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1 Linear Programming: Algorithms for Solving

1.1 Refresh

1. objective function: ¢’

x maximise/minimise
2. constraints: Ax <b

3. variables: x <,>0

4. feasible region: P := {x|Ax > b}

5. Def polytope: A polytope is an n dimensional region with flat sides. The shape of our
feasible region.

1.2 Theorem

All polyhedrons are closed sets

Let P = {x|Ax > b}

Let x|l|,a:|2|, ..., be a convergent sequence in P
limy o0 z®) = :c(*), ,:z:(l) eP Vk

) e {P|Ax™®) < b}

Let © be a component.

(Ax™); = A lim z(¥)

k—o00

= lim (Ax®);

k—o0

We know for every k |Ax®) € P (A function mapping) and every k forms a sequence.
Then from the above equation, every single element will be at least, b;. Hence, it is closed



from (b; — 00)

1.3 Projection and Fourier-Motzkin

We requier a function that maps n-points to our n-1 points.

WkRn — Rk

(1, T2, oo, Ty) = (T1, T2, ... , Tk)

for a set S
SCR" mp(S) ={m(z) |z € S}

= {(1’1,132,... ,LEk;) ‘ 3 L. T ‘ Tk, Tn € S}

Given a polyhedron P = {x|Ax < b}

We define such function

NOTE: if P # § = m,_1(P) # 0 If P is

non-empty, then the projection of P is non-empty. The Fourier-Motzkin process goes as

follows:

e Rewrite each constraint

n
§ o T >b;
=1

n—1
O Ty > — E a; ;i + b
i=1
o if o, # 0 then divide by a;
b Z”—l i
. A: l’
ZL‘nZdi—l-eZTX 1fozi7n>0 ,diziz ,ei:—g
Qi n (87%7)



it o <0 dH—eiTxen
it o;, =0 Ode—l-e%x

Now, when rewriting constraints we only consider the projected points.

Let Q be a polyhedron in R”~! defined by. 0 > dj, + er for each x;, =0

Suppose there is a point in P. {V¢,j | a;,, >0, o, <0}

= dj+elx <d;i+elx

Next: one round of Fourier - Motzkin to P ie;

Q = mp—1(P) We will now prove that @ and 7,_1(P) contain each other.

First, we will prove the lower bound 7,_1(P) < Q.

The inequalities denoted iq(1),iq(2),7q(3) are when {a > 0, a« < 0, a = 0} re-

spectively.

Let X € mp_1(P) = { 3%, | (X1, %n) € P}

In iq(3) there is no relation to x, hence, satisfied.
For iq(2) and iq(1) it can be shown:

di+elX<di+e %
Ming | o; <0} dj + e;‘»ri > MAT(; | o >0y di + el'x
(Recall the variables d , e)
This is to say: = [b,a] # () then take an arbitrary point on this interval:
Let xy, € [b, o
— (T, xy) satisfies iq(1), iq(3)
= (Z,z,) €P
= T € mp_1(P)



Initially, the polytope must be checked if it is non-empty. Apply this process:
7Tn71(P) — 7Tn72(P) — .. 7T1(P)

if w1 (P) # () then, it is non-empty.

Complexity: Given M constraints it’s obvious to see for first projection O(M?) 2nd,
O(M*) 3rd, O(M?Y) ... n-th O(M?")

The introduction of a objective function can result in the following scheme seen

previously for solving a LP:

min ¢ X

Ax>Db

introduce a dummy variable, zg and let the dummy variable be the initial zo = ¢'x

With this new polytope, first check if it is non-empty.
P = {(z0,71,..., 7,) ER" 1| Ax > b Axg = c'x}

Using Fourier-Metzkin elimination, we then obtain @, where Q = {z¢} initially,
Q=c"x

= Q= {xo|3(x1,29,..., ) | Ax > b Azo = c'x}

This polytope is useful as one dimensional and all points in @ are the values op-
timized.

Q = m(P") P’ When xg = ¢I'x To find the result, back track from 7 (P’)

The computation is not efficient but is nice in theory. Say we project from R — R*
we produce synthetic inequalities which are also polyhedrons. It is also the simplest
method to prove there exists this relation.

Corollary
min clx
Ax=Db
x>0



Apply a transformation by introducing variables. For each x; introduce: azj, T and replace
all instances: x; = iL'j— — in_

Introduce constraints: if x; > 0 : x;r > 0 then a;j_ < 0. For each constraint al-Tx > b

introduce a new dummy variable that represents the residue from al-Tx — b; = s; hence, we
can say: az-Tx — s; = b;. We can add this residual as an extra constraint: ie; s; > 0. This

allows for a one sided, defined limit.
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