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1 Linear Programming: Algorithms for Solving

1.1 Refresh

1. objective function: cTx maximise/minimise

2. constraints: Ax ≤ b

3. variables: x ≤,≥ 0

4. feasible region: P := {x|Ax ≥ b}

5. Def polytope: A polytope is an n dimensional region with flat sides. The shape of our
feasible region.

1.2 Theorem

All polyhedrons are closed sets

Let P = {x|Ax ≥ b}

Let x|1|, x|2|, ... , be a convergent sequence in P

limk→∞ x
(k) = x(∗), ... , x(1) ∈ P ∀ k

x(∗) ∈ {P |Ax(∗) ≤ b}

Let i be a component.

(Ax(∗))i = A lim
k→∞

x(k)

= lim
k→∞

(Ax(k))i

We know for every k |Ax(k) ∈ P (A function mapping) and every k forms a sequence.
Then from the above equation, every single element will be at least, bi. Hence, it is closed
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from (bi →∞)

1.3 Projection and Fourier-Motzkin

We requier a function that maps n-points to our n-1 points. We define such function
πkRn → Rk

πk(x1, x2, ... , xn) = (x1, x2, ... , xk)

for a set S

S ⊆ Rn πk(S) = {πk(x) | x ∈ S}

⇒ {(x1, x2, ... , xk) | ∃ xk...xn | xk, xn ∈ S}

Given a polyhedron P = {x |Ax ≤ b} NOTE: if P 6= ∅ ⇒ πn−1(P ) 6= ∅ If P is
non-empty, then the projection of P is non-empty. The Fourier-Motzkin process goes as
follows:

• Rewrite each constraint

n∑
i=1

αi,jxi ≥bi

αi,nxn ≥−
n−1∑
i=1

αi,jxi + bi

• if αi,n 6= 0 then divide by αi,n

xn ≥ di + eTi x if αi,n > 0 , di =
bi
αi,n

, ei = −
∑n−1

i=1 αi,j
αi,n

x = (x1, x2, ... , xn−1) ∈ Rn−1 , di ∈ R
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if αi,n < 0 di + eTi x ≥ xn
if αi,n = 0 0 ≥ dk + eTk x

Now, when rewriting constraints we only consider the projected points.

• Let Q be a polyhedron in Rn−1 defined by. 0 ≥ dk + eTk x for each xi,n = 0

Suppose there is a point in P. {∀ i, j | αi,n > 0 , αj,n < 0}

⇒ dj + eTj x̄ ≤ di + eTi x̄

Next: one round of Fourier - Motzkin to P ie;

Q = πn−1(P ) We will now prove that Q and πn−1(P ) contain each other.

First, we will prove the lower bound πn−1(P ) ≤ Q.

The inequalities denoted iq(1), iq(2), iq(3) are when {α > 0 , α < 0 , α = 0} re-
spectively.

Let x̄ ∈ πn−1(P )⇒ { ∃ xn | (x̄1,xn) ∈ P}
In iq(3) there is no relation to xn hence, satisfied.

For iq(2) and iq(1) it can be shown:

dj + eTj x̄ ≤ di + eTi x̄

min{j | αj,n<0} dj + eTj x̄ ≥ max{i | αi,n>0} di + eTi x̄

(Recall the variables d , e)

This is to say: =⇒ [b, α] 6= ∅ then take an arbitrary point on this interval:

Let xk ∈ [b, α]

=⇒ (x̄, xn) satisfies iq(1), iq(3)

=⇒ (x̄, xn) ∈ P
=⇒ x̄ ∈ πn−1(P )
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Initially, the polytope must be checked if it is non-empty. Apply this process:

πn−1(P )→ πn−2(P )→ ...→ π1(P )

if π1(P ) 6= ∅ then, it is non-empty.

Complexity: Given M constraints it’s obvious to see for first projection O(M2) 2nd,
O(M4) 3rd, O(M6) ... n-th O(M2n)

The introduction of a objective function can result in the following scheme seen
previously for solving a LP:

min cTx

Ax ≥ b

introduce a dummy variable, x0 and let the dummy variable be the initial x0 = cTx

With this new polytope, first check if it is non-empty.

P = {(x0, x1, ... , xn) ∈ Rn−1 |Ax ≥ b ∧ x0 = cTx}

Using Fourier-Metzkin elimination, we then obtain Q, where Q = {x0} initially,
Q = cTx

=⇒ Q = {x0 | ∃ (x1, x2, ... , xn) |Ax ≥ b ∧ x0 = cTx}

This polytope is useful as one dimensional and all points in Q are the values op-
timized.

Q = π1(P
′) P ′ When x0 = cTx To find the result, back track from π1(P

′)

The computation is not efficient but is nice in theory. Say we project from Rn → Rk
we produce synthetic inequalities which are also polyhedrons. It is also the simplest
method to prove there exists this relation.

Corollary

min cTx

Ax = b

x ≥ 0
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Apply a transformation by introducing variables. For each xi introduce: x+j , x
−
j and replace

all instances: xi = x+j − x
−
j .

Introduce constraints: if xi ≥ 0 : x+j ≥ 0 then x−j ≤ 0. For each constraint aTi x ≥ bi
introduce a new dummy variable that represents the residue from aTi x− bi = si hence, we
can say: aTi x − si = bi. We can add this residual as an extra constraint: ie; si ≥ 0. This
allows for a one sided, defined limit.
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