

1 Simplex Algorithm

1.1 Simplex Algotithm

x is basic solution for $min(c^T x)$ s.t. $Ax = b$ and $x \ge 0$ $(A \in \mathbb{R}^{n*n})$.

basis $B = (B(1), ..., B(m))$ $columns\ A_{B(1)},...,A_{B(m)}\ are\ linearly\ independent.$ if j ∉ B(1), ..., B(m) $-$ > $x_j = 0$ (x_j is non basic variable) $Ax = b$ $x_B = (X_{B(1)},...,X_{B(n)})(those\ are\ the\ basic\ variables)$ $A_B = (A_{B(1)}, ..., A_{B(m)})$ $X_B = A_B^{-1}$ $B^{-1} * b$

From point x we now want go to $x + \theta d$ with $\theta \geq 0$. For each $j \in [n] \setminus B$ we define d^j

 $d_j^j=1$ $d_i^j = 0$ (for each $i \in [n](B \cup \{j\})$ $d_B^j = -A_B^{-n}$ $B^{-n} * A_j$

It follows

$$
Adj = 0
$$

\n
$$
Ax = b
$$

\n
$$
A(x + \theta d) = Ax + \theta Ad = b \text{ as } \theta Ad = 0
$$

we now define the reduced cost \bar{c}_i as

 $c^T(x + \theta d^j) - c^T x = c_j - c_B^T A_B^{-1} A_j = \bar{c}_j$

if the result vector \bar{c} is strictly positiv $(\bar{c} \geq 0)$ then x is the optimal solution.

The resulting Simplex Algorithm is as follows:

- 1. start with basic feasable solution x and the corresponding basis B
- 2. compute \bar{c}
- 3. if $\bar{c} > 0$
	- TRUE then x is optimal \Rightarrow STOP
	- FALSE assume $\bar{c}_i < 0$ move from x in direction d^j by moving to point $x + \theta^* d^j$ where $\theta^* = max\{\theta \geq 0 | x + \theta d^j \in P\}$ non negativity constraints are satisfied at $x + \theta d^j$ for the non-negativity constraints:
		- (a) $d^j \geq 0$ then $x + \theta d^j \geq 0$ for any $\theta \geq 0c^T(x + \theta d^j) = c^T x + \theta c^T d^j$. It follows that optimal solution is $-\infty$. STOP
		- (b) if $d_i^j < 0$ for some $i, x_i + \theta d_i^j \ge 0$

 $\theta^* = min_{\{i | d_i^j < 0\}} - \frac{-x_i}{d_i^j}$ $\frac{d}{dt} \iff 0 \leq \frac{-x_i}{d_i^j}$ d_i^j $\theta > 0$: $d_i^j \geq 0$ if x_i is nonbasic variable $x_i > 0$ if $i \in B(x \text{ is non-degenerate})$ let $B(l)$ be minimize for $(*)$ it follows : $y = x + \theta^* d^j$ $\theta^* = \frac{-x_{B(l)}}{n}$ $d_{B(l)}^j$ $y_{B(l)} = \dot{X}_{B(l)} + \theta^* d_{B(l)}^j = 0$ and $d_{B(l)}^j < 0$ new basis \bar{B} : $\bar{B}(i) = \begin{cases} B(i) i f i \neq l \\ \vdots \\ 1 \end{cases}$ j if $j = l$ $\theta^* > 0$ \Rightarrow y \neq x $\Rightarrow c^T y < c^T x$

1.2 Theorem 42

- 1. the columns of $A_{\bar B}$ are linearly independent
- 2. y is basic feasable solution corresponding to \bar{B}

Proof of (a)

assume that $A_{B(1)},...,A_{B(m)}$ are linearly independent $\Rightarrow \exists \; coefficient \; \lambda_1, ..., \lambda_m \; with \; not \; all \lambda = 0$

 $\sum_{i=1}^m \lambda_i A_{\bar{B}(i)} = 0$ $\Rightarrow \sum_{i=1}^{m} \lambda_i \overset{\cdot}{A}_{B}^{-1} A_{\bar{B}(i)} = 0$ vectors $A_B^{-1}A_{B(i)},..., A_B^{-1}A_{B(m)}$ are linearly dependent

$$
A_B^{-1} * A_B = I = A_B^{-1} * A_{B(i)} = l_i
$$

\n
$$
A_{B(i)} = A_{\bar{B}(i)} \text{ for all } i \neq l
$$

\n
$$
\Rightarrow A_B^{-1} * A_{\bar{B}(i)} = A_B^{-1} * A_{B(i)} = e_i \text{ if } i \neq l
$$

\n
$$
\bar{B}(l) = j
$$

\n
$$
A_B^{-1} A_{\bar{B}(l)} = A_B^{-1} A_j = -d_B^j (the \text{ } l^{th} \text{ entry of } d_B^j = d_{B(l)}^j
$$

\n
$$
\dots \qquad \qquad \dots \qquad \dots \qquad \dots
$$

\n
$$
A_B^{-1} A_B = \begin{pmatrix} 1 & \dots & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}
$$

\n
$$
\det(A_B^{-1} A_{\bar{B}}) \neq 0
$$

\n
$$
\Rightarrow vectors A_B^{-1} A_{B(i)}, \dots, A_B^{-1} A_{B(m)} \text{ are linearly independent. Contradiction!}
$$

Proof of (b)

 $y \geq 0$, $Ay = b$, $y_i = 0$ if $i \notin \overline{B}$ columns of $A_{\bar{B}}$ are linearly independent \Rightarrow y is basic feasable solution for basis \bar{B}

1.3 One Iteration of Simplex

One iteration of Simplex algorithm is called a pivot.

- 1. start with basis matrix A_B , defining basic feasable solution x
- 2. compute reduced costs $\bar{c}_j = c_j c_B^T A_B^{-1} A_j$
	- (a) if $\bar{c}_j \geq 0 \Rightarrow x$ optimal solution. STOP
	- (b) choose some j with $\bar{c}_j < 0$
- 3. compute $u = A_B^{-1} A_j = -d_I^j$ B_B^j if $u \leq 0$ the optimum is $-\infty$. STOP

4. choose index 1 such that
$$
\frac{X_{B(l)}}{u_l} = \theta^* = min\left\{\frac{X_{B(i)}}{u_i} | i \in [n] and u_i > 0\right\}
$$

- 5. Form new basis \bar{B} by replacing $B(l)$ with j
- 6. new basic feasable solution y with

 $y_i = \theta^*$

$$
y_i = 0 \text{ if } i \notin \overline{B} = B \cup \{j\} \setminus B(l)
$$

$$
y_{B(i)} = X_{B(i)} - \theta^* * u_i
$$

1.4 Theorem 43

Assume $P \neq \emptyset$, every basic feasable solution is non-degenerate, and that the algorithm is initialized with a basic feasable solution. Then it terminates after a finite amount of iterations. At termination, there are the following two options:

- We have a optimal Basis B and a associated basic feasible solution that is optimal
- We have a vector d satisfying $Ad = 0, d \geq 0, c^T d < 0$ and thus the optimal cost is $-\infty$.

Proof

- If algorithm terminates in step 2 the solution is optimal because $\bar{c} \geq 0$
- If algorithm terminates in step 3 $\Rightarrow \exists$ basic feasible solution x and direction d^j with $Ad^j = 0, x + \theta d^j \in P, \forall \theta \ge 0$ $c^T d^j = \bar{c}_j < 0$ cost of $x + \theta d^j$ is $c^T(x + \theta d^j) = c^T x + \theta c^T d^j \Rightarrow$ The optimum is $-\infty$.

in each pivot the objective value strictly decreases. Thus, no vertice is visited twices. As there are only a limited amount of vertices the algorithm has to terminate after a finite amount of iterations.