Optimization

Summer 2016

Lecture 9: May 23

Lecturer: Andreas Wiese

Scribe: Tobias Bertel

1 One iteration of the Simplex algorithm a.k.a. a "pivot"

1.1 Pseudocode

- 1. Start with basis matrix $A_{B(1)}, \ldots, A_{B(m)} \to$ basic feasible solution **x**.
- 2. Compute reduced costs $\bar{c}_j = c_j c_j^{\mathsf{T}} A_B^{-1} A_j$ for each nonbasic variable x_j .
 - (a) if all $\bar{c}_j \ge 0$ then we are optimal. STOP.
 - (b) choose some j with $\bar{c}_j < 0$
- 3. Compute $u = A_B^{-1}A_j = -d_B^j$. If $u \le 0$ then optimum $= -\infty$ and we stop.
- 4. Choose index l such that $u_l > 0$ and

$$\frac{x_{B(l)}}{u_l} = \theta^* = \min\left\{\frac{x_{B(i)}}{u_i} \mid i \in [m] \text{ and } u_i > 0\right\}$$
(1)

5. Form new basis by replacing $A_{B(l)}$ with A_j .

1.2 Introduction

The computational most expensive operation used in a pivot is the generation of A_B^{-1} which has to be recomputed whenever the basis *B* changes. Computing the inverse of a matrix costs $O(n^3)$ by applying brute-force, e.g. Gauss-Elimination.

We observe that only one column of B will change per pivot. Assume that A_B^{-1} is at our disposal from the last pivot and we want to compute $A_{\bar{B}}^{-1}$ where \bar{B} denotes a new basis.

The idea we get is that $A_{\bar{B}}^{-1}$ might look similar to $A_{\bar{B}}^{-1}$ if $A_{\bar{B}}$ and $A_{\bar{B}}^{-1}$ differ only by one column. This lecture introduces a method exploiting elementary row operations within a *tableau*-scheme to compute $A_{\bar{B}}^{-1}$ from $A_{\bar{B}}^{-1}$ in $O(n^2)$.

1.2.1 Mathematical point of view

$$A_B^{-1}A_B = I$$

$$A_B^{-1}A_{B(i)} = e_i$$

$$A_B^{-1}A_j = u$$

$$A_B^{-1}A_j = u$$

$$A_B^{-1}A_{\bar{B}} = \begin{bmatrix} 1 & 0 & 0 & \cdots & u_1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & u_2 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & u_3 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & u_l & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & u_{n-1} & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & u_n & 0 & 0 & 1 \end{bmatrix}$$

$$(2)$$

Our goal is to find a matrix Q such that $QA_B^{-1}A_{\bar{B}} = I$. In other words we search for elemantary row operations transforming A_B^{-1} into $A_{\bar{B}}^{-1}$ via Q ($QA_B^{-1} = A_{\bar{B}}^{-1}$).

1.3 Elementary row operations

We will use elementary row operations to setup the matrix Q. A short recap, there are three different elementary row operations:

- 1. Switching: A row within the matrix can be switched with another row,
- 2. Multiplication: Components of a row-vector may be multiplicated with a non-zero scalar $\lambda \in \mathbb{R}$,
- 3. Addition: Multiples of a row j can be added to another row i where $i \neq j$.

Starting from equation 2 our first goal is to bring the entry $(l, j) = u_l$ to 1. Multiplying *i*-th row by some $\alpha \neq 0$ is equivalent to multiply with Q_1 from left. For simplicity we assume l = j here.

$$Q_{1} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} l$$
(3)

Since Q_1 is a square matrix with full rank, it is invertible. Another argumentation is that $det(Q_1) \neq 0$.

To eliminate the non-diagonal entries of u a multiple of the l-th row can be subtracted from the i-th row. Written in terms of a matrix operation multiplied from left:

$$Q_{2} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \beta & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}^{i}$$
(4)

In summary, elementary row operations will help us to turn $A_B^{-1}A_{\bar{B}}$ into I.

- For each $i \neq l$ add *l*-th row $-\frac{u_i}{u_l}$ times to the *i*-th row.
- Multiply *l*-th row by $\frac{1}{u_l}$

In matrix notation we need a series of matrices Q_i such that:

$$\underbrace{Q_m \cdots Q_2 Q_1}_{Q} A_B^{-1} A_{\bar{B}} = I \implies Q A_B^{-1} = A_{\bar{B}}^{-1}$$
(5)

Implementation of the elementary row operations to accelerate the Simplex method is often done in a tableau-scheme.

1.4 Simplex: A full tableau implementation

Idea: Every iteration of the Simplex algorithm maintains a tableau (matrix) which stores important properties of the current Simplex iteration.

	Negated objective value of \mathbf{x}	Reduced costs					
	$-c_B^{T}\mathbf{x}_B$	\bar{c}_1	•••	\bar{c}_n			
	$x_{B(1)}$						
x_B	:	$A_B^{-1}A_1$		$A_B^{-1}A_n$			
	$x_{B(m)}$	$\left \underbrace{}_{u_1} \right $		$\underbrace{}_{u_n}$			

1.5 Pivot step

- 1. If $\bar{c} \ge 0$ then STOP (costs already computed by previous iteration). Otherwise choose j such that $\bar{c}_j < 0$.
- 2. Consider $u = A_B^{-1}A_j$ (is already in tableau from previous step). if $u \leq 0$ then STOP (Move to new vertex or equivalently switch basis).
- 3. For each *i* with $u_i > 0$ compute $\frac{x_{B(i)}}{u_i}$. Let *l* be the index of a row minimizing this ratio.
- 4. Column A_j enters the basis and column $A_{B(l)}$ leaves the basis (We have to update the tableau now by performing elementary row operations).
- 5. Performing elementary row operations such that: Turn u_l into u_i by transforming u_l to 1 and all other entries $i \neq l$ of the *j*-th column to 0.

1.5.1 Example

\min	-10	x_1	-12	x_2	-12	x_3								
subject to	1	x_1	+2	x_2	+2	x_3	+1	x_4					=	20
	2	x_1	+1	x_2	+2	x_3			+1	x_5			=	20
	2	x_1	+2	x_2	+1	x_3					+1	x_6	=	20
		x_1	,	x_2	,	x_3	,	x_4	,	x_5	,	x_6	\geq	0

Table 1: LP for the tableau method example.

0	-10	-12	-12	0	0	0
20	1	2	2	1	0	0
20	2	1	2	0	1	0
20	2	2	1	0	0	1

Table 2: Initialize tableau.

Initial solution
$$\mathbf{x} = (\underbrace{0, 0, 0}_{\text{Non-basic}}, \underbrace{20, 20, 20}_{\text{Basic}}, B(1) = 4, B(2) = 5, B(3) = 6. A_B = I = A_B^{-1},$$

 $c_B = 0$. Perform 3rd pivot step (see equation 1 or enumeration 1.5).

$$\frac{x_{B(1)}}{u_1} = \frac{x_4}{u_1} = 20$$

$$\frac{x_{B(2)}}{u_2} = \frac{x_5}{u_2} = 10$$

$$\frac{x_{B(3)}}{u_3} = \frac{x_6}{u_2} = 10$$
(6)

Minimal index $l = 2 \implies A_1$ enters the basis and A_5 leaves the basis. New basis: B(1) = 4,

100	0	-7	-2	0	5	0
10	0	0.5	1	1	-0.5	0
10	1	0.5	1	0	0.5	0
0	0	1	-1	0	-1	1

Table 3: Tableau after 1st iteration.

B(2) = 1, B(3) = 6.

1.6Lemma 44

The elementary row operations lead to tableau: where \overline{B} is obtained from adding j to B

$$\begin{array}{c|c} -c_{\bar{B}}^{\mathsf{T}}A_{\bar{B}}^{-1}b & c^{\mathsf{T}}-c_{\bar{B}}^{\mathsf{T}}A_{\bar{B}}^{-1}A \\ \hline A_{\bar{B}}^{-1}b & A_{\bar{B}}^{-1}A \end{array}$$

Table 4: Tableau after performing elementary row operations.

and removing B(l) from B.

1.6.1 Proof

Consider entries of $A_{\bar{B}}^{-1}$ and $A_{\bar{B}}^{-1}A$: Elementary row operations are equivalent to left-multiplying with a matrix Q such that $QA_B^{-1} = A_{\bar{B}}^{-1}$.

0-th row: We started with
$$\begin{bmatrix} 0 \\ First \\ entry \end{bmatrix} \begin{bmatrix} c^{\mathsf{T}} \\ entry \end{bmatrix} - \underbrace{g^{\mathsf{T}}[b \mid A]}_{\text{Linear combination of rows of } A.$$
 with $g^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}$.

After the *i*-th iteration: $[0 \mid c^{\intercal}] - p^{\intercal}[b \mid A] \implies c_j - p^{\intercal}A_j = 0$ where $j = \bar{B}(l)$. Consider columns of old basis \rightarrow identity matrix. *l*-th row was zero at column $j \rightarrow$ new reduced cost stays 0. Let $i \neq l$: $\bar{c}_{B(i)} = 0$ and entry stays 0 after update. $c_{\bar{B}}^{\intercal} - p^{\intercal}A_{\bar{B}} = 0 \implies p^{\intercal} = 0$ $c_{\bar{B}}^{\mathsf{T}} A_{\bar{B}}^{-1} \implies 0$