
Randomized Algorithms, Summer 2016 Lecture 13 (12 pages)

Limited Randomness

Instructor: Thomas Kesselheim and Kurt Mehlhorn

Contents

1 Introduction 1

2 Limited Independence 2

3 Quicksort with Limited Independence 3

4 Useful Facts 4

5 Proof of Lemma 13.6 5

6 2-Independence 6

7 A Sketch of a Research Immersion Lab/Master Thesis: Randomized Algorithms with
Limited Randomness 7
7.1 Experimental Work: Quicksort . 7
7.2 Experimental Work: Randomized Incremental Constructions 7
7.3 Theoretical Work . 7

8 Appendix: Proof of Fact 13.8 8
8.1 The Complex Proof . 8
8.2 The Case k = 4 . 11
8.3 The Case k = 6 . 12

1 Introduction

Random bits are costly. Note that we never discussed how one can generate random bits or where one
can buy them. If random bits are costly, it makes sense to use the thriftily and to ask how many one
needs in order to obtain a certain effect.

Consider randomized quicksort. One way of describing it is as follows. One first permutes the input
randomly and then applies deterministic quicksort to it. This algorithm requires to choose a random
permutation of n items. As there are n! such permutations, it requires Ω(n log n) random bits. Can we
do with less?

We will see today that O(log n) random bits suffice to guarantee the O(n log n) running time of
randomized quicksort. I am basing my lecture on the paper

“M. Knudsen, M. Stöckel: Quicksort, Largest Bucket, and Min-Wise Independent Hashing with
Limited Independence, ESA 2015”.

The paper shows that 4-wise independence suffices to guarantee the O(n log n) expected running time
of randomized quicksort. It leaves four open problems:
- the result holds for a variant of quicksort, not for the randomized quicksort as we usually know it;
- the constants are not worked out.
- is three-wise independence enough?
- it only deals with the expected running time, and does not also give a bound on the variance or a

tail bound. Remember that randomized quicksort runs in time O(n log n) with high probability. I
conjecture that going to higher independence will decrease the variance. My former PhD-student
Adrian Neumann has performed experiments that confirm this intuition.

An earlier paper on the subject is by Karloff and Raghavan.

Randomized Algorithms, Summer 2016 Lecture 13 (page 2 of 12)

2 Limited Independence

Definition 13.1. Let X0 to Xn−1 be a sequence of random variables with values in a set R. The
sequence is 4-independent if for any subset I = {i1, i2, i3, i4} of four distinct variables and any four tuple
(y1, . . . , y4) of values in R,

Pr[Xi1 = y1, Xi2 = y2, Xi3 = y3, Xi4 = y4] =
∏

1≤`≤4

Pr[Xi` = y`] .

Let H be a set of functions from [n] to [m]; here [n] = {0, . . . , n− 1}. We will refer to the functions
in H as hash functions. By a random hash function, we mean a random function h ∈ H; each function is
chosen with probability 1/ |H|. We can generate a sequence X0 to Xn−1 by choosing a function h ∈ H
and setting Xi = h(i). The definition above plus the requirement that h(i) should be a random element
in the range of h then translates into:

Definition 13.2. The family H is k-independent if for any k distinct elements x1 to xk in [n] and any
k elements y1 to yk in [m]

|{h ∈ H | h(xi) = yi for 1 ≤ i ≤ k}| = |H|
mk

.

Note that the requirement that h(i) is a random element of [m] means Pr[h(i) = yi] = 1/m. So for
up to four arguments, a k-independent class behaves like the class of all functions from [n] to [m]. Note
that there are mn functions in total and mn−k functions mappings xi to yi for 1 ≤ i ≤ k.

You will see the definition above also phrased as: H is k-independent if for any k distinct elements
x1 to xk in [n] and any k elements y1 to yk in [m]

Prh∈H [h(xi) = yi for 1 ≤ i ≤ k] =
∏

1≤i≤k

Prh∈H [h(xi) = yi] =
1

mk
.

For prime n, k-independent families exist.

Lemma 13.3. Let n be a prime and let H be the set of polynomials of degree k − 1. For a =
(a0, . . . , ak−1) ∈ [n]k the polynomial ha defines the function

x 7→
∑

0≤i≤k−1

aix
i mod n

from [n] to [n]. The family Pk of polynomials of degree k − 1 is k-independent.

Proof. The family has size nk. There is exactly one polynomial that maps xi to yi for 1 ≤ i ≤ k.

k-independent hash functions share some properties with random functions, but also differ from
them in important aspects. For a random function h, an integer `, and a set A ⊆ [m] of size a, we
have Pr[h(i) ∈ A for 0 ≤ i < `] = (a/m)`. For a k-independent function, this is only true for ` ≤ k
(Lemma 13.4). We can nevertheless derive a non-trivial bound for the event “h(i) ∈ A for 0 ≤ i < `”
provided `� a/m� 1 (Lemma 13.5).

Lemma 13.4. Let A ⊆ [m] and let Xi = [h(i) ∈ A] be the indicator variable for the event h(i) ∈ A. The
variables X0 to Xn−1 are k-independent. In particular, if ` ≤ k, and i1, i2, . . . , i` are distinct indices
then Pr[h(i) ∈ A for 1 ≤ i ≤ `] = (a/m)`.

Proof. Let a = |A| and let A1 = A and A0 = [m] \ A. Then Pr[Xi = 1] = Pr[h(i) ∈ A] = a/m. For
four distinct indices i1 to i4 and four values y1 to y4 in {0, 1}, we have

Pr[Xi = yi for 1 ≤ i ≤ 4] =
∑

ai∈Ayi for 1 ≤ i ≤ 4

Pr[h(i) = ai for 1 ≤ i ≤ 4]

=
∑

ai∈Ayi for 1 ≤ i ≤ 4

∏
1≤i≤4

Pr[h(i) = ai]

=
∏

1≤i≤4

∑
ai∈Ayi

Pr[h(i) = ai]

=
∏

1≤i≤4

Pr[Xi = yi] .

The second equality holds due to k-independence.

Randomized Algorithms, Summer 2016 Lecture 13 (page 3 of 12)

Lemma 13.5. Let k be an even integer, let A ⊆ [m] with a = |A|, and let h be a k-independent hash
function. Let S be the number of i, 0 ≤ i < `, such that h(i) ∈ A. Then E[S] = `a/m and

Pr[S = `] = O(
E[S] + E[S]

k/2

(`−E[S])k
).

In particular, if `a/m > 1 the probability is bounded by O(1)/((m/a− 1)kE[S]
k/2

).

Proof. Let Xi = [h(i) ∈ A] be the indicator variable for the event h(i) ∈ A. The variables X0 to X`−1
are k-independent by Lemma 13.4. Let S =

∑
iXi be their sum. The expectation of S is `a/m by

linearity of expectations. If h(i) ∈ A for 0 ≤ i < `, then S = ` and hence |S −E[S]| ≥ `− `a/m. Thus

Pr[S = `] ≤ Pr[|S −E[S]| ≥ `− `a/m]

≤
E
[
(S −E[S])k

]
(`− `a/m)k

Markov inequality (Fact 13.10)

≤ O(E[S] + E[S]
k/2

)

(`− `a/m)k
Fact 13.8

= O(
`a/m+ (`a/m)k/2

(`− `a/m)k
).

Assume now that `a/m > 1 and let ` = (x+ 1)`a/m. Then x = m/a− 1 and the bound becomes

O(E[S]
k/2

)

(xE[S])k
=

O(1)

xkE[S]
k/2

.

Note that the bounds are much weaker than for the case of random functions. For a good bound, we
need `� `a/m� 1. For example, if a = m/2 and ` ≥ 4, the bound becomes O(1)/(`/2)k/2.

3 Quicksort with Limited Independence

We use x0 to xn−1 to denote our input. We assume the keys to be pairwise distinct.
Let H be a 4-independent class of hash function. We choose h ∈ H at random and generate the

sequence i0 = h(0) to in−1 = h(n− 1). In general, this is not a permutation. We split the input at xi0
(= use xi0 as a pivot), then the sequence containing xi1 at xi1 and so on. Since the sequence of split
indices is in general not a permutation, we will be left with some unsorted sequences of more than one
element. We sort any such sequence with a quadratic sorting algorithm, e.g., selection sort.

An alternative view of this process is that we sort by insertion into a binary tree. We start with the
empty tree, insert xi0 , then xi1 , and so on. Repeated elements are skipped over. The remaining elements
are inserted in any order.

Yet another view is: turn the sequence into a partial permutation by removing duplicates, more
precisely, keep only the first occurrence of any number. Then add the missing elements in any order.
Use this permutation to insert the elements into a binary tree.

Then analysis rests on the following Lemma.

Lemma 13.6. Let A and B be disjoint subsets of [n] with |A| ≤ |B|. Let

C = {i ∈ [n] | h(i) ∈ A, h(0), . . . , h(i− 1) 6∈ B},

where h is chosen randomly from a 4-independent class. Then E[|C|] = O(1).

We postpone the proof of the Lemma and first show how to use it to bound the expected running
time of randomized quicksort.

Theorem 13.7. The expected running time of randomized quicksort with a 4-independent random hash
function is O(n log n).

Randomized Algorithms, Summer 2016 Lecture 13 (page 4 of 12)

Proof. We first assume that our input is sorted, i.e., x0 < x1 < . . . < xn. At the end of the proof, we
will remove this assumption.

Comparisons are always between a pivot element and a non-pivot; the non-pivot may be the pivot in
a later split. We charge the comparison to the non-pivot. In the tree-insertion view of the algorithms,
comparisons are charged to the inserted element and not to the elements already in the tree.

Consider xi. We want to bound the number of times xi is compared with a pivot. We estimate
the number of comparisons with a pivot in {xi+1, . . . , xn−1}; the number of comparisons with pivots in
{x0, . . . , xi−1} is analyzed analogously. We split this set into exponentially increasing subsets, i.e., for
0 ≤ ` ≤ log n, let

P` = {xi+j | 2` < j ≤ 2`+1 and i+ j ∈ [n]}.

Then P0 = {i+ 2}, P1 = {i+ 3, i+ 4}, and so on. Note that i+ 1 is not contained in any of the sets. If
element xi is compared with a pivot i+ j ∈ P` then i+ j appears in the sequence of indices before any
index in {i+ 1, . . . , i+ 2`}. Thus, we can apply Lemma 13.6 with A = P` and B = {i+ 1, . . . , i+ 2`} to
conclude that the expected number of pivots in P` with which xi is compared is O(1). Thus the total
expected number of pivots with which xi is compared is bounded by

1 +
∑

0≤`≤logn

O(1) = O(log n),

where the first 1 counts the comparison with the pivot xi+1 (this comparison may or may not happen).
We come to the clean-up phase. For simplicity, we assume that n is a power of two. The clean-up

phase deals with subsequences not containing any pivot. Let us call a sequence special if it is form
{xk·2` , . . . , x(k+1)2`−1} for some ` < log n and some k. Every subsequence contains a special subsequence
of at least 1/4th its length. The expected cost of the clean-up phase is therefore bounded by

16 ·
∑

S is special

Pr[no pivot in S] · |S|2

Consider a special set S of size 2`. For i ∈ [n] consider the event [h(i) ∈ S] and let X =
∑
i∈[n][h(i) ∈ S].

Then Pr[h(i) ∈ S] = 2`/n and hence E[X] = 2`. Thus

Pr[no pivot in S] ≤ Pr[|X −E[X]| ≥ E[X]] ≤
E
[
(X −E[X])2

]
E[X]

2 =
O(E[X])

E[X]
2 = O(1) · 2−`,

and hence ∑
S is special

Pr[no pivot in S] · |S|2 ≤
∑

0≤`≤logn

n

2`
O(1) · 2−`22` = O(n log n).

We still need to extend the argument to non-sorted inputs. Let x0, . . . , xn−1 be arbitrary and let π
be its order type, i.e., xπ(1) < xπ(2) < In the preceding paragraphs, replace any indexed occurrence
xh of x by xπ(h). So the first two sentences read. Consider xπ(i). We want to bound the number of
times xπ(i) is compared with a pivot. It suffices to estimate the number of comparisons with a pivot in
{xπ(i+1), . . . , xπ(n−1)}.

4 Useful Facts

Fact 13.8. Let k be an even positive integer and let X1 to Xn be k-independent random variables with
values in [0, 1]. Let S be their sum. Then

E
[
(S −E[S])k

]
= O(E[S] + E[S]

k/2
).

I give a proof in the Appendix. We use the bound for k = 4.

Fact 13.9. Let k ≥ 2 and r0 be positive integers. Then∑
i≥1

1

(r0 + i)k
= O(

1

rk−10

).

Randomized Algorithms, Summer 2016 Lecture 13 (page 5 of 12)

Proof. We estimate the sum by the corresponding integral.∑
i≥1

1

(r0 + i)k
≤
∫
x≥r0

1

xk
= −x

−k+1

k − 1

∣∣∞
r0

=
r−k+1
0

k − 1
= O(

1

rk−10

).

Fact 13.10 (Markov’s inequality). Let k be an even integer and let Z be any random variable.

Pr[|Z −E[Z]| ≥ a] ≤
E
[

(Z −E[Z])
k
]

ak
.

Proof. Observe that

E
[

(Z −E[Z])
k
]
≥ akPr[|Z −E[Z]| ≥ a] .

5 Proof of Lemma 13.6

For an event E, we use [E] to denote the indicator variable of E. It is one if E occurs and zero otherwise.
We may assume |A| = |B|. Otherwise, drop some elements from B. Let m = |A| = |B| and let

α = m/n. For simplicity, we assume that n is a power of two.
As in the preceding proof, we consider exponentially increasing sets. For any non-negative integer `,

let
X` = {j ∈ [n] | j < 2` and h(j) ∈ A} \ (X0 ∪ . . . ∪X`−1),

and let E` be the event that h(i) 6∈ B for i < 2`. Note that X0 ⊆ {0} and X` ⊆ {2`−1, . . . , 2` − 1}.
Consider any j ∈ C. Then j ∈ X` for some `; also E`−1 occurs. Thus

E[C] ≤
∑

0≤`≤logn

E[|X`| · [E`−1]] . (1)

We need to estimate the expectation of a product of random variables. Since the random variables are
not independent, this is a challenge. We start by investigating the factors. Clearly,

E[|X`|] =

{
α if ` = 0

α2`−1 if ` ≥ 1.

|X`| is a sum of 2`−1 random variables [h(j) ∈ A] for ` ≥ 1.
We can now already bound (1) for small `, namely∑

`; α2`≤1

E[|X`| · [E`−1]] ≤
∑

`; α2`≤1

E[|X`|] ≤
∑

`; α2`≤1

α2` = O(1).

We next concentrate on the ` with α2` > 1. Here, we use the following strategy which is also useful in
other contexts. We write∑

`; α2`>1

E[|X`| · [E`−1]] =
∑

`; α2`>1

E[(|X`| − 2E[|X`|] + 2E[|X`|]) · [E`−1]]

≤
∑

`; α2`>1

E[max(0, |X`| − 2E[|X`|])] +
∑

`; α2`>1

2E[|X`|] ·E[[E`−1]]

=
∑

`; α2`>1

E[max(0, |X`| − 2E[|X`|])] +
∑

`; α2`>1

α2` ·E[[E`−1]] .

Recall that the expectation of |X`| is α2`−1. For the second term, we will show that Pr[E`−1] is
sufficiently small to cancel the factor α2`.

Let r be a non-negative integer. Then

Pr
[
|X`| ≥ α2` + r

]
≤

E
[
(|X`| −E[|X`|])4

]
(α2`−1 + r)4

≤ O(E[|X`|] + E[|X`|]2)

(α2`−1 + r)4
≤ O(1)

(α2`−1 + r)2
,

Randomized Algorithms, Summer 2016 Lecture 13 (page 6 of 12)

and hence ∑
`; α2`>1

E
[
max(0, |X`| − α2`)

]
≤

∑
`; α2`>1

∑
r≥0

Pr
[
|X`| ≥ α2` + r

]
=

∑
`; α2`>1

∑
r≥0

O(1)

(α2`−1 + r)2

≤ O(1) ·
∑

`; α2`>1

1

α2`−1

= O(1).

The event E` occurs if the first 2` hash values do not belong to B. Let Zi = [h(i) ∈ B] and
Z =

∑
0≤i<2` Zi. Then E[Zi] = m/n and hence E[Z] = α2`. Also E` is equivalent to Z = 0, and we

have

Pr[E`] = Pr[Z = 0] ≤ Pr[|Z −E[Z]| ≥ E[Z]] ≤
E
[

(Z −E[Z])
4
]

E[Z]
4

=
O(E[Z] + E[Z]

2
)

E[Z]
4 =

O(1)

E[Z]
2 =

O(1)

α222`
.

Thus ∑
`; α2`>1

E
[
α2` · [E`−1]

]
≤ O(1) ·

∑
`; α2`>1

1

α2`
= O(1).

This completes the proof of Lemma 13.6.

6 2-Independence

The analysis above can also be carried out with 2-independence. What changes?
The clean-up phase was analyzed with 2-independence. Nothing changes.
Small `, i.e., ` with α2` ≤ 1. Nothing changes.
Large `, i.e., ` with α2` > 1.
Let r be a non-negative integer. Then

Pr
[
|X`| ≥ α2` + r

]
≤

E
[
(|X`| −E[|X`|])2

]
(α2`−1 + r)2

≤ O(E[|X`|] + E[|X`|])
(α2`−1 + r)2

≤ O(1)

(α2`−1 + r)2
,

and hence ∑
`; α2`>1

E
[
max(0, |X`| − α2`)

]
≤

∑
`; α2`>1

∑
r≥0

Pr
[
|X`| ≥ α2` + r

]
=

∑
`; α2`>1

∑
r≥0

O(1)α2`−1

(α2`−1 + r)2

≤ O(1) ·
∑

`; α2`>1

α2`−1

α2`−1

= O(log n).

The event E` occurs if the first 2` hash values do not belong to B. Let Zi = [h(i) ∈ B] and
Z =

∑
0≤i<2` Zi. Then E[Zi] = m/n and hence E[Z] = α2`. Also E` is equivalent to Z = 0, and we

have

Pr[E`] = Pr[Z = 0] ≤ Pr[|Z −E[Z]| ≥ E[Z]] ≤
E
[

(Z −E[Z])
2
]

E[Z]
2

=
O(E[Z] + E[Z])

E[Z]
2 =

O(1)

E[Z]
=
O(1)

α2`
.

Randomized Algorithms, Summer 2016 Lecture 13 (page 7 of 12)

Thus ∑
`; α2`>1

E
[
α2` · [E`−1]

]
≤ O(1) ·

∑
`; α2`>1

O(1) = O(log n).

Theorem 13.11. With 2-independence, the expected running time is O(n log2 n).

7 A Sketch of a Research Immersion Lab/Master Thesis: Ran-
domized Algorithms with Limited Randomness

The goal is to investigate randomized algorithms, in particular quicksort and randomized incremental
constructions under limited randomness.

7.1 Experimental Work: Quicksort

We implement standard randomized quicksort and the randomized quicksort of today’s lecture. We do
a statistic for different number of keys and different degrees of independence: number of comparisons,
expectation, variance, higher moments. In particular, we would like to answer the following questions:

1. Is 2-independence enough? Is 3-independence enough? The best proven upper bounds areO(n(log n)2).
After dividing out n, one should see the difference to log n.

2. What improves, if one goes to higher independence? The expectation? The variance?

7.2 Experimental Work: Randomized Incremental Constructions

We perform similar experiments for randomized incremental constructions. Our first experiments are
for convex hulls in 2- and higher dimensions. Note that no proven bounds are known. We ask the same
questions as above.

7.3 Theoretical Work

Constant Factors: We redo the analysis of Knudsen and Stöckel, but pay attention to constant factors.

The Different Views on Quicksort There are (at least) two views on randomized quicksort.

• Permute the input randomly and then run deterministic quicksort. Or insert the elements into a
binary tree.

• For each subproblem choose the pivot uniformly at random from the subproblem.

In what sense are the two views isomorphic?
In order to choose a random permutation, we need log n! = Θ(n log n) bits.
Let B(n) be the number of bits required for standard quicksort. Then B(1) = 0 and

B(n) = log n+
1

n

∑
1≤i≤n

(B(i− 1) +B(n− i)) = logn+
1

n
+ 2 ·

∑
2≤i≤n−1

B(i).

Thus nB(n) = n log n+ 2 ·
∑

2≤i≤n−1B(i) or

nB(n)− (n− 1)B(n− 1) = n log n− (n− 1) log(n− 1) + 2B(n− 1)

or
nB(n) = (n+ 1)B(n− 1) + n log n− (n− 1) log(n− 1).

I conjecture B(n) = O(n), i.e., the standard view of quicksort requires fewer random bits. Consider the
special case, that we split perfectly in every step. Let n = 2k. Then

B(n) = k + 2B(n− 1) = k + 2(k − 1) + 4(k − 2) + . . .+ 2k(k − k) =
∑

0≤i≤k

i2k−i = 2k ·
∑
i

i2−i = O(2k).

Standard quicksort generates a random tree. If n = 0, the tree is empty, and if n = 1, the tree
consists of a single node. If n ≥ 2, the tree consists of a root and a random left subtree of size i− 1 and
random right subtree of size n− i, where i is chosen uniformly from 1 to n. What does it mean for this
process to be k-independent?

Randomized Algorithms, Summer 2016 Lecture 13 (page 8 of 12)

2-Independence

Analysis of RICs under Limited Independence Does the analysis by Knudsen and Stöckel gen-
eralize to RICs? Let us first try convex hulls in 2d.

k-independent Permutations I found only one reference on the subject. On Permutations with
Limited Independence by TOSHIYA ITOH, YOSHINORI TAKEI and JUN TARUI.

The simplest problem in randomized analysis is the number of left-to-right maxima in a permutation.
What does it mean to do this analysis under limited independence?

In the Knudsen/Stöckel paper, they analyze the number of comparisons between i and pivot elements.
Consider pivots j > i. Pivots are elements j that are chosen before any element in i + 1 to j − 1 are
chosen. In some sense, these are right-to-left minima right of i.

8 Appendix: Proof of Fact 13.8

The paper states Fact 13.8 without a proof and without giving a reference. I tried to prove it myself for
almost a full day, but could not do it. Then I started asking around. My former postdocs Yi Li pointed
me to the lecture notes of Jelani Nelson (minilek@seas.harvard.edu) for the Modalgo summer school
on streaming algorithms. It still took me a day to work out the details.

Thomas proofread the appendix and observed that the case k = 4 has a simple proof.

8.1 The Complex Proof

For a vector x ∈ Rn, ‖x‖2 =
(∑

i x
2
i

)1/2
denotes the 2-norm.

Fact 13.12 (Khintchine Inequality). Let k be an even integer and let x ∈ Rn. Let r1 to rn be k-
independent rademachers (random variables with ri = ±1 with probability 1/2 each). Then1

E

[
(
∑
i

rixi)
k

]
≤ ck ·

(∑
i

x2i

)k/2
= ck · ‖x‖k2 ,

where ck is a constant only depending on k.

Proof. This proof uses some concepts which we have not introduced in class. Let gi be an gaussian
with mean zero and variance 1. Expand E

[
(
∑
i rixi)

k
]

and E
[
(
∑
i gixi)

k
]

into a sum of expectations of
monomials. For a monomial in which one of the xi has an odd exponent, the expectation is zero (for the
rademachers2 and the gaussians). For a monomial in which all exponents are even, the rademacher mono-
mial is dominated by the corresponding gaussian monomial; k-independence suffices for this argument
as all monomials have degree at most k. Thus

E

[
(
∑
i

rixi)
k

]
≤ E

[
(
∑
i

gixi)
k

]
.

A weighted sum of gaussians is again a gaussian; in particular
∑
i gixi is a gaussian with mean zero and

variance
∑
i x

2
i . Thus

E

[
(
∑
i

gixi)
k

]
≤ k!

2k/2(k/2)!
·

(∑
i

x2i

)k/2
.

Lemma 13.13 (Symmetrization). Let k be an even integer, let X1 to Xn be k-independent random
variables, and let r1 to rn be k-independent rademachers. Then

E

(∑
i

(Xi −E[Xi])

)k ≤ 2kE

[
(
∑
i

riXi)
k

]
.

1A naive bound would simply use
∑

i rixi ≤
∑

i |xi|, which is the 1-norm of x. Note that the 2-norm is usually smaller
than the 1-norm. For example, if xi = 1 for all i, then the 1-norm is n and the 2-norm is

√
n.

2Let p be an odd integer. Then E[(rixi)
p] = xp

iE
[
rpi
]
= 0.

minilek@seas.harvard.edu

Randomized Algorithms, Summer 2016 Lecture 13 (page 9 of 12)

Proof. Let Y1 to Yn be copies of the variables X1 to Xn, i.e., identically distributed, but independent.
Let r1 to rn be independent rademachers. Then (we are indicating by subscripts with respect to which
variables we are taking expectations)

E
[
(S −E[S])k

]
= EX

((
∑
i

Xi)−EY

[∑
i

Yi

])k replacing E

[∑
i

Xi

]
by E

[∑
i

Yi

]

= EX

(EY

[
(
∑
i

Xi)− (
∑
i

Yi)

])k moving
∑
i

Xi into EY [.]

= EX

(EY

[∑
i

(Xi − Yi)

])k rearranging the inner sum

≤ EX

EY

(∑
i

(Xi − Yi)

)k Jensen’s inequality

= EX,Y

(∑
i

Xi − Yi

)k writing the two expectations as one

= EX,Y,r

(∑
i

ri(Xi − Yi)

)k (∗)

= EX,Y,r

(∑
i

riXi −
∑
i

riYi

)k rearranging the inner sum

≤ EX,Y,r

(∣∣∣∣∣∑
i

riXi

∣∣∣∣∣+

∣∣∣∣∣∑
i

riYi

∣∣∣∣∣
)k since x− y ≤ |x|+ |y|

= Er

EX,Y

(∣∣∣∣∣∑
i

riXi

∣∣∣∣∣+

∣∣∣∣∣∑
i

riYi

∣∣∣∣∣
)k writing one expectation as two

≤ Er

EX

(2
∑
i

riXi

)k (∗∗)

= 2kEX,r

(∑
i

riXi

)k pulling out the 2.

Jensen’s inequality states f(E[X]) ≤ E[f(X)] for a convex function f ; we apply it to the function
x 7→ xk. (∗) holds since the Xi − Yi are symmetric and independent across i; therefore

∑
i(Xi − Yi)

is distributed as
∑
i ri(Xi − Yi). k-independence suffices since expanding a k-th power into monomials

generates only monomials of degree k. (∗∗) holds since k is even and the Y ’s are an independent copy
of the X’s.

Lemma 13.14. Let X1 to Xn be k-independent random variables and let S be their sum. Then for any
even positive integer k

E

[
(
∑
i

(Xi −E[Xi])
k

]
= dkE

(∑
i

X2
i

)k/2 = dkE
[
‖X‖k2

]
for some constant dk.

Randomized Algorithms, Summer 2016 Lecture 13 (page 10 of 12)

Proof. We first apply symmetrization and then Khintchine:

E

(∑
i

(Xi −E[Xi]

)k ≤ 2kEX,r

(∑
i

riXi

)k symmetrization

≤ 2kckEX

(∑
i

X2
i

)k/2 Khintchine

Fact 13.15. Let p be a positive integer. Then

ap ≤ 2p−1 ((a− y)p + yp) for all non-negative real a and y.

Proof. The claim is obvious for p = 1. So assume p ≥ 2. Consider f(y) = 2p−1 ((a− y)p + yp) − ap.
Then

f ′(y) = 2p−1p
(
yp−1 − (a− y)p−1

)
and f ′′(y) = 2p−1p(p− 1)

(
yp−2 + (a− y)p−2

)
.

and hence f ′(y) = 0 if and only if y = a/2. Also, f(a/2) = 0 and f ′′(y) ≥ 0 for all y. The latter is
obvious for even p, and for odd p and a ≥ y ≥ 0. If p is odd and y ≥ a ≥ 0, yp−2 + (a − y)p−2 =
yp−2 − (y − a)p−2 ≥ 0.

Fact 13.16. Let p be a positive odd integer. Then xp+1 + xp−1 ≥ 2xp for all real x.

Proof. xp+1 + xp−1 − 2xp = xp−1(x− 1)2 ≥ 0 for all x.

We are now ready to prove Fact 13.8.

Fact 13.17. Let k be an even positive integer and let X1 to Xn be k-independent random variables with
values in [0, 1], and let S be their sum. Then

E

[
(
∑
i

(Xi −E[Xi])
k

]
≤ ck ·

(
E[S] + E[S]

k/2
)

for some constant ck.

Proof. We use induction on k. Let k = 2p. Using Lemma 13.14 and Fact 13.15, we obtain

E

(∑
i

(Xi −E[Xi])

)k ≤ dkE[‖X‖k2] by Lemma 13.14

= dkE

(∑
i

(X2
i −E

[
X2
i

]
) +

∑
i

E
[
X2
i

])k/2 rewriting the sum

≤ dk2k/2−1

E

(∑
i

(X2
i −E

[
X2
i

]
)

)k/2+ E

(∑
i

E
[
X2
i

])k/2
where the last inequality follows from Fact 13.15. We next bound the two terms on the right. For the
second term, observe that Xi ∈ [0, 1] implies X2

i ≤ Xi and that the outer expectation is the expectation
of a scalar and hence can be dropped. Thus

E

(∑
i

E
[
X2
i

])k/2 ≤ (∑
i

E[Xi]

)k/2
= E[S]

k/2
.

We turn to the first term.
Let Yi = X2

i and T =
∑
i Yi and write the first term as E

[
(
∑
i(Yi −E[Yi]))

k/2
]
. If k/2 = 1, the term

is zero. If k/2 is even, by the induction hypothesis, the term is bounded by by ck/2(E[T] + E[T]
k/4

) ≤

Randomized Algorithms, Summer 2016 Lecture 13 (page 11 of 12)

2ck/2(E[S] + E[T]
k/2

), where the last inequality uses E[T]
k/4 ≤ max(E[S] ,E[S]

k/2
). If k/2 is odd,

Fact 13.16 with x =
∑
i(X

2
i −E

[
X2
i

]
) yields

E

(∑
i

(X2
i −E

[
X2
i

]
)

)k/2 ≤ 1

2

E

(∑
i

(X2
i −E

[
X2
i

]
)

)k/2+1
+ E

(∑
i

(X2
i −E

[
X2
i

]
)

)k/2−1
≤ 1

2

(
ck/2+1(E[T] + E[T]

(k/2+1)/2
) + ck/2−1(E[T] + E[T]

(k/2−1)/2
)
)

≤ (ck/2+1 + ck/2−1)(E[S] + E[S]
k/2

).

Thus

E

(∑
i

(Xi −E[Xi])

)k ≤ ck (E[S] + E[S]
k/2
)

for some constant ck.

8.2 The Case k = 4

Fact 13.18. Let X1 to Xn be 4-independent random variables with values in [0, 1], and let S be their
sum. Then

E

[
(
∑
i

(Xi −E[Xi])
4

]
≤ c ·

(
E[S] + E[S]

2
)

for some constant c.

Proof. Let Yi = Xi −E[Xi]. Then E[Yi] = 0 and hence

E

[
(
∑
i

Yi)
4

]
=
∑
m

E

 ∏
i∈[n]

Y
m(i)
i

 =
∑
m

∏
i∈[n]

E
[
Y
m(i)
i

]
,

where the summation is over all non-negative vectors m = (m0, . . . ,mn−1) with
∑
im(i) = 4. The second

equality follows from 4-independence. If an exponent m(i) is equal to one, E
[
Y
m(i)
i

]
= E[Yi] = 0. Thus

the only relevant terms are Y 2
i Y

2
j with i 6= j and Y 4

i . Thus

E

[
(
∑
i

Yi)
4

]
=
∑
i 6=j

E
[
Y 2
i

]
E
[
Y 2
j

]
+
∑
i

E
[
Y 4
i

]
≤ 1

2

(∑
i

E
[
Y 2
i

])2

+
∑
i

E
[
Y 4
i

]
.

Next observe
E
[
Y 2
i

]
= E

[
X2
i

]
−E[Xi]

2 ≤ E
[
X2
i

]
≤ E[Xi]

and

E
[
Y 4
i

]
= E

[
X4
i

]
− 4E

[
X3
i

]
E[Xi] + 6E

[
X2
i

]
E[Xi]

2 − 4E[Xi] E[Xi]
3

+ E[Xi]
4

≤ E
[
X4
i

]
+ 6E

[
X2
i

]
E[Xi]

2
+ E[Xi]

4

≤ 8E[Xi]

since X4
i ≤ X2

i ≤ Xi and E[Xi] ≤ 1. Thus

E

[
(
∑
i

Yi)
4

]
≤ 1

2
E[Xi]

2
+ 8E[Xi] .

Randomized Algorithms, Summer 2016 Lecture 13 (page 12 of 12)

8.3 The Case k = 6

Fact 13.19. Let X1 to Xn be 6-independent random variables with values in [0, 1], and let S be their
sum. Then

E

[
(
∑
i

(Xi −E[Xi])
6

]
≤ c ·

(
E[S] + E[S]

3
)

for some constant c.

Proof. Let Yi = Xi −E[Xi]. Then E[Yi] = 0 and hence

E

[
(
∑
i

Yi)
4

]
=
∑
m

E

 ∏
i∈[n]

Y
m(i)
i

 =
∑
m

∏
i∈[n]

E
[
Y
m(i)
i

]
,

where the summation is over all non-negative vectors m = (m0, . . . ,mn−1) with
∑
im(i) = 6. The second

equality follows from 4-independence. If an exponent m(i) is equal to one, E
[
Y
m(i)
i

]
= E[Yi] = 0. Thus

the only relevant terms are Y 2
i Y

2
j Yk with three distinct indices i, j, k, Y 2

i Y
4
j and Y 3

i Y
3
j with i 6= j and

Y 4
i . Thus

E

[
(
∑
i

Yi)
6

]
≤ (
∑
i

E
[
Y 2
i

]
)3 + (

∑
i

E
[
Y 2
i

]
) · (
∑
i

E
[
Y 4
i

]
) + (

∑
i

E
[
Y 3
i

]
)2 +

∑
i

E
[
Y 6
i

]
.

Next observe
E
[
Y 2
i

]
= E

[
X2
i

]
−E[Xi]

2 ≤ E
[
X2
i

]
≤ E[Xi]

and

E
[
Y 4
i

]
= E

[
X4
i

]
− 3E

[
X3
i

]
E[Xi] + 6E

[
X2
i

]
E[Xi]

2 − 3E[Xi] E[Xi]
3

+ E[Xi]
4

≤ E
[
X4
i

]
+ 6E

[
X2
i

]
E[Xi]

2
+ E[Xi]

4

≤ 8E[Xi]

since X4
i ≤ X2

i ≤ Xi and E[Xi] ≤ 1. Thus . . .

This proof strategy should work for all even k. We first expand E
[
(
∑
i Yi)

k
]

into a sum of monomials
where all exponents are even. Then we collect all monomials of the same “type” and simplify. Then we
use

E[Y pi] = E[(Xi −E[Xi])
p] ≤ E[Xp

i] ≤ ExXi

for odd p and

E
[
Y 2p
i

]
= E

[
(Xi −E[Xi])

2p
]
≤

∑
0≤j≤2p

(
2p

j

)
E
[
Xj
i

]
E
[
Xn−j
i

]
≤

 ∑
0≤j≤2p

(
2p

j

) ·E[Xi]

for even 2p. Finally, we use E[S]
j ≤ max(E[S] ,E[S]

k/2
) for 1 ≤ j ≤ k/2.

	Introduction
	Limited Independence
	Quicksort with Limited Independence
	Useful Facts
	Proof of basic lemma
	2-Independence
	A Sketch of a Research Immersion Lab/Master Thesis: Randomized Algorithms with Limited Randomness
	Experimental Work: Quicksort
	Experimental Work: Randomized Incremental Constructions
	Theoretical Work

	Appendix: Proof of Fact 13.8
	The Complex Proof
	The Case k = 4
	The Case k = 6

