\mathbf{O}		•	. •	
Οī	otin	nız	ation	

Summer 2016

Lecture 9: May 23 Lecturer: Andreas Wiese

Scribe: Thomas Gören

1 Simplex Algorithm

1.1 Iteration of Simplex Algorithm (a "pivot")

- 1. start with basis Matrix $A_{B(1)}, \dots, A_{B(m)} \to$ basic feasible solution x.
- 2. compute reduced costs $\bar{c_j} = c_j c_B^T A_B^{-1} A_j$ for each nonbasic variable x_j .
 - (a) if all $\bar{c_j} \ge 0$ then we are optimal.
 - (b) choose some j with $\bar{c}_j < 0$
- 3. compute $u = A_B^{-1}A_j = -d_B^j$. If $u \leq 0$ then the optimum is $-\infty$ and we stop.
- 4. Choose index l such that $u_l > 0$ and

$$\frac{x_{B(l)}}{u_l} = \theta^* = \min\{\frac{x_{B(i)}}{u_i} | i \in [m] \text{ and } u_i > 0\}$$

5. Form new basis by replacing $A_{B(l)}$ with A_j .

1.2 Faster Implementation

1st iteration: basic feasible solution x, basis matrix A_B , compute A_B^{-1} . 2nd iteration: basic feasible solution \bar{x} , basis matrix $A_{\bar{B}}$, compute $A_{\bar{B}}^{-1}$ \rightarrow derive $A_{\bar{B}}^{-1}$ from A_B^{-1} .

We know, that A_B and $A_{\bar{B}}$ are very similar. Idea: Are A_B^{-1} and $A_{\bar{B}}^{-1}$ also similar? We also know: $A_B^{-1}A_B = I$, $A_B^{-1}A_{B(i)} = e_i$, $A_B^{-1}A_j = u$

$$A_B^{-1}A_{\bar{B}} = \begin{bmatrix} 1 & 0 & \dots & u_1 & \dots & 0 & 0 \\ 0 & \ddots & \dots & u_2 & \dots & 0 & 0 \\ \vdots & \vdots & 1 & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & u_l & 0 & \dots & 0 \\ \vdots & & & \vdots & 1 & & \vdots \\ 0 & & & \vdots & & \ddots & 0 \\ 0 & \dots & 0 & u_m & \dots & 0 & 1 \end{bmatrix}$$

We want to find a matrix Q, such that $\underbrace{QA_B^{-1}}_{=A_{\bar{B}}^{-1}}A_{\bar{B}} = I.$

1.3 Elementary Row Operations

Multiply *i*-th row by some $\alpha \neq 0$ \Leftrightarrow multiplying from left with

This matrix is like the unit matrix, but with α at position (l, l). Obviously Q_1 is invertible.

Now add β times the *j*-th row to the *i*-th row for $i \neq j$ to eliminate the non-diagonal components of u:

	1	0					0
	0	۰.	·			β	:
	:	·	1	0			:
$Q_{2} =$:		0	1	0		0
	:			0	1	·	÷
	:				·	۰.	0
	0					0	1

This matrix is like the unit matrix, but with β at position (i, j). With these elementary row operations turn $A_B^{-1}A_{\bar{B}}$ into I.

• For each $i \neq l$:

– Add the *l*-th row $-\frac{u_i}{u_l}$ times to the *i*-th row.

• Multiply *l*-th row by $\frac{1}{u_l}$

In other words: find Q_1, \ldots, Q_m such that:

$$\underbrace{Q_m \dots Q_2 Q_1}_{Q} A_B^{-1} A_{\bar{B}} = I \implies Q A_B^{-1} = A_{\bar{B}}^{-1}$$

1.4 Simplex: full tableau implementation

$-c_B^T x_B$	$\bar{c_1}$	•••	$\bar{c_n}$
$x_{B(1)}$			
÷	$A_B^{-1}A_1$		$A_B^{-1}A_n$
$x_{B(m)}$			

Note that $-c_B^T x_B$ is the negated objective value of $x, \bar{c_1}, \ldots, \bar{c_n}$ the reduced costs and the vectors $A_B^{-1} A_l = u_n$. We call the vector $(-c_B^T x_B, \bar{c_1}, \ldots, \bar{c_n})^T$ the 0-th row of our tableau and the vector $(-c_B^T x_B, x_{B(1)}, \ldots, x_{B(m)})^T$ the 0-th column.

1.5 Pivot step

1. If $\bar{c} \ge 0$ then STOP. Otherwise choose j such that $\bar{c_j} \le 0$.

- 2. consider $u = A_B^{-1} A_j$. If $u \le 0$ then STOP.
- 3. for each *i* with $u_i > 0$ compute $\frac{x_{B(i)}}{u_i}$ Let *l* be the index of a row that minimizes this ratio.
- 4. Column A_j enters basis, column $A_{B(l)}$ leaves basis.
- 5. perform elementary row operation such that:
 - (a) u_l becomes 1
 - (b) all other entries in the *j*-th column become 0, including entries in 0-th row.

1.5.1 Example

minimize $-10x_1 - 12x_2 - 12x_3$ subject to $x_1 + 2x_2 + 2x_3 + x_4 = 20$ $2x_1 + x_2 + 2x_3 + x_5 = 20$ $2x_1 + 2x_2 + x_3 + x_6 = 20$

Initial solution x = (0, 0, 0, 20, 20, 20) B(1) = 4, B(2) = 5, B(3) = 6 $A_B = I = A_B^{-1}, c_B = 0$

The tableau for this LP looks like this:

0	-10	-12	-12	0	0	0
20	1	2	2	1	0	0
20	2^{*}	1	2	0	1	0
20	2	2	1	0	0	1

* this is the u_l that has to become 1. The other entries in this column (= u) have to become 0.

 $\frac{x_{B(1)}}{u_1} = \frac{x_4}{u_1} = 20$ $\frac{x_{B(2)}}{u_2} = \frac{x_5}{u_2} = 10$ $\frac{x_{B(3)}}{u_3} = \frac{x_6}{u_3} = 10$

Index $l = 2 \implies A_1$ enters the basis, A_5 leaves the basis B(1) = 4, B(2) = 1, B(3) = 6

100	0	-7	-2	0	5	0
10	0	0,5	1	1	-0, 5	0
10	1	0,5	1	0	0,5	0
0	0	1	-1	0	-1	1

Lemma 44 1.6

The elementary row operations lead to tableau

where \overline{B} is obtained from adding j to B and removing B(l) from B

1.6.1 Proof

Entries $A_{\bar{B}}^{-1}b$ and $A_{\bar{B}}^{-1}A$: Elementary row operations are equivalent to left-multiplying with matrix Q such that $QA_{\bar{B}}^{-1} = A_{\bar{B}}^{-1}$. 0-th row: 0-th row: we started with $[0|c^T] - \underbrace{g^T[b|A]}_{a}$ linear combination of rows of A with $g^T = c_B^T A_B^{-1}$. After iteration, 0-th row equals $[0|c^T] - p^T[b|A]$. $\implies c_j - p^T A_j = 0$ where $j = \overline{B}(l)$ Let $i \neq l, \ \overline{c}_{B(i)} = 0$ and entry stays 0 after update. $c_{\overline{B}}^T - p^T A_{\overline{B}} = 0 \implies p^T = c_{\overline{B}}^T A_{\overline{B}}^{-1}$ \implies 0-th row equals $[0|c^T] - c_{\overline{B}}^T A_{\overline{B}}^{-1}[b|A] \square$