Optimization Summer 2016

Lecture 4: May 4

Lecturer: Andreas Wiese Scribe: Anonymous

1 Definition: Tight

Let x and p be feasible primal and dual solutions, respectively.

- *i*-th constraint in primal is tight if $a_j^T x = b_i$
- j-th constraing in dual is tight if $p^T A_j = c_i$

x, p optimal

- If $p_i > 0 \Rightarrow i$ -th constraint in primal is tight
- If $x_j > 0 \Rightarrow j$ -th constraint in dual is tight

2 Theorem: Complementary slackness

Let x and p be feasible primal and dual solutions, respectively. Then x and p are both optimal if and only if

- $p_i(a_i^T x b_i) = 0 \; \forall i$
- $(c_j p^T A_j)x_j = O \ \forall j$

2.1 Proof

Assume x and p are optimal. Define: (Same as in the proof of week duality)

- $u_i = p_i(a_i^T x b_i)$
- $v_i = (c_j p^T A_j) x_j$
- $u_i \geq 0 \,\forall i$
- $v_j \geq 0 \ \forall j$

 $\sum_i u_i + \sum_j v_j =$ (proof of weak duality theorem) $c^T x - p^T b =$ (strong duality) 0 $\Rightarrow u_i = 0 \,\forall i, v_j = 0 \,\forall i$

Assume

- $u_i = 0 \,\forall i$
- $v_j = 0 \; \forall j$

 $\Rightarrow c^T x = p^T b$ \Rightarrow x, p optimal by weak duality.

3 Simplex Algorithm

Key observation: Many points in polytope (every point is candidate for being optimal). But we only have to look at corners.

- 1. start in arbitrary vertex
- 2. If there is an adjacent vertex with better objective value \Rightarrow more there
- 3. Repeat until current vertex is optimal

4 Definition: Extreme Point

Let P be a polyhedron. A point $x \in P$ is an extreme point of P if we cannof find two vectors $y, z \in P$ with $y \neq x \neq z$ and a scalar $\lambda \in [0, 1]$ such that $x = \lambda y + (1 - \lambda)z$.

5 Definition: Vertex

Let $P \subseteq R^n$ be a polyhedron. A vector $x \in P$ is a vertex of P if there exists some $c \in R^n$ such that $c^T x < c^T y$ for all y satisfying $y \in P$ and $y \neq x$.

- $a_i^T x \ge b_i i \in M_1$
- $a_i^T x \leq b_i \in M_2$
- $a_i^T x = b_i i \in M_3$

6 Definition: Tight

If vector x satisfies $a_i^T x = b_i$ for some constraing i we say that constraint i is tight, active or binding at x. 2-dimensional polytope \Rightarrow 2 tight inequalities at each vertex

7 Theorem

Let $x^* \in R^n$. Let $I = \{i \mid a_i^T x^* = b_i\}$ be set of indices of active constraints at x^* . Then the following are equivalent:

- 1. There are *n* vectors in $S = \{a_i \mid i \in I\}$ that are linearly independent
- 2. The linear system $a_i^T x = b_i, i \in I$, has a unique solution

8 Definition: Linearly independent

Constraints are linearly independent if their corresponding vectors a_i are linearly idependent

9 Definition: Basic solution

Let P be polygon. Vector $x^* \in R^n$ is basic solution if there are *n* linearly independent constraings that are tight at x∗. If additionaly $x \ast \in P$ it is a basic feasible solution.

Receipt for finding Attempt to construct vertex of $P \subseteq R^n$

- \bullet Pick *n* linearly independent constraints I
- Loss for a point s.t. they are all activ $T_i x = b_i \ \forall i \in I$
- Has unique solution $x^* \to$ basic solution
- If additionaly $x * \in P \to$ basic feasible solution

10 Theorem

Extreme point, Vertex and Basic feasible solution are equivalent definitions

10.1 Proof

10.1.1 (i) \rightarrow (ii)

Let $x * \in P$ be a vertex $\Rightarrow \exists xx^T x * \langle c^T y \forall y P x * \text{Assume by contradiction } \exists y, z \in P \lambda O \langle a, z \rangle$ $\lambda < 1.x* = \lambda y + (1 - \lambda)z$ $c^T x \ast = c^T (\lambda y + (1 - \lambda)z) > c^T \lambda x \ast + c^T (1 - \lambda) x \ast = c^T x \ast = c^T (\lambda x \ast + (1 - \lambda) x \ast)$ Contradiction!

10.1.2 (ii) \rightarrow (iii)

Let x* be extreme point solution Assume that x^* is not basic feasible solution $I = \{i | a_i^T x^* =$ b_i \Rightarrow There are no *n* linearly independent vectors in $\{a_i \mid i \in I\}$ $\Rightarrow \exists d \neq 0 a_i^T d = 0 \forall i \in I$ define $y = x * + \epsilon d$, $z = x * - \epsilon d$ $y, z \in P?$

- if $i \in I : a_i^T y = a_i^T (x * + \epsilon d) = a_i^T x * + a_i^T \epsilon d = a_i^T x * = b_i$ $a_i^T \geq b_i$
- if $i \notin I a_i^T x * > b_i \Rightarrow$ we can choose $\epsilon > 0$ s.t. $a_i^T y > b_i$ and $a_i^T z > b_i \exists \epsilon_i i f \epsilon \leq \epsilon_i$ $\Rightarrow a_i^T x * + a_i^T \epsilon d > b_i$ choose $\epsilon = min\epsilon_i$

$$
\Rightarrow y, z \in P \frac{1}{2}(y+z) = \frac{1}{2}(x * + \epsilon d) + \frac{1}{2}(x * - \epsilon d) = x *
$$

$$
\Rightarrow x * \text{ is not an extreme point}
$$

10.1.3 (iii) \rightarrow (i)

Let x∗ be basic feasible solution $I = \{i | a_i^T x * = b_i\}$ $x = \sum_{i \in I} a_i$ $c^T x \ast = \sum_{i \in I} a_i^T x \ast = \sum_{i \in I} b_i$ Let $x \in P$, for every i we have $a_i^T x \geq b_i$ $c_x^T x = \sum_{i \in I} a_i^T x \ge \sum_{i \in I} b_i \implies x *$ is optimal solution for $min x^T x$ s.t. $Ax \ge b$ $c^T x = \sum_{i \in I} b_i \Leftrightarrow a_i^T x = \overline{b_i} for each i \in I$ $\Rightarrow if c^T x = c^T x * \Rightarrow x = x *$ \Rightarrow x^{*} is unique optimum for objective vector c $\Rightarrow x*$ is a vertex