) for which the optimization problem can be solved in 
polynomial time. The corresponding "perfect" graphs are defined by 

(9.5.2) TH(G) n CSTAB(G) = STAB(G) . 

It follows from Theorem (9.3.24) that this condition is equivalent to the following: 

(9.5.3) QSTAB(G) n CSTAB(G) = STAB(G) . 

Graphs satisfying (9.5.3) are called h-perfect; these are those graphs for which 
the nonnegativity, clique, and odd circuit constraints suffice to describe STAB(G). 
Since every h-perfect graph also satisfies (9.5.2), we obtain the following. 

(9.5.4) Corollary. 
polynomial time. 

The stable set problem for h-perfect graphs can be solved in 
D 

We do not know any interesting classes of h-perfect graphs that are neither 
perfect, nor t-perfect, nor combinations of these. But, of course, there are such 
graphs. For instance, the graph in Figure 9.4 is h-perfect but neither perfect nor 
t-perfect. 
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Figure 9.4 

The wheel constraints for STAB(G) are determined by the odd wheels in G, 
i. e., induced subgraphs G[W] of G containing a node w (the center) such that w 
is adjacent to all other nodes of G[ W] and G[ W] - w is an odd circuit. Figure 
9.5 shows a wheel, where G[W] - w is a 7-circuit. 

Figure 9.5 

Given such a subgraph G[W], where I WI is even, we can write up the following 
odd wheel constraint: 

(9.5.5) 

Note that (9.5.5) is stronger than the odd circuit constraint determined by 
G[W] - w. Let 1f/ denote the class of constraints (9.1.1), (9.1.2), (9.1.4), (9.5.5). 
Then we have 
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(9.5.6) Theorem. The strong separation (and the strong optimization) problem 
for 1f"STAB(G) can be solved in polynomial time. 

Proof. Let Y E <Qv . We know that we can check in polynomial time whether y 
satisfies the nonnegativity constraints (9.1.1), the edge constraints (9.1.2), and the 
odd circuit constraints (9.1.4). Suppose that we find that it does. Then define, for 
each node w E V, a weighting of the edges spanned by the set r(w) of neighbors 
of w, by 

lw(uv) := 1 - Yu - Yv - Yw for all uv E E with u, v E r(w). 

Since y satisfies the odd circuit constraints, we know that lw(uv) :2: O. So for each 
node w E V, we can find, by the algorithm solving problem (8.3.6), an odd circuit 
of (r(w), E(r(w))) with smallest lw-Iength. Suppose that we find this wayan odd 
circuit (uo, ... , u2d with lw-Iength less than 1 - yew). This means 

and so 

2k I(1- Y(Ui) - y(ui+d - yew)) < 1 - yew) 
i=O 

2k 

I Y(Ui) + ky(w) > k. 
i=O 

Hence, y violates an odd wheel constraint. Conversely, if for every w E V 
every odd circuit in r(w) has lw-Iength at least 1 - yew), then clearly y E 

1f" STAB(G). D 

It follows that the stable set problem can be solved in polynomial time for 
1f"-perfect graphs. Unfortunately, we are not aware of any interesting examples 
of such graphs. 

There are further classes of inequalities known that are valid for STAB(G) 
or define facets - see for instance PADBERG (1973), NEMHAUSER and TROTTER 
(1974), or - for a survey - BALAS and PADBERG (1975). For most of these classes 
we do not know whether or not the associated separation problem can be solve 
in polynomial time. An example of such a class is the class of odd antihole 
inequalities. These are inequalities of the form x(W) ~ 2 where the subgraph of 
G induced by W is the complement of a chordless odd circuit of length at least 
five. 

The papers NEMHAUSER and TROTTER (1974) and PADBERG (1975) describe 
general methods - so-called lifting techniques - with which, for each induced 
subgraph G' of G, valid (or facet defining) inequalities for STAB(G') can be turned 
into valid (or facet defining) inequalities for STAB(G). (These methods apply to 
integral polyhedra in general.) In fact, the odd wheel constraints can be obtained 
from the odd circuit constraints with this lifting technique, and we are able to 
modify the trick described in the proof of Theorem (9.5.6) to solve the separation 
problem for further classes of lifted inequalities. Similarly, we can solve the 
separation problem for the separation problem for 2' STAB(G) if 2' consists of 
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constraints derived from odd subdivisions of K4, or, more generally, from odd 
subdivisions of wheels. But a general theory of such classes of inequalities is not 
known. It is also an open question whether the more involved linear algebraic 
methods of Section 9.3 can be pushed any further. 

We conclude with some classes of graphs for which the stable set problem is 
polynomially solvable, although not directly by polyhedral methods. 

Since the stable set problem for the line graph of a graph is trivially equivalent 
to the matching problem for the original graph, it is solvable in polynomial time 
(see Section 7.3). MINTY (1980) and SBIHI (1978, 1980) extended this result to the 
stable set problem of claw-free graphs, i. e., graphs not containing a 3-star as an 
induced subgraph. (It is easy to see that every line graph is claw-free, but not vice 
versa.) Minty also solved the weighted version in polynomial time. However, in 
spite of considerable efforts, no decent system of inequalities describing STAB( G) 
for claw-free graphs is known - cf. GILES and TROTTER (1981). 

Let us remark that for some interesting classes of graphs, the number of all 
maximal stable sets is polynomial in I V I, and all such sets can be actually listed 
in polynomial time : 

complements of triangulated graphs, 
complements of bipartite graphs, and 
complements of line-graphs 

are some examples. Now, if G = (V, E) is a graph whose nodes can be partitioned 
into two classes Vj and V2 such that both G[ Vd and G[ V2] belong to one of the 
classes above, then the stable set problem for G is easily solved in polynomial 
time, by solving it for all bipartite graphs G[Sj U S2], where Sj is a maximal stable 
set in G[VJ 

One of the fastest branch and bound methods for the cardinality version of 
the stable set (resp. clique) problem in arbitrary graphs known to date is based 
on observations of this type. The algorithm is due to BALAS and Yu (1984). It 
iteratively generates maximal triangulated induced subgraphs or complements of 
these and heavily exploits the fact that maximum stable sets in such graphs can be 
computed in time linear in I V I + IE I. The algorithm terminates in polynomial time 
for instance for complements of triangulated graphs, but also for some classes 
of graphs that include some imperfect graphs. BALAS, CHV hAL and NESETRIL 
(1985) have modified and extended these ideas to obtain algorithms that solve the 
weighted stable set problem for several further classes of graphs in polynomial 
time. The common feature of these classes of graphs is that every stable set of any 
of these graphs is contained in some member of a polynomial-sized collection of 
induced subgraphs that are bipartite. 

Hsu, IKuRA and NEMHAUSER (1981) showed that for each fixed k the weighted 
stable set problem can be solved in polynomial time by enumerative methods if 
the longest odd cycle in the graph is bounded by k. 

It follows from the results of Chapter 6 that, for each of the classes of graphs 
mentioned above, the facets of STAB(G) can in a sense be described : we can 
decide in polynomial time whether or not a given inequality is valid for STAB(G), 
and also whether or not it determines a facet of STAB(G). Moreover, we can 
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represent every valid inequality as a nonnegative combination of facet defining 
inequalities of STAB(G). We can also find, for any vector not in STAB(G), a 
facet separating it from STAB(G) in polynomial time. But of course, it would 
be interesting to find a direct description of STAB(G) by linear inequalities and 
then use this to solve the stable set problem. For none of the three classes of 
graphs mentioned above, such a description of STAB(G) is known. 


