

Summer 2016

Lecture 9: May 23

Lecturer: Andreas Wiese Scribe: Thomas Gören

1 Simplex Algorithm

1.1 Iteration of Simplex Algorithm (a "pivot")

- 1. start with basis Matrix $A_{B(1)},...,A_{B(m)} \rightarrow$ basic feasible solution x.
- 2. compute reduced costs $\bar{c}_j = c_j c_B^T A_B^{-1} A_j$ for each nonbasic variable x_j .
	- (a) if all $\bar{c}_j \geq 0$ then we are optimal.
	- (b) choose some j with $\bar{c}_j < 0$
- 3. compute $u = A_B^{-1} A_j = -d_I^j$ B^J . If $u \le 0$ then the optimum is $-\infty$ and we stop.
- 4. Choose index l such that $u_l > 0$ and

$$
\frac{x_{B(l)}}{u_l} = \theta^* = \min\{\frac{x_{B(i)}}{u_i}|i \in [m] \text{ and } u_i > 0\}
$$

5. Form new basis by replacing $A_{B(l)}$ with A_j .

1.2 Faster Implementation

1st iteration: basic feasible solution x, basis matrix A_B , compute A_B^{-1} \overline{B}^1 : 2nd iteration: basic feasible solution \bar{x} , basis matrix $A_{\bar{B}}$, compute $\tilde{A}_{\bar{B}}^{-1}$ \rightarrow derive $A^{-1}_{\bar{B}}$ from A^{-1}_{B} B^{-1} .

We know, that A_B and $A_{\bar{B}}$ are very similar. Idea: Are A^{-1}_B \overline{B}^1 and $A_{\overline{B}}^{-1}$ also similar?

We also know: $A_B^{-1}A_B = I$, $A_B^{-1}A_{B(i)} = e_i$, $A_B^{-1}A_j = u$

$$
A_B^{-1}A_{\bar{B}} = \begin{bmatrix} 1 & 0 & \cdots & u_1 & \cdots & 0 & 0 \\ 0 & \ddots & \cdots & u_2 & \cdots & 0 & 0 \\ \vdots & \vdots & 1 & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & u_l & 0 & \cdots & 0 \\ \vdots & & & & & 1 & \vdots \\ 0 & & & & & & \ddots & 0 \\ 0 & & & & & & & & 0 \end{bmatrix}
$$

We want to find a matrix Q , such that QA_B^{-1} $=A_{\bar{B}}^{-1}$ $A_{\bar{B}}=I.$

1.3 Elementary Row Operations

Multiply *i*-th row by some $\alpha \neq 0$ ⇔ multiplying from left with

This matrix is like the unit matrix, but with α at position (l, l) . Obviously Q_1 is invertible.

Now add β times the j-th row to the *i*-th row for $i \neq j$ to eliminate the non-diagonal components of u:

This matrix is like the unit matrix, but with β at position (i, j) . With these elementary row operations turn $A_B^{-1}A_{\bar{B}}$ into I.

• For each $i \neq l$:

– Add the *l*-th row $-\frac{u_i}{u_i}$ $\frac{u_i}{u_l}$ times to the *i*-th row.

• Multiply *l*-th row by $\frac{1}{u_l}$

In other words: find Q_1, \ldots, Q_m such that:

$$
\underbrace{Q_m \dots Q_2 Q_1}_{Q} A_B^{-1} A_{\bar{B}} = I \implies QA_B^{-1} = A_{\bar{B}}^{-1}
$$

1.4 Simplex: full tableau implementation

$$
\begin{array}{c|ccccc}\n-c_B^T x_B & \bar{c}_1 & \dots & \bar{c}_n \\
\hline\nx_{B(1)} & & & \\
\vdots & A_B^{-1} A_1 & \dots & A_B^{-1} A_n \\
x_{B(m)} & & & \n\end{array}
$$

Note that $-c_{B}^{T}x_{B}$ is the negated objective value of $x, \bar{c_1}, \ldots, \bar{c_n}$ the reduced costs and the vectors $A_B^{-1}A_l = u_n$. We call the vector $(-c_B^Tx_B, \bar{c}_1, \ldots, \bar{c}_n)^T$ the 0-th row of our tableau and the vector $(-c_B^Tx_B, x_{B(1)}, \ldots, x_{B(m)})^T$ the 0-th column.

1.5 Pivot step

1. If $\bar{c} \geq 0$ then STOP. Otherwise choose j such that $\bar{c}_j \leq 0$.

- 2. consider $u = A_B^{-1} A_j$. If $u \leq 0$ then STOP.
- 3. for each *i* with $u_i > 0$ compute $\frac{x_{B(i)}}{u_i}$
Let *l* be the index of a row that minimizes this ratio.
- 4. Column A_j enters basis, column $A_{B(l)}$ leaves basis.
- 5. perform elementary row operation such that:
	- (a) u_l becomes 1
	- (b) all other entries in the j-th column become 0, including entries in 0-th row.

1.5.1 Example

minimize $-10x_1 - 12x_2 - 12x_3$ subject to $x_1 + 2x_2 + 2x_3 + x_4 = 20$ $2x_1$ + x_2 + $2x_3$ + x_5 = 20 $2x_1$ + $2x_2$ + x_3 + x_6 = 20

Initial solution $x = (0, 0, 0, 20, 20, 20)$ $B(1) = 4, B(2) = 5, B(3) = 6$ $A_B = I = A_B^{-1}$ B^{-1} , $c_B = 0$

The tableau for this LP looks like this:

 $*$ this is the u_l that has to become 1. The other entries in this column (= u) have to become 0.

 $x_{B(1)}$ $\frac{B(1)}{u_1} = \frac{x_4}{u_1}$ $\frac{x_4}{u_1} = 20$ $x_{B(2)}$ $\frac{B(2)}{u_2} = \frac{x_5}{u_2}$ $\frac{x_5}{u_2} = 10$ $x_{B(3)}$ $\frac{B(3)}{u_3} = \frac{x_6}{u_3}$ $\frac{x_6}{u_3} = 10$

Index $l = 2 \implies A_1$ enters the basis, A_5 leaves the basis $B(1) = 4, B(2) = 1, B(3) = 6$

1.6 Lemma 44

The elementary row operations lead to tableau

$$
\begin{array}{c|c} -c_{\bar{B}}^TA_{\bar{B}}^{-1}b & c^T-c_{\bar{B}}^TA_{\bar{B}}^{-1}A \\ \hline A_{\bar{B}}^{-1}b & A_{\bar{B}}^{-1}A \end{array}
$$

where \overline{B} is obtained from adding j to B and removing $B(l)$ from B

1.6.1 Proof

Entries $A_{\bar{B}}^{-1}b$ and $A_{\bar{B}}^{-1}A$: Elementary row operations are equivalent to left-multiplying with matrix Q such that $QA_B^{-1} = A_{\bar{B}}^{-1}.$ 0-th row: we started with $[0|c^T] - g^T[b|A]$ \sum_{linear} linear combination of rows of A with $g^T = c_B^T A_B^{-1}$ B^{-1} . After iteration, 0-th row equals $[0|c^T] - p^T[b]A$. $\implies c_j - p^T A_j = 0$ where $j = \overline{B}(l)$ Let $i \neq l$, $\bar{c}_{B(i)} = 0$ and entry stays 0 after update. $c_{\bar{B}}^T - p^T A_{\bar{B}} = 0 \implies p^T = c_{\bar{B}}^T A_{\bar{B}}^{-1}$ \implies 0-th row equals $[0|c^T] - c_{\bar{B}}^T A_{\bar{B}}^{-1}[b|A] \square$