Optimization Summer 2016

Lecture 1: April 15

Lecturer: Andreas Wiese Scribe: Harry Ritchie

1 Linear Programming: Algorithms for Solving

1.1 Refresh

- 1. objective function: $\mathbf{c}^T\mathbf{x}$ maximise/minimise
- 2. constraints: $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
- 3. variables: $\mathbf{x} \leq \infty \geq 0$
- 4. feasible region: $P := \{x | Ax \geq b\}$
- 5. Def polytope: A polytope is an n dimensional region with flat sides. The shape of our feasible region.

1.2 Theorem

All polyhedrons are closed sets

Let $P = {\mathbf{x} | \mathbf{A} \mathbf{x} \geq \mathbf{b}}$

Let $x^{[1]}, x^{[2]}, \dots$, be a convergent sequence in P

$$
\lim_{k \to \infty} x^{(k)} = x^{(*)}, \dots, x^{(1)} \in P \ \forall k
$$

$$
x^{(*)} \in \{P | \mathbf{A} \mathbf{x}^{(*)} \le \mathbf{b}\}
$$

Let *i* be a component.

$$
(\mathbf{A}\mathbf{x}^{(*)})_i = \mathbf{A} \lim_{k \to \infty} x^{(k)}
$$

$$
= \lim_{k \to \infty} (\mathbf{A}\mathbf{x}^{(k)})_i
$$

We know for every $k | \mathbf{A} \mathbf{x}^{(k)} \in P$ (A function mapping) and every k forms a sequence. Then from the above equation, every single element will be at least, b_i . Hence, it is closed

from $(b_i \to \infty)$

1.3 Projection and Fourier-Motzkin

We requier a function that maps n-points to our n-1 points. We define such function $\pi_k \mathbb{R}^n \to \mathbb{R}^k$

$$
\pi_k(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_k)
$$

for a set S

$$
S \subseteq \mathbb{R}^n \quad \pi_k(S) = \{\pi_k(x) \mid x \in S\}
$$

$$
\Rightarrow \{(x_1, x_2, \dots, x_k) \mid \exists x_k \dots x_n \mid x_k, x_n \in S\}
$$

Given a polyhedron $P = {\mathbf{x} | A\mathbf{x} \leq \mathbf{b}}$ NOTE: if $P \neq \emptyset \Rightarrow \pi_{n-1}(P) \neq \emptyset$ If P is non-empty, then the projection of P is non-empty. The Fourier-Motzkin process goes as follows:

 $\bullet~$ Rewrite each constraint

$$
\sum_{i=1}^{n} \alpha_{i,j} x_i \ge b_i
$$

$$
\alpha_{i,n} x_n \ge -\sum_{i=1}^{n-1} \alpha_{i,j} x_i + b_i
$$

• if $\alpha_{i,n} \neq 0$ then divide by $\alpha_{i,n}$

$$
x_n \ge d_i + e_i^T \mathbf{x} \quad \text{ if } \alpha_{i,n} > 0 \quad, d_i = \frac{b_i}{\alpha_{i,n}} \quad, e_i = -\frac{\sum_{i=1}^{n-1} \alpha_{i,j}}{\alpha_{i,n}}
$$

$$
\mathbf{x} = (x_1, x_2, \dots, x_{n-1}) \in \mathbb{R}^{n-1}, \ d_i \in \mathbb{R}
$$

if $\alpha_{i,n} < 0$ $d_i + e_i^T \mathbf{x} \geq x_n$ if $\alpha_{i,n} = 0$ $0 \ge d_k + e_k^T \mathbf{x}$

Now, when rewriting constraints we only consider the projected points.

• Let Q be a polyhedron in \mathbb{R}^{n-1} defined by. $0 \geq d_k + e_k^T \mathbf{x}$ for each $x_{i,n} = 0$ Suppose there is a point in P. $\{\forall\ i,j\ |\ \alpha_{i,n}>0\ ,\ \alpha_{j,n}<0\}$

$$
\Rightarrow d_j + e_j^T \bar{\mathbf{x}} \leq d_i + e_i^T \bar{\mathbf{x}}
$$

Next: one round of Fourier - Motzkin to P ie;

 $Q = \pi_{n-1}(P)$ We will now prove that Q and $\pi_{n-1}(P)$ contain each other.

First, we will prove the lower bound $\pi_{n-1}(P) \leq Q$.

The inequalities denoted $iq(1), iq(2), iq(3)$ are when $\{\alpha > 0, \alpha < 0, \alpha = 0\}$ respectively.

$$
Let \ \overline{\mathbf{x}} \in \pi_{n-1}(P) \Rightarrow \{ \exists \ \mathbf{x}_n \ | \ (\overline{\mathbf{x}}_1, \mathbf{x}_n) \in P \}
$$

In iq(3) there is no relation to x_n hence, satisfied.

For $iq(2)$ and $iq(1)$ it can be shown:

$$
d_j + e_j^T \overline{\mathbf{x}} \le d_i + e_i^T \overline{\mathbf{x}}
$$

$$
min_{\{j \mid \alpha_{j,n} < 0\}} d_j + e_j^T \overline{\mathbf{x}} \ge max_{\{i \mid \alpha_{i,n} > 0\}} d_i + e_i^T \overline{\mathbf{x}}
$$

(Recall the variables d, e)

This is to say: $\implies [b, \alpha] \neq \emptyset$ then take an arbitrary point on this interval:

Let
$$
x_k \in [b, \alpha]
$$

\n $\implies (\bar{x}, x_n)$ satisfies $iq(1), iq(3)$
\n $\implies (\bar{x}, x_n) \in P$
\n $\implies \bar{x} \in \pi_{n-1}(P)$

Initially, the polytope must be checked if it is non-empty. Apply this process:

$$
\pi_{n-1}(P) \to \pi_{n-2}(P) \to \dots \to \pi_1(P)
$$

if $\pi_1(P) \neq \emptyset$ then, it is non-empty.

Complexity: Given M constraints it's obvious to see for first projection $O(M^2)$ 2nd, $O(M^4)$ 3rd, $O(M^6)$... n-th $O(M^{2n})$

The introduction of a objective function can result in the following scheme seen previously for solving a LP:

$$
\min \ c^T \mathbf{x}
$$

$$
\mathbf{A}\mathbf{x} \ge \mathbf{b}
$$

introduce a dummy variable, x_0 and let the dummy variable be the initial $x_0 = c^T \mathbf{x}$

With this new polytope, first check if it is non-empty.

 $P = \{(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n-1} \mid \mathbf{A}\mathbf{x} \ge \mathbf{b} \land x_0 = c^T \mathbf{x}\}\$

Using Fourier-Metzkin elimination, we then obtain Q , where $Q = \{x_0\}$ initially, $Q = c^T \mathbf{x}$

$$
\implies Q = \{x_0 \mid \exists (x_1, x_2, \dots, x_n) \mid \mathbf{A}\mathbf{x} \ge \mathbf{b} \land x_0 = c^T \mathbf{x}\}\
$$

This polytope is useful as one dimensional and all points in Q are the values optimized.

$$
Q = \pi_1(P')
$$
 P' When $x_0 = c^T \mathbf{x}$ To find the result, back track from $\pi_1(P')$

The computation is not efficient but is nice in theory. Say we project from $\mathbb{R}^n \to \mathbb{R}^k$ we produce synthetic inequalities which are also polyhedrons. It is also the simplest method to prove there exists this relation.

Corollary

$$
\begin{aligned}\n\min & c^T \mathbf{x} \\
\mathbf{A} \mathbf{x} &= \mathbf{b} \\
\mathbf{x} &\geq 0\n\end{aligned}
$$

Apply a transformation by introducing variables. For each x_i introduce: x_j^+, x_j^- and replace all instances: $x_i = x_j^+ - x_j^-$.

Introduce constraints: if $x_i \geq 0$: $x_j^+ \geq 0$ then $x_j^- \leq 0$. For each constraint $a_i^T \mathbf{x} \geq b_i$ introduce a new dummy variable that represents the residue from $a_i^T \mathbf{x} - b_i = s_i$ hence, we can say: $a_i^T \mathbf{x} - s_i = b_i$. We can add this residual as an extra constraint: ie; $s_i \geq 0$. This allows for a one sided, defined limit.