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Recap

1.1 Simplex algorithm

Let P be a polyhedron that defines feasible space and ¢ be a vector of objective function.
The simplex algorithm takes the following steps:

1. Start at some vertice of P
2. Move to the next vertice, that would improve objective function
3. Repeat step 2 until objective function cannot be improved anymore

4. Obtained vertice is the optimal solution

There are several ways to describe vertices mathematically:
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e Vertex. There exists an objective function such that point v is the unique optimal

solution

e Extreme point. The point of polyhedron P cannot be expressed as a convex combi-
nation of two other points in P.

e Basic feasible solution. There exist n linearly independent constraints that are
tight in this point.

Optimal solution at vertices

2.1 When polyhedron has vertices

Applying the simplex algorithm we want it to finish in finite time. Therefore polyhedron P
should not have infinite amount of vertexes. We claim that there exists an optimal solution,
which is a vertice, apart from the following exceptions:



e P is unbounded
e there are no feasible solutions

e P does not have a vertex

We define a property of polyhedron, that detects whether a polyhedron has no vertexes.
DEFINITION A polyhedron P has no vertexes if it contains a line.

DEFINITION P contains a line if there exists a point x € P and vector d denoting direction,
such that every point of the form z + \d € P.

Theorem The polyhedron P = {x € R"|Ax > b} # &. The following statements are equal:

a) P has at least one extreme point
b) P does not contain a line

c¢) there are no n linearly independent constraints

Proof: b) = a) Let’s construct a polyhedron. Then we start in some point and move in
direction of boundary of P considering we cannot have infinite amount of steps. We know
that we are on the edge if some constraints are tight.

Let point € P, and define set of indexes I = {ilalz = b;} and set of rows, for which
constraints are tight S = {a;|i € I}. If amount of rows in S is equal to n, then z is basic
feasible solution, hence (according to the Theorem from Lecture 5) z is an extreme point.
Assume it’s not the case. Then a; lie in the subspace of R™ = 3d # 0 such that a] d = 0Vi € I.
d is a direction in which we want to move. Now we are interested in points of a form x + Ad.
As we move in direction of boundary, after some finite A some constraint has to become
tight (was not tight before). Hence I\* > 0 and j ¢ I such that a?(m + \*d) = b;. If we add
a;j to S, rank of S increases. Then we need the following claim to be true.

CLAIM: a; is not a linear combination os vectors in S.
PROOF: By contradiction assume there exists a way to express a; as a linear combination
aj =Y ;c; Miai- We know that a]Tx # bj, because j ¢ I. But also:

a;‘-F(aH— A*d) =bj = a}r #bj,at \'d#0
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but a]T = 0Vi € I by definition. So we know that a]T # O0and
Contradiction.

il Nald = 0 # ade =0.

Now get back to the proof of the theorem. The rank of S increases rank(S) < rank(SU{a;}).



We take a point  + A*d and move again. After we move n iterations rank(S’) = n we obtain
the point 2’ with corresponding S” with rank(S’) = n, hence we have n linearly independent
constraints, hence 2’ is a vertex, hence also an extreme point.

a) = ¢) Suppose x is an extreme point. That means that z is also basic feasible solution.
Hence, there are n linearly independent constraints active at x.

¢) = b) Suppose we have n linearly independent constraints a;...a,. Suppose by contradiction
p contains a line, means it contains all points of a form {z + Ad|A € R,d # 0}. This also
means that every point on this line satisfies all constraints:

aiT(a: + Ad) > bVi, A € R
a;fpx + )\a;fpd > bVi,A € R

We want this to hold for all A, so that it is not possible to pick arbitrary small negative A,
that would break the condition. Hence we need )\ade = 0Vi. But if ade = 0Vi,d # 0 then q;
are not linearly independent. Contradiction.

2.2 Optimal solution in extreme point

Theorem. Let P C R" be polyhedron with at least one extreme point. Consider the LP
mazx{c’z|x € P} and assume a (finite) optimal solution exists. Then there exists optimal
solution which is an extreme point.

Proof. Let P = {z € R"|Ax > b}, v is a finite optimum v = max{c’z|x € P}.
Define a new polyhedron (), that contains only those points of P, that are optimal
Q = {z € R*|Az > bA 'z = v}. P has an extreme point, thus it does not contain
a line. @ is a subset of P, thus () also does not contain a line. Hence () has an extreme
point x*.

CLAIM: z* is also an extreme point of P.

PROOF: By contradiction assume that x* is not an extreme point of P. then there ex-
ist two points of P, that give a linear combination of z*: Jy,z € P, € [0,1] such that
" =My + (1 - Nz As z* € Q we know v = cT'z* = ATy + (1 — N\)cl'z. As v is optimal
solution then cTy <wv,cl'z<w.

If y e P\Q then ¢’y < v =v=A"y+ (1 -Nc'z <v. Then y gives strictly better
solution for LP, hence y € Q A z € Q. Hence x* is not an extreme point of ). Contradiction.

T

We know that z* is an extreme point of P and z* € ). Thus ¢'z* = v and z* is an

optimal extreme point solution for LP.



3 Full rank assumption

Theorem. Let P = {z|Az = b,z > 0} where A € R™*" but rank(A) = k < m. Assume
P # 0 and w.l.o.g. that rows al, ...,a{ are linearly independent. Define Q = {z|alz =
b1, ...,a{x =bg,x > 0}. Then Q = P.

Proof. 1) Every point that satisfies P also satisfies Q = P C Q.

2) Prove Q C P. Every row al of A can be expressed as a] = sum;?:laiTAij for some A € R.
Because P # @ we can say let x € P,b; = alz = Z?:l al'\ij = E?:l Xijb; Vi. Let y € Q Vi
aly = Z?:l Njaly = E?:l Aijbj = b;. Hence we know that y satisfied all constraints in Q.
Then y € P and @ C P.

From 1) and 2) we conclude that Q = P.

From now on we consider that all A have full row rank.

Let A € R™*™ m < n. If x is a feasible solution, then first m constraints are tight, vector x
is m—dimensional. n —m constraints of a form x; > 0 have to be also tight at = to satisfy n
linear independence. How to choose these?

4 Extreme points of LP in standard form

Theorem. Given LP Ax = b, > 0 and assume that rows of A are linearly independent. A
vector x € R™ is basic solution if and only if Az = b and there are indexes B C {1,...,n},|B| =
m such that:

a) the columns A, j € B are linearly independent

b) if j ¢ B then z; =0

Proof. 1) Direction <. Let 2* € R" such that Az = b and let B be a set of indexes
satisfying a) and b). Consider a system of equations:

Az =b
v =0Vj ¢ B

We know that b = Az* =3 | A;z}. Let = be an arbitrary solution for the system. Then
b=Ar =371 Aix =) p Aj;.

By assumption we know that A; are linearly independent, hence the system has only one
solution, that is x*. Thus there are n linearly independent tight constraints at x*. Then by
definition z* is a basic solution.

2) Direction =. Let = be a basic solution. Let’s define a set of indexes B; such that z; # 0.
Consider the system of equations, that are tight at . By assumption z is basic solution,



hence the system has a unique solution. Thus columns A;, j € B are linearly independent.
If not then there will be \;Vj € B; such that ZjeBl AjNj = 0 where \; are not all 0. Then
it would be ;.5 Aj(z; + Aj) = b and solution z is not unique in this case. Contradiction.
Since row rank is the same as column rank |B;| < m. And we know rank(A) = m, thus there
exist m linearly independent columns. We can find m — |B;| columns By with B1 N By =0
such that columns represented by By U By are linearly independent = a) is satisfied.

If there exist j ¢ B and j ¢ By then z; = 0 by definition of By. b) is satisfied.
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