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1 Recap

1.1 Simplex algorithm

Let P be a polyhedron that defines feasible space and c be a vector of objective function.
The simplex algorithm takes the following steps:

1. Start at some vertice of P

2. Move to the next vertice, that would improve objective function

3. Repeat step 2 until objective function cannot be improved anymore

4. Obtained vertice is the optimal solution

There are several ways to describe vertices mathematically:

• Vertex. There exists an objective function such that point v is the unique optimal
solution

• Extreme point. The point of polyhedron P cannot be expressed as a convex combi-
nation of two other points in P .

• Basic feasible solution. There exist n linearly independent constraints that are
tight in this point.

2 Optimal solution at vertices

2.1 When polyhedron has vertices

Applying the simplex algorithm we want it to finish in finite time. Therefore polyhedron P
should not have infinite amount of vertexes. We claim that there exists an optimal solution,
which is a vertice, apart from the following exceptions:
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• P is unbounded

• there are no feasible solutions

• P does not have a vertex

We define a property of polyhedron, that detects whether a polyhedron has no vertexes.
Definition A polyhedron P has no vertexes if it contains a line.
Definition P contains a line if there exists a point x ∈ P and vector d denoting direction,
such that every point of the form x+ λd ∈ P .

Theorem The polyhedron P = {x ∈ Rn|Ax ≥ b} 6= ∅. The following statements are equal:

a) P has at least one extreme point

b) P does not contain a line

c) there are no n linearly independent constraints

Proof : b) ⇒ a) Let’s construct a polyhedron. Then we start in some point and move in
direction of boundary of P considering we cannot have infinite amount of steps. We know
that we are on the edge if some constraints are tight.
Let point x ∈ P , and define set of indexes I = {i|aTi x = bi} and set of rows, for which
constraints are tight S = {ai|i ∈ I}. If amount of rows in S is equal to n, then x is basic
feasible solution, hence (according to the Theorem from Lecture 5) x is an extreme point.
Assume it’s not the case. Then ai lie in the subspace of Rn ⇒ ∃d 6= 0 such that aTi d = 0∀i ∈ I.
d is a direction in which we want to move. Now we are interested in points of a form x+ λd.
As we move in direction of boundary, after some finite λ some constraint has to become
tight (was not tight before). Hence ∃λ∗ > 0 and j /∈ I such that aTj (x+ λ∗d) = bi. If we add
aj to S, rank of S increases. Then we need the following claim to be true.

Claim: aj is not a linear combination os vectors in S.
Proof: By contradiction assume there exists a way to express aj as a linear combination
aj =

∑
i∈I λiai. We know that aTj x 6= bj , because j /∈ I. But also:

aTj (x+ λ∗d) = bj ⇒ aTj 6= bj , a
T
j λ
∗d 6= 0

,

but aTj = 0∀i ∈ I by definition. So we know that aTj 6= 0and
∑

i∈I λia
T
i d ⇒ 0 6= aTj d = 0.

Contradiction.

Now get back to the proof of the theorem. The rank of S increases rank(S) < rank(S∪{aj}).
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We take a point x+λ∗d and move again. After we move n iterations rank(S′) = n we obtain
the point x′ with corresponding S” with rank(S′) = n, hence we have n linearly independent
constraints, hence x′ is a vertex, hence also an extreme point.
a)⇒ c) Suppose x is an extreme point. That means that x is also basic feasible solution.
Hence, there are n linearly independent constraints active at x.
c)⇒ b) Suppose we have n linearly independent constraints a1...an. Suppose by contradiction
p contains a line, means it contains all points of a form {x + λd|λ ∈ R, d 6= 0}. This also
means that every point on this line satisfies all constraints:

aTi (x+ λd) ≥ bi∀i, λ ∈ R
aTi x+ λaTi d ≥ bi∀i, λ ∈ R

We want this to hold for all λ, so that it is not possible to pick arbitrary small negative λ,
that would break the condition. Hence we need λaTi d = 0∀i. But if aTi d = 0∀i, d 6= 0 then ai
are not linearly independent. Contradiction.

2.2 Optimal solution in extreme point

Theorem. Let P ⊂ Rn be polyhedron with at least one extreme point. Consider the LP
max{cTx|x ∈ P} and assume a (finite) optimal solution exists. Then there exists optimal
solution which is an extreme point.
Proof . Let P = {x ∈ Rn|Ax ≥ b}, v is a finite optimum v = max{cTx|x ∈ P}.
Define a new polyhedron Q, that contains only those points of P , that are optimal
Q = {x ∈ Rn|Ax ≥ b ∧ cTx = v}. P has an extreme point, thus it does not contain
a line. Q is a subset of P , thus Q also does not contain a line. Hence Q has an extreme
point x∗.

Claim: x∗ is also an extreme point of P .
Proof: By contradiction assume that x∗ is not an extreme point of P . then there ex-
ist two points of P , that give a linear combination of x∗: ∃y, z ∈ P, λ ∈ [0, 1] such that
x∗ = λy + (1 − λ)z. As x∗ ∈ Q we know v = cTx∗ = λcT y + (1 − λ)cT z. As v is optimal
solution then cT y ≤ v, cT z ≤ v.
If y ∈ P \ Q then cT y < v ⇒ v = λcT y + (1 − λ)cT z < v. Then y gives strictly better
solution for LP, hence y ∈ Q∧ z ∈ Q. Hence x∗ is not an extreme point of Q. Contradiction.

We know that x∗ is an extreme point of P and x∗ ∈ Q. Thus cTx∗ = v and x∗ is an
optimal extreme point solution for LP.
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3 Full rank assumption

Theorem. Let P = {x|Ax = b, x ≥ 0} where A ∈ Rm×n but rank(A) = k < m. Assume
P 6= 0 and w.l.o.g. that rows aT1 , ..., a

T
k are linearly independent. Define Q = {x|aT1 x =

b1, ..., a
T
k x = bk, x ≥ 0}. Then Q = P.

Proof . 1) Every point that satisfies P also satisfies Q ⇒ P ⊆ Q.
2) Prove Q ⊆ P . Every row aTi of A can be expressed as aTi = sumk

j=1a
T
i λij for some λ ∈ R.

Because P 6= ∅ we can say let x ∈ P, bi = aTi x =
∑k

j=1 a
T
i λij =

∑k
j=1 λijbj ∀i. Let y ∈ Q ∀i

aTi y =
∑k

j=1 λija
T
i y =

∑k
j=1 λijbj = bi. Hence we know that y satisfied all constraints in Q.

Then y ∈ P and Q ⊆ P .
From 1) and 2) we conclude that Q = P .

From now on we consider that all A have full row rank.
Let A ∈ Rm×n,m ≤ n. If x is a feasible solution, then first m constraints are tight, vector x
is m−dimensional. n−m constraints of a form xj ≥ 0 have to be also tight at x to satisfy n
linear independence. How to choose these?

4 Extreme points of LP in standard form

Theorem. Given LP Ax = b, x ≥ 0 and assume that rows of A are linearly independent. A
vector x ∈ Rn is basic solution if and only if Ax = b and there are indexes B ⊆ {1, ..., n}, |B| =
m such that:

a) the columns Aj , j ∈ B are linearly independent

b) if j /∈ B then xj = 0

Proof . 1) Direction ⇐. Let x∗ ∈ Rn such that Ax = b and let B be a set of indexes
satisfying a) and b). Consider a system of equations:

Ax = b
xj = 0∀j /∈ B

We know that b = Ax∗ =
∑n

i=1Aix
∗
i . Let x be an arbitrary solution for the system. Then

b = Ax =
∑n

i=1Aix =
∑

j∈B Ajxj .
By assumption we know that Aj are linearly independent, hence the system has only one
solution, that is x∗. Thus there are n linearly independent tight constraints at x∗. Then by
definition x∗ is a basic solution.
2) Direction ⇒. Let x be a basic solution. Let’s define a set of indexes B1 such that xj 6= 0.
Consider the system of equations, that are tight at x. By assumption x is basic solution,
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hence the system has a unique solution. Thus columns Aj , j ∈ B are linearly independent.
If not then there will be λj∀j ∈ B1 such that

∑
j∈B1

Ajλj = 0 where λj are not all 0. Then
it would be

∑
j∈B1

Aj(xj + λj) = b and solution x is not unique in this case. Contradiction.
Since row rank is the same as column rank |B1| ≤ m. And we know rank(A) = m, thus there
exist m linearly independent columns. We can find m− |B1| columns B2 with B1 ∩B2 = 0
such that columns represented by B1 ∪B2 are linearly independent ⇒ a) is satisfied.
If there exist j /∈ B and j /∈ B1 then xj = 0 by definition of B1. b) is satisfied.
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