
Karl Bringmann and Sebastian Krinninger Summer 2016

Exercises for Complexity Theory of Polynomial-Time Problems
https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer16/

poly-complexity/

Exercise sheet 5 Due: Monday, July 11, 2016

Total points: 40

Either email an electronic version of your assignment submission to gjindal@mpi-inf.mpg.de or
give it to Gorav in his office at Room 425, Building E1.3. If Gorav is not in his office then you
can just slide your submission under the door of his office.

You are allowed to collaborate on the exercise sheets, but you have to write down a solution
on your own, using your own words. Please indicate the names of your collaborators for each
exercise you solve. Further, cite all external sources that you use (books, websites, research
papers, etc.).

You need to collect at least 50% of all points on exercise sheets.

Exercise 1 (10 points) Let A and B be two matrices having integer entries in {−M,−M +
1, . . . ,M − 1,M}. Prove that the Min-plus matrix product of A and B can be computed in
time O(M2 · nω). Here ω is the exponent of matrix multiplication.

Now consider the following problem called Maximum Weight Triangle: Given a weighted
undirected graph with integer edge weights in {−M,−M + 1, . . . ,M − 1,M}, find the weight
of the maximum weight triangle. Generalize O(M2 · nω) time algorithm for Min-plus matrix
product to Maximum Weight Triangle.

Note : These problems can also be solved in time (M · nω · poly(logM, log n)).

Exercise 2 (9 points) k-Clique is the problem of deciding whether a given undirected un-
weighted graph G contains a k-clique (i.e., a set of k vertices which are pairwise adjacent).

Show that if 3 | k then k-Clique can be solved in time O(n
ωk
3). What running time can you

obtain when 3 - k?

Hint : Reduce it to detecting a triangle in a graph with O(n
k
3) vertices.

Note : This is the best running time known for this problem.

Exercise 3 (10 points) MaxCut is the following problem.

Given an unweighted undirected graph G = (V,E), find a partition of the vertices cutting as
many edges as possible. More precisely, a cut is any subset U of the vertices V , and we define
its value C(U) as

C(U) := |{{u, v} ∈ E | u ∈ U and v ∈ V \ U}|
= Number of edges in G with one end point in U and the other end point in V \ U.

In MaxCut the task is to compute the quantity maxU⊆V C(U). Note that this problem can be
trivially solved in time (poly(n) · 2n).

Show that it can be solved in time O(poly(n) · 2ωn
3).

Hint : Use similar ideas as in Exercise 2 to construct a weighted graph with O(2
n
3) vertices and

edge weights bounded by poly(n) and then use the Maximum Weight Triangle algorithm from
Exercise 1 on this weighted graph. Even if you can not solve the Exercise 1, you can assume
the algorithm of Exercise 1 is given to you to solve this exercise.

Note : This is the best running time known for this problem.

Exercise 4 (11 points) Consider the following problem called PairsSubstringMatch.

PairsSubstringMatch : We are given n strings S1, S2, . . . , Sn, each of length O(n ·poly log n).
We are also given n2 pairs of strings (P1, Q1), (P2, Q2), . . . , (Pn2 , Qn2), where each Pi and Qi is
of length O(poly log n). We say that (Pi, Qi) matches Sj if both Pi and Qi are substrings of Sj.
The task is to report all i where there exists a j such that (Pi, Qi) matches Sj. (This j can be
different for different i’s.)

Show that a O(n3−ε) time combinatorial algorithm (for some ε > 0) for PairsSubstringMatch
implies a O(n3−δ) time combinatorial algorithm (for some δ > 0) for BMM (Boolean Matrix
Multiplication).

Note : A substring of a string S is another string T that occurs contiguously in S . This is not
to be confused with subsequence, which is a generalization of substring. For example, “2345” is
a substring of “1234567” but “1346” is only a subsequence of “1234567” and not a substring.

Hint : First note that BMM can be a seen as a graph reachability problem on a three layered
graph with each layer having n vertices. Now reduce this graph reachability problem to Pairs-
SubstringMatch . For this, try to encode the neighbourhoods of the n middle layer vertices in
the strings S1, S2, . . . , Sn. The pairs (Pi, Qi) should correspond to queries in the graph reacha-
bility problem.

