' ' I I max planck institut
informatik

Complexity Theory of
Polynomial-Time Problems

Lecture 9: Dynamic Algorithms |

Sebastian Krinninger

Today’s Plan

1. Decremental SSSP via Even-Shiloach tree

2. Decremental APSP

inl p [e July 22, 2016 2125

Floyd-Warshall Algorithm

0(n3) algorithm for computing All-Pairs Shortest Paths (APSP)
n: number of nodes

Put some order v, ..., v, on the nodes
Set d(v;, vj) = w(v;, v;) for every pair of nodes v; # v;

For k =1 ton:
For every pair of nodes v;, v;:

d(vi, vj) < min (d(vi, vj); d(v;, vg) + d(”k» ”j))

Running Time: n iterations, each takes time 0(n?)

Correctness: After iteration i, d(:,-) gives correct distance in graph
restricted to {v;, ..., vy}
= Correct in full graph after iteration n

. l I I max planck institut
informatik July 22, 2016

3/25

Dynamic View

Why stop after n iterations?
Floyd-Warshall allows insertions of new nodes

Insert(v, In,, Out,,). /Il (Insert node with incident edges and weights)
Set d(v',v) = w(¥', v) for every incoming neighbor v’ of v
Set d(v,v") = w(v,v") for every outgoing neighbor v’ of v

For every incoming neighbor s of v and every node t
d(s,t) « min(d(s, t),d(s,v) + d(v, t))

For every node s outgoing neighbor t of v
d(s,t) « min(d(s, t),d(s,v) + d(v, t))

For every other pair of nodes s, t:
d(s,t) « min(d(s, t),d(s,v) + d(v, t))

Update Time: 0(n?) per insertion

inl p [e July 22, 2016 4125

Dynamic Algorithms

A dynamic graph algorithm is a data structure supporting:

 Preprocess(G): preprocess the graph G

« Insert(u,v):insertthe edge (u,v) into G

« Delete(u,v): delete the edge (u,v) from G

* Query(G): return result of algorithm for current graph G

Terminology:

* Incremental: only insertions are supported

« Decremental: only deletions are supported

* Fully dynamic: both insertions and deletions are supported

Some algorithms also support insertions and deletions of nodes

Goal:
« Time spent per update or query less than recomputing from scratch
* (Polynomial preprocessing time)

il p | July 22, 2016 5/25

Measuring Update Time

Two Measures
« Worst-case update time

Fixed upper bound on running time per update
 Amortized update time

“On average” upper bound on running time per update

Formally: Amortized update time u(n, m) if total time spent for a
sequence of t updates is at most t - u(n, m).

Very common in incremental/decremental algorithms:
« Amortize update time over m insertions/deletions
« “Total update time”

. l I I max planck institut
informatik July 22, 2016

6/25

1. Decremental SSSP

inl p [e July 22, 2016 7125

Even-Shiloach Algorithm

Goal: Decremental SSSP in unweighted graphs from source s

Example of shortest path tree from s:

Level 0 —> {ree edge
other edge
Level 1
Cannot cross more
than 1 level
Level 2
Level 3

max planck institu
l l I p I I infor?natik it July 22, 2016 8/25

Deletion Procedure |

c loses its parent * ¢ finds new parent d

c finds no new parent at level 2 « e finds new parent b

c increases level to 3 « f finds new parent bg finds no new
c informs neighbors about level parent at level 3

increase * g increases level to 4

Children of c lose their parent

Nl p B0 e July 22, 2016 9/25

Deletion Procedure I

« g finds new parent c
* Now we are done because all
nodes have a parent again

max planck institu
il p [e July 22, 2016 10/25

Internal Data Structures and Initialization

Data Structures:
For every node v:
* Number neighbors of v from 1 to deg(v) (initial degree of v)

* n;(v) Pointer to i-th neighbor of v

 p(v) Index of parent of v (among neighbors) in tree

« P(v) Level of v in tree (will correspond to distance from root)
Global:

c Q Priority queue with levels as keys

(used in update procedure)

Initialization:
Compute BFS tree from source s such that each node takes parent with
minimum index among neighbors.

Time: O(m)

inl p [e July 22, 2016 11/25

Pseudocode

Delete(u,v):

Add u and v to Q

While Q # @
Take node v with minimum level from Q
Process (v)

FindNewParent (v):
/I Check if neighbor with index p(v) is a valid parent

While G does not contain edge (v, n,q,)(v)) or l(v) < (£ (np(v)(v)) + 1):

p(v) «p(v)+1 /I If not, try next neighbor as parent
Add v to Q
If p(v) = deg(v) +1 /I Check if all neighbors exhausted

[(v) «l(v)+1 [/l Increase level
If (v) >n—1: // Checkif level too big
Set £(v) «
Remove v from Q
p(v) «1 // Reset parent index
Add neighbors of vto Q // Process neighbors

Nl p | ek July 22, 2016

12/25

Correctness |

Claim 1: Initially, and after each update is finished: £(v) > dist(s, v) Vv

Proof:
If £(v) = oo, then certainly true

Otherwise:

Consider path = from v induced by following parents

Levels of nodes on m are strictly decreasing:

 When parent of a node is set, parent has strictly smaller level
* When level of a node changes it informs all potential children

Thus, m ends at s because s is the only node at level 0
?(v) = length of T

m cannot be shorter than shortest path from s to v
Thus, #(v) = dist(s, v)

il p | July 22, 2016 13/25

Correctness |l

Claim 2: At any time: For every node v with neighbor u,
) <fw)+1if(w)+1<n-1.

Proof:
By induction on #level increases of v (in total over all deletions)
Induction Base: True after initialization

Induction Step:
?(v): level of v directly before level increase
?'(v): level of v directly after level increase

By IH: 2(v) < f(u) + 1
Algorithm guarantees: ¢(v) < £(u) + 1 (otherwise no level increase of v)

(Detail: no candidate parent for v at level £(v) anymore by
processing order according to levels)

Thus: ¢(v) +1 < f(u) +1
Since ¢'(v) = £(v) + 1 we have £'(v) < (u) + 1

Inequality remains true until next level increase of v because level of u
never decreases

inl p [e July 22, 2016 14/25

Correctness llI

Lemma: Initially and after each update is finished, ¢(v) = dist(s, v) Vv

Proof by induction on distance to s
If dist(s, v) = oo: Then £(v) = dist(s,v) = o by Claim 1

If dist(s,v) < oo:
Consider successor u of v on shortest path from s to v

=1
When algorithm finished update:
f(u) = dist(s,u) by IH
In particular: dist(s,u) <n—2andthusf(u) +1<n-1
By Claim 2: #(v) < #(u) + 1 = dist(s, v)
By Claim 1: #(v) = dist(s, v)
= £(v) = dist(s, v)
l l I p I ﬁﬁrﬁ}gﬁ‘f‘k et July 22, 2016 15/25

Running Time

Lemma: The total update time over all deletions is O (mn)

(where m is the number of edges at initialization)

Amortized analysis!

Idea: Every time the level of some node v increases, we charge running
time of O(deg(v)) to that level increase (see next slide).

(where deg(v) is the degree of v at initialization)

The level of every node can increase at most n — 1 times (max. distance).

Additionally, charge time 0(1) to every deletion
Total time: O(#del + Y, cyndeg(v)) =0(m+n- Y,y deg(v)) = 0(n-m)

Remember from kindergarten: sum of degrees < twice #edges

. l I I max planck institut
informatik

July 22, 2016 16/25

Running Time Analysis

Delete(u,v): 0(1) charge to
Add u and v to Q 0(1) per deletion « level increase of node that put v into queue or
While Q = @ / deletion that put v into queue

Take node v with minimum level from Q

Process (v) 0(1), charge to
level increase of node that put v into queue or

. deletion that put v into queue or
Process(v): * increase of parent index

While G does not contain edge (v, n,,)(v)) or l[(v) < ({’ (np(v)(v)) + 1):

p(v) «p(v) +1 0(1) per increase of parent index
Add v to Q (increases at most deg(v) times at each level)
\

If p(v) = deg(v) +1
[(v) «l(v)+1

If ¢(v) =2n—1: 0(deg(v)):
Set £(v) « > charge to level increase of v
Remove v from Q

p(v) <1

Add neighbors of v to Q y

Total: O(#del +), ,cy ndeg(v))+

max planck institu
il p [e July 22, 2016 17/25

Banker’s View

Every node v receives:
» 10deg(v) coins at initialization
» 3 coins when deleting incident edges

Observation: Sufficient number of coins to pay 1 coin per operation.

(Note: give constant number of coins to each neighbor at level increase)

Total number of coins spent: O(#del + Y.,y ndeg(v))

il p | July 22, 2016 18/25

Implementing Priority Queue

Standard heap: Time O(logn) per operation
In our application we can get O(1) per operation

Array A of size n, where A[i] contains pointer to list of nodes at level i

In unweighted undirected graphs:
> [U,V,x.y,Z] « At most two lists non-empty
« at consecutive levels

il p | July 22, 2016 19/25

Extensions

[Even/Shiloach ‘81, King '99, King/Thorup ‘01]

& ax pla insti
\\kf%; ini p | R July 22, 2016 20/25

2. Decremental APSP

inl p [e July 22, 2016 21/25

Hitting Set for Long Paths

Random process for picking a set of nodes S:

e Setp = min (101;:gn, 1)

 Iterate over all nodes
» Pick each node with probability p independently (flip biased coin)

« Expected size of S: 0 (" l‘;lg n)

Lemma: For every pair of nodes s and t, if the shortest path from s to ¢
contains at least h nodes, then one of them is from S with

probability at least 1 — - (i.e., ‘with high probability’).

Caveat: There could be many shortest paths from s to t. We only
guarantee to hit one of them (e.g. lexicographic shortest path).

09000900 000

\ J
Y
> h

Lemma also holds for all graphs during a sequence of deletions (if
sequence of deletions is independent from random choices of algorithm)

inl p [e July 22, 2016 22/25

Maintaining shortest paths in range 2°...2%*1

Pick set of nodes S; ("i-centers”):

« Sampling probability p = min (101°gn, 1)
nlogn)

» Expected size of S;: O (

For every i-center ¢ € S;:

dist(c, v) ifdist(c,v) < 2!*1
o) othgrwise

d(c,v) ={

\] \)
Y Y
Even-Shiloach tree to ¢ Even-Shiloach tree from ¢
up to depth 2¢+1 up to depth 2i*1

(Reverse graph: _ _ 41
reverse direction of each edge) Total time: O(|S;|m2"**) = 0(mnlogn)

. l I p I ;Irllf{))(rﬁ}aﬁkk stitut July 22, 2016 23/25

Decremental APSP algorithm

Fori =1 to [logn]|:
« Pick i-centers S; with sampling probability p = min (101°.g", 1)

21

« For every i-center ¢ € S;: Maintain ES-tree to and from c¢ of depth 2:*1

Total update time: O (Z“Ognle Im) 0 (Z?:Olgnj mnlogn) = 0(mnlog?n)

Query Algorithm:

* Question: What is the distance from sto t

« Return minimum value of d(s, ¢) + d(c, t) among all centers ¢ € US;
* Query time: 0(n) (= number of centers)

Correctness:

» Let be shortest path fromstot

1 has between 2! and 2¢*! nodes for some i = 1 to |logn|

* 1 contains a center c € S; with high probability

« Subpaths from s to ¢ and from c to s are also shortest paths and both
have length < 2¢*1

e Thus, d(s,c) + d(c,t) = dist(s, t)
Other centers can never report a smaller value for d(s,c) + d(c, t)

f | l p [e July 22, 2016 24/25

Extensions

Result we just showed:

Theorem: There is a decremental algorithm for maintaining APSP in
unweighted, directed graphs with total update time
0(mn log?n) and query time 0(n).

By explicitly maintaining distances after each update, one can reduce
guery time.

Theorem: There is a decremental algorithm for maintaining APSP in
unweighted, directed graphs with total update time
0(n®log?n) and constant query time.

[Baswana et al. ‘02]

. l I I max planck institut
informatik July 22, 2016

25/25

