
Randomized Algorithms, Summer 2016 Lecture 2 (5 pages)

Min Cut, Fast Cut, Polynomial Identities

Instructor: Thomas Kesselheim and Kurt Mehlhorn

1 Min Cuts in Graphs

Throughout this section, G = (V,E) is a multi-graph. A cut of G is a bipartition (S, S̄) of the vertex
set of G. The capacity of a cut is the number of edges having one endpoint on both sides of the cut. A
min-cut is a cut of minimum capacity.

A minimum cut can be computed with the help of maxflow computations. For some vertex s and
every other vertex t, one computes the minimum cut separating s from t, and then takes the smallest
cut obtained in this way. There are better deterministic algorithms, see for example [SW97] and [MN99,
Section 7.12]

Karger and Stein [KS96] found a simple and efficient randomized algorithm. We will introduce their
algorithm in two steps. We first describe an extremely simple algorithms that finds the minimum cut with
a nonzero, but small probability. In a second step, we will show how to increase the success probability.
The resulting algorithm is a Monte Carlo algorithm. It finds the minimum cut with good probability,
but is not guaranteed to find the minimum cut.

1.1 A First Algorithm

This section follows Section 1.1 in Motwani/Raghavan and Section 1.4 in Mitzenmacher/Upfal.
The algorithm contracts edges until a graph with only two vertices is obtained. It then returns the

resulting cut.
Let e = (u, v) be an edge of G. Contraction of e produces a graph with one less vertex, namely

vertices u and v are removed and all edges connecting u and v are removed. A new vertex z is added
and all edges incident to either u and v (except those connecting u and v) are made incident to z.

After a sequence of contractions, every vertex of the current graph represents a set of vertices of the
original graph. It is easy to keep track of this set using linear lists.

define Sv = {v} for all vertices v of G;
while |V | ≥ 3 do

choose a random edge e = (u, v) and contract it;
let z be the new vertex and define Sz = Su ∪ Sv;

end while
let u and v be the two remaining vertices; return (Su, Sv).

Figure 1: The contraction algorithm for finding min-cuts.

Theorem 2.1. Let (S, S̄) be a fixed min-cut in G. The algorithm above returns this cut with probability
at least

2

n(n− 1)
.

Proof. Let C be the set of edges of the min-cut, i.e., the set of edges having exactly one endpoint in
S and one endpoint in S̄, and let k be its capacity. The algorithm finds the cut if and only if it never
contracts an edge in C. Let Gn = G, Gn−1, Gn−2, . . . , G3, G2 be the sequence of graphs generated by
the algorithm. The following Lemma is key for the analysis.

Lemma 2.2. Let k be the capacity of the minimum cut of a graph G. Then G has at least nk/2 edges.

Proof. For any vertex v, consider the cut (v, V \ v). Its capacity is at least k. Thus every vertex has
degree at least k and hence G has at least nk/2 edges.

Let Ei be the event that no vertex of Gi (interpreted as a set of vertices of G) intersects S and S̄.
In other words, every vertex of Gi is either a subset of S or S̄. In other words, the edges in C are edges

Randomized Algorithms, Summer 2016 Lecture 2 (page 2 of 5)

of Gi. The event E2 occurs if and only if the algorithm returns the cut (S, S̄). We want to lower bound
the probability of the event E2. The probability of the event En is 1. Also,

Pr [E2] = Pr [E2 | E3] ·Pr [E3]E4 · · ·Pr [En−1]EnPr [En] .

Assume Ei and let mi be the number of edges of Gi. Then mi ≥ ik/2 since Gi has a i vertices and hence

Pr [Ei−1 | Ei] =
mi − k
mi

≥ ik/2− k
ik/2

=
i− 2

i
.

Thus

Pr [E2] ≥ 1

3
· 2

4
. . .

n− 2

n
=

2

n(n− 1)
=

1(
n
2

) .
Let N =

(
n
2

)
. The simple contraction algorithm returns any particular min-cut with probability at

least 1/N . This has a somewhat surprising consequence. There are at most n(n−1)/2 distinct min-cuts.
Is there any use in an algorithm that has a success guarantee as low as Θ(1/n2)? We could run

it many times and return the best cut found. After an expected number of
(
n
2

)
repetitions, we have

seen a min-cut at least once. But now the running time is at least n3 and this is slower than the best
deterministic algorithm.

Let us do αN lnn repetitions. Then the probability that we have not seen a min-cut is

(1− 1

N
)αN lnn ≤

(
1

e

)α lnn

=
1

nα
.

Exercise 1. Show how to implement the simple contraction algorithm so that it runs in near linear time
O((n + m)α(n + m)). You may assume that you for any given L you can choose a random integer in
{1, . . . , L} in time O(1). Store the graph as an array of edges. Each edge knows its two endpoints in the
original graph. Each vertex has a list of its incident edges. After a contraction, somehow reorder the
edges. Use a union-find data structure to keep track of the set of vertices represented by a vertex of the
current graph.

1.2 FastCut

This section follows Section 10.2 in Motwani/Raghavan.
There is a more clever way to increase the success probability. Note that in the first iteration the

probability that we do not destroy the cut (S, S̄) is at least n−2/n. This is close to one. The probability
that the cut still exists in Gt is

Pr [Et] = Pr [Et | Et+1] ·Pr [Et+1 | Et+2] · · ·Pr [En−1 | En]Pr [En]

≥ t− 1

t+ 1
· · · n− 2

n

=
(t− 1)t

(n− 1)n
.

Lemma 2.3. Let (S, S̄) be a min-cut in G. The probability that the cut still exists in Gt is Ω(t2/n2).
In particular, for t = n/

√
2, the probability is at least 1/2.

I am ignoring here the fact that t must be an integer. For the details, I refer to Motwani/Raghavan.

In order to obtain a reasonable success guarantee for the simple contraction algorithm, one needs to
run many copies of it. Contraction makes mistakes near the end of the sequence of contractions. At the
beginning the chance of an error is low. This suggests to run only a small number of copies of the simple
algorithm in parallel as long as the graph is still large and to increase the number as the graph becomes
smaller.

Algorithm FastCut realizes this idea as follows. It makes a copy of G and then runs the contraction
algorithm on both copies until the number of vertices is reduced to t = n/

√
2. It then invokes the

algorithm recursively on the graphs obtained, i.e., it makes two copies of each graph and then runs the
contraction algorithm on all four graphs until the number of vertices is reduced to t/

√
2 = n/2. Then

it makes two copies of each of the resulting graphs and runs the contraction algorithm on each of the

Randomized Algorithms, Summer 2016 Lecture 2 (page 3 of 5)

eight graphs until the number of vertices is reduced to (n/2)/
√

2. The recursion ends once the resulting
graphs have only a constant number of vertices (n = 6 works). For such small graphs, the exact min-cut
is computed using a deterministic algorithm.

What is the running time of this algorithm? What is its success probability? The recursion depth is
2 log n as the size of the graphs is reduced by a factor of 1/

√
2 between recursive calls.

We will not analyze the time complexity, but only upper bound the total number of vertices in all
the graphs constructed. Let V (n) be the maximum number of vertices constructed. Then V (n) ≤
2n+ 2V (n/

√
2) = O(n2). We double the number of subproblems at each recursion step but reduce the

size only by a factor of
√

2. Thus the total size of the problems grows in each recursion step by a factor

of
√

2. Since the recursion depth is 2 log n, the growth is by a factor of
√

2
2 logn

= n. We start with a
problem of size n and end up with total size n2. The bottom of the recursion dominates. Formally,

V (n) ≤ 2n+ 2V (n/
√

2) = 2(n+ V (n/
√

2) = 2(n+ 2(n/
√

2 + V (n/
√

2
2
))

≤ 2(n+ 21
n√
2

+ 22
n
√

2
2 + . . .)

= 2n
∑

1≤i≤2 logn

2i
√

2
i

= 2n
∑

1≤i≤2 logn

√
2
i

= O(n
√

2
2 logn

)

= O(n2).

In comparison, running the simple contraction algorithm n2 times will construct Θ(n3) vertices.
Let us now turn to the success probability. Let P (n) be the probability that the algorithms returns

a min-cut when applied to a graph with n vertices. Then P (n0) = 1, when we stop the recursion at
n0 vertices. The algorithm returns a min-cut, if the min-cut survives one of the contractions from n to
t = n/

√
2 vertices (probability 1/2 for each of the contraction sequences) and the corresponding recursive

call returns a min-cut (probability P (n/
√

2)). Thus a branch fails with probability 1 − 1
2P (n/

√
2) and

hence both branches fails with probability (1− 1
2P (n/

√
2))2. Thus

P (n) ≥ 1− (1− 1

2
P (n/

√
2))2.

How can one solve such a recurrence? The first step is always a change of variables. Instead of indexing
by problem size, we index by the depth of the recursion. Define p(k) = P (n), where k = 2 log n− O(1)
is the recursion depth. We also replace the inequality by an equality. Then

p(k) = 1− (1− 1

2
p(k − 1))2 = p(k − 1)− p(k − 1)2

4
.

This looks already much simpler. The pk are decreasing and converge to zero. Also p(0) = 1. It is
usually easier to work with large quantities and therefore we define q(k) = 1/p(k). Then q(0) = 1 and
(after a short calculation)

q(k) = q(k − 1) +
1

4
+

1

16q(k − 1)− 4
.

Thus q(k) ≥ 1 + k/4 and q(k) ≤ 1 + k/2 as a simple induction shows.1 So q(k) = Θ(k) and hence
p(k) = Θ(1/k) and hence P (n) = Θ(1

logn).

Theorem 2.4. Algorithm Fast-Cut returns a min-cut with probability Ω(1/ log n).

Exercise 2. How often do you have to run the algorithm in order to increase the success probability to
1/2 or to 1/n, respectively.

1Since q(k) ≥ 1 for all k, we have q(k) ≥ q(k−1)+1/4. Thus q(k) ≥ 1+k/4. Since q(k) ≥ 1, we have 1/(16q(k−1)−4) ≤
1/4 and hence q(k) ≤ 1 + k/2.

Randomized Algorithms, Summer 2016 Lecture 2 (page 4 of 5)

Require: S and T are multisets of size n in {0, . . .m− 1}; p is a prime greater or equal to m.
Construct the polynomials S(x) and T (x) as described in the text.
Choose a random α ∈ Zp and computer S(α) mod p and T (α) mod p.
If S(α) 6= T (α) mod p, declare S 6= T . This answer is correct. If S(α) = T (α) mod p, return that
the two sets are equal. This answer may be incorrect.

Figure 2: An algorithm for deciding whether two sets S and T are equal.

2 Set Equality and Polynomial Identities

This section summarizes Sections 7.1 and 7.2 in Motwani/Raghavan.
Let S and T be two equal-sized multi-sets of integers in the range 0 to m− 1. Let n = |S| = |T |. We

want to decide whether S and T are equal.
The standard deterministic solution is to sort S and T and then decide equality by a linear scan over

the sequences. If bucket sort is used, this takes time O(n+m), where n = |S| = |T |.
With randomization, we can do differently. We associate a polynomial of degree n with each set,

namely

S(x) =
∏
z∈S

(x− z) T (x) =
∏
z∈T

(x− z)

and consider their difference D(x) = S(x) − T (x). If the sets S and T are equal, the polynomials S(x)
and T (x) are identical and hence D(x) is identically zero. If S and T are not equal, D(x) is non-vanishing
and hence has at most n roots.

Theorem 2.5. Let p be a prime greater or equal to m.

• Let D(x) =
∑

0≤i≤ aix
i with ai ∈ Zp for all i and an 6= 0 be a polynomial. Let D(x) =

∏
1≤i≤n(x−

αi) be a factorization of D(x) over Zp. Then D(α) 6= 0 mod p for α 6∈ {α1, . . . , αn}. In particular,

Pr [D(α) 6= 0 mod p] ≥ p− n
p

= 1− n

p
.

For this statement it is assumed that α is chosen uniformly from Zp.

• Assume S 6= T . Then D(x) =
∑

0≤i≤ aix
i with ai 6= 0 mod p for some i.

Proof. Zp is a field and in a field a product is zero if and only if one of the factors is zero.2 Thus
D(α) = 0 mod p implies α = αi for some i.

For the second part, let C be the intersection of S and T . For example, if S = {2, 2, 3} and
T = {2, 3, 3}, C = {2, 3}. Write S = C ∪ S′ and T = C ∪ T ′. Then S′ and T ′ are disjoint and

D(x) = S(x)− T (x) =
∏
z∈C

(x− z) ·

(∏
z∈S′

(x− z)−
∏
z∈T ′

(x− z)

)
= C(x)D′(x).

By the first part, there are at most |C| elements α for which C(α) = 0. The polynomial D′(x) has degree
at most n − |C|. It is non-vanishing, since for any z ∈ T ′, we have D′(z) = S′(z) − T ′(z) = S′(z) 6=
0 mod p. Thus there are at most n−|C| elements α with D′(α) = 0. We conclude that there are at most
n elements α for which D(α) = 0 mod p. Thus D is non-vanishing.

The theorem above is readily extended to multivariate polynomials.

Theorem 2.6 (Schwartz-Zippel). Let Q(x1, . . . , xn) be a non-vanishing multivariate polynomial with
coefficients in the field F of total degree d, i.e., for any monomial xe11 . . . xenn of Q, we have

∑
i ei ≤ n.

Let S ⊆ F be a finite set. For r1 to rn chosen independently and uniformly at random from S, we have

Pr [Q(r1, . . . , rn) = 0] ≤ d

|S|
.

2If p is not a prime, Zp is not a field and this is not true. Take p = 100. Then 102 = 100 = 0 mod 100 and hence
x(x − 20) = x2 − 20x = x2 − 20x + 100 = (x − 10)(x − 10) mod 100. Thus the polynomial D(x) = x2 − 20x has several
factorizations.

Randomized Algorithms, Summer 2016 Lecture 2 (page 5 of 5)

Proof. The proof is by induction on the number of variables. A non-vanishing univariate polynomial of
degree d has at most d roots. This establishes the result for n = 1.

If n > 1, we write the polynomial as a polynomial in the variable xn, say

Q(x1, . . . , xn) =
∑

0≤i≤k

Qi(x1, . . . , xn−1)xin,

where the degree of Q in xn is equal to k. Then Qk(x1, . . . , xn−1) is non-vanishing and its total degree
is at most d− k.

Consider now a random tuple (r1, . . . , rn). If Q(r1, . . . , rn) = 0 then either Qk(r1, . . . , rn) = 0 or rn is
a zero of the non-vanishing polynomial

∑
0≤i≤kQi(r1, . . . , rn−1)xin of degree k. The former probability

is at most (d− k)/ |S| and the later probability is at most k/ |S|. Thus

Pr [Q(r1, . . . , rn) = 0]

≤ Pr [Qk(r1, . . . , rn−1) = 0] + Pr

 ∑
0≤i≤k

Qi(r1, . . . , rn−1)rin = 0

∣∣∣∣∣∣ Qk(r1, . . . , rn−1) = 0

≤ d− k
|S|

+
k

|S|
=

d

|S|
.

A useful special case is as follows.

Theorem 2.7. Let u ∈ Znp be a nonzero vector. For a vector r ∈ Znp of n independently chosen random
components,

Pr
[
uT r 6= 0

]
= 1/p.

Proof. We could appeal to Schwarz-Zippel with S = Zp and d = 1. Let us give a direct proof.

Assume ui 6= 0. Then uT r = 0 iff uiri = −
∑
j 6=i ujrj iff ri = −

(∑
j 6=i ujrj

)
/ui. For fixed rj , j 6= i,

there is thus one exactly choice for ri. Thus Pr
[
uT r = 0

]
= 1/p.

Theorem 2.7 leads to an efficient randomized algorithm for checking matrix products.

Require: A, B, and C are n× n matrices over Zp, where p is a prime.
Ensure: decide if A = B · C.

choose a random vector r ∈ Znp and compute Ar and B(Cr). The latter is two matrix-vector
products. return equal if Ar = B(Cr) and unequal otherwise.

Figure 3: An algorithm for verifying matrix products.

If A = B ·C, the algorithm always returns “equal”. However, if A 6= B ·C, it may also return “equal”.
Thus the algorithm is a Monte Carlo algorithm (it may give the wrong answer) with one-sided error (the
answer “unequal” is always correct, however, the answer “equal” may be incorrect.).

Theorem 2.8 (Freiwalds). The probability that the algorithm incorrectly returns “equal” is at most 1/p.

Proof. Let D = A − B · C and assume D 6= 0. Then D has at least one nonzero row, say u, and
Pr
[
uT r 6= 0

]
= 1/p.

References

[KS96] D.R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the ACM,
43(4):601–640, 1996.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

[SW97] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM, 44(4):585–591, July
1997.

	Min Cuts in Graphs
	A First Algorithm
	FastCut

	Set Equality and Polynomial Identities

