Randomized Algorithms

The Probabilistic Method

Thomas Kesselheim Kurt Mehlhorn

June, 2016

The Probabilistic Method in a Nutshell

Color the edges of K_n with two colors so that it has no monochromatic *Kk*?

- In order to show the existence of an object with certain properties, demonstrate a sample space of objects in which the probability is positive that a randomly selected object has the property.
- Since we work with finite sample spaces, the existence proofs are, in principle, algorithmic. An object with the desired properties can be found be exhaustive search.
- Sometimes, the existence proofs can be converted into efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on the subject is "The Probabilistic Method" by Noga Alon and Joel Spencer.

If $\binom{n}{k}$ $\binom{n}{k} < 2^{\binom{k}{2}-1}$, then it is possible to color the edges of K_n with *two colors so that it has no monochromatic K^k .*

- There are $2^{\binom{n}{2}}$ possible colorings. We pick each one with probability 2⁻⁽²⁾.
- There are $\binom{n}{k}$ $\binom{n}{k}$ different *k*-vertex cliques in K_n . Number them. Let *Aⁱ* be the event that the *i*-th clique is monochromatic. Then **Pr** $[A_i] = 2^{-\binom{k}{2}-1}$.
- By union bound, $\textbf{Pr}\left[A_1 \lor \ldots \lor A_{\binom{n}{k}}\right]$ $\big] \leq {n \choose k}$ $\binom{n}{k} 2^{-((\binom{k}{2})-1)} < 1.$

\n- Thus
$$
\Pr\left[\overline{A_1} \wedge \ldots \wedge \overline{A_{\binom{n}{k}}}\right] > 0.
$$
\n

 $n = 1000,\, k = 20.\, \left(\frac{\textit{n}}{\textit{k}}\right) \leq \left(\frac{\textit{en}}{\textit{k}}\right)^k \leq 150^{20} \leq 2^{160}, \, 2^{\binom{k}{2}-1} = 2^{20 \cdot 19 / 2 - 1} = 2^{189}$

In an undirected graph G with m edges there is always a cut of size at least m/2*.*

- We construct a random cut by assigning the vertices randomly to the two sides of the cut.
- For an edge *e*, let $X_e = 1$ if the endpoints are assigned to different sides, and 0 otherwise. Then $E[X_e] = 1/2$.
- Let $X = \sum_{e \in E} X_e$ be the expected size of the cut. Then **E**[*X*] = $\sum_{e \in E}$ **E**[*X*_e] = *m*/2.
- Thus there exists a cut (A, B) of size $m/2$.

A Las Vegas Algorithm for Finding a Large Cut

For a partition (A, B) of the vertices, let $C(A, B)$ be the capacity of the cut (= number of edges with one endpoint on both sides). Clearly, $C(A, B) \le m$ always.

• Let
$$
p = Pr[C(A, B) \ge m/2]
$$
. Then

$$
\frac{m}{2} = \mathbf{E} [C(A, B)] = \sum_{i < m/2} i \cdot \mathbf{Pr} [C(A, B) = i] + \sum_{i \ge m/2} i \cdot \mathbf{Pr} [C(A, B) = i]
$$

$$
\le (1 - p) \left(\frac{m}{2} - \frac{1}{2} \right) + pm,
$$

- which implies $p > 1/(m + 1)$.
- The algorithm is now clear: Generate a random cut and determine its capacity. Repeat until a cut of capacity at least *m*/2 has been found.
- The expected number of repetitions is $1/p = O(m)$.

Derandomization (Method of Conditional Expectations)

- **Number the vertices** v_1 **,** v_2 **to** v_n **.**
- **E**[$C(A, B) | x_1, \ldots, x_k$] = conditional expectation of $C(A, B)$ given that we place vertex v_i on side $x_i \in \{A, B\}$ for $1 < i < k$.
- \blacksquare To show: can efficiently find x_1 to x_n such that $E[C(A, B)] \le E[C(A, B) | x_1, \ldots, x_k]$ for all *k*.
- $k = 1$: **E**[*C*(*A*, *B*)] = **E**[*C*(*A*, *B*) | *x*₁] since RHS does not depend on x_1 .
- Induction step: place v_{k+1} randomly. Then

$$
\mathbf{E}\left[C(A, B) | x_1, \ldots, x_k\right] = \frac{1}{2} \mathbf{E}\left[C(A, B) | x_1, \ldots, x_k, A\right] + \frac{1}{2} \mathbf{E}\left[C(A, B) | x_1, \ldots, x_k, B\right].
$$

Compute both expectations on the right and fix x_{k+1} **to** choose the larger one.

Derandomization, Continued

- \blacksquare How to compute \blacksquare $[C(A, B) | x_1, \ldots, x_k, A]$.
- for edges having both endpoints among v_1 to v_{k+1} contribution is clear.
- \bullet other edges contribute with probability 1/2.
- contribution by other edges is the same for both placements.
- So we place v_{k+1} such that we cut at least half of the edges connecting it to vertices v_1 to v_k .
- direct analysis of deterministic algorithm: Let d'_{k+1} be the number of edges connecting v_{k+1} to $\{v_1, \ldots, v_k\}$.
- **Place** v_1 **arbitrarily and** v_{k+1} **,** $k \geq 1$ **, such that at least** $d'_{k+1}/2$ edges are cut. Then total number of edges cut is at least $\sum_{1 \leq k \leq n} d'_k/2 = m/2$.

A graph G = (*V*, *E*) *with n vertices and m edges has an independent set of size at least n*2/(4*m*)*.*

- **Example 1** Let $d = 2m/n$ be the average degree of the vertices.
	- Delete each vertex independently with probability $1 1/d$.
	- For each remaining edge, remove it and one of its adjacent vertices.
- **Let X** be the number of vertices surviving the first step. Then $E[X] = n/d$. Let *Y* be the number of edges surviving the first step. Then $E[Y] = nd/2 \cdot (\frac{1}{d})$ $\left(\frac{1}{d}\right)^2 = \frac{n}{20}$ 2*d* .
- The second step removes the surviving edges and at most *Y* vertices. Thus alg outputs an independent set of size at least *X* − *Y* and

$$
E[X - Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d} = \frac{n^2}{4m}.
$$

For every k ≥ 3 *and large n, there is a graph with n vertices,* $\overline{1}$ 4 *n* ¹+1/*^k edges, and girth (length of a shortest cycle) at least k.*

- Sample a random graph $G \in \mathcal{G}_{n,p}$ with $p = n^{1/k-1}$. Let $X = #$ of edges. Then $E[X] = \binom{n}{2}$ $\binom{n}{2} \cdot p = \frac{1}{2}$ $rac{1}{2}(1-\frac{1}{n})$ $\frac{1}{n}$) $n^{1+1/k}$.
- Let *Y* = number of cycles in *G* of length at most *k* − 1.
- There are at most $\binom{n}{i}$ *i* (*i*−1)! 2 candidate cycles of length *i* and each one is present with probability *p i* . Thus

$$
\mathsf{E}\left[Y\right] = \sum_{i=3}^{k-1} {n \choose i} \frac{(i-1)!}{2} p^i \leq \sum_{i=3}^{k-1} n^i p^i = \sum_{i=3}^{k-1} n^{i/k} < kn^{(k-1)/k}.
$$

For each cycle of length $\leq k-1$ in G , we remove one of its edges. The expected number of edges remaining is

$$
\mathsf{E}\left[X - Y\right] \geq \frac{1}{2}\left(1 - \frac{1}{n}\right)n^{1 + 1/k} - kn^{(k-1)/k} \geq \frac{1}{4}n^{1 + 1/k}.
$$

The Lovasz Local Lemma

Let *E*¹ to *Eⁿ* be a set of "bad events" in a probability space. We want to show that the probability that no bad event occurs is positive. This is easy if the events are mutually independent, *i.e.*, for any *I* ⊆ { 1, ..., *n* }

$$
\Pr\left[\cap_{i\in I}E_i\right]=\prod_{i\in I}\Pr\left[E_i\right].
$$

Then the events $\overline{E_i}$ are also independent (prove it) and hence

$$
\Pr\left[\cap_{1\leq i\leq n}\overline{E_{i}}\right]=\prod_{1\leq i\leq n}\Pr\left[\overline{E_{i}}\right]=\prod_{1\leq i\leq n}\left(1-\Pr\left[E_{i}\right]\right)>0
$$

provided that **Pr**[*Eⁱ*] < 1 for all *i*.

Lovasz showed that less than mutual independence suffices to show that the probability of no bad event happening is positive.

The Dependency Graph

An event *E* is mutually independent of the events E_1 to E_n if for any subset $I \subseteq \{1,\ldots,n\}$, Pr $[E \mid \bigcap_{i \in I}E_i] =$ Pr $[E]$.

Dependency Graph

A dependency graph for a set of events E_1 to E_n is a graph $G = (V, E)$ on vertex set $\{1, \ldots n\}$ such that for all *i*, E_i is mutually independent of the events $\{E_j \mid (i,j) \notin E\}$.

Example (Edge Disjoint Paths)

n pairs of users need to communicate in a graph. Each pair $i \in \{1, \ldots, n\}$ can choose from a collection F_i of paths. For $i \neq j$, let $E_{\{i,j\}}$ be the event that the paths chosen by pairs *i* and *j* share an edge; this is a bad event. Then *Ei*,*^j* is i ndependent of all events $E_{\set{i',j'}}$ when $\set{i,j} \cap \set{i',j'} = \emptyset.$ So each event has < 2*n* neighbors in the dependency graph. Note that there are $n(n-1)/2$ events.

Let d ∈ $\mathbb N$ *and* $p \in \mathbb R$ *with* 4*dp* < 1*. Let* E_1, \ldots, E_n *be events. If*

1. **Pr** $[E_i] \leq p$ for all i, and

2. *the degree of their dependency graph is bounded by d, then* $\Pr\left[\cap_{1\leq i\leq n}\overline{E_i}\right]>0.$

Disjoint Paths: Assume each *Fⁱ* consists of *m* paths. For *i* and *j*: a path in F_i intersects with at most k paths in F_j . Then

$$
\Pr\left[E_{\{i,j\}}\right] \leq \frac{k}{m} \text{ and } d < 2n \text{ and hence } 4dp < \frac{8nk}{m}.
$$

So if 8*nk*/*m* ≤ 1, there is a choice of paths such that the *n* paths are disjoint.

Let $\varphi = C_1 \wedge \ldots \wedge C_m$, where each C_i has exactly k literals. If *no variable appears in more than T* $= 2^{k}/(4k)$ *clauses,* φ *is satisfiable.*

- We assign random truth values to the variables.
- Let *Eⁱ* be the event that *i*-th clause is false. Then **Pr** $[E_i] = 2^{-k}$. Thus $p = 2^{-k}$.
- C_i is independent of C_j if they do not share a variable.
- Each of the *k* variables of a clause can appear in *T* other clauses. Hence $d \leq k \cdot T \leq 2^k/4$.
- Thus $4pd \leq 1$ and hence a satisfying assignment exists.

Under somewhat stronger assumptions, this can be turned into an algorithm.

Proof of Local Lemma

Claim

For all $S \subseteq \{1, \ldots, n\}$ and $k \notin S$

$$
\Pr\left[E_k \mid \cap_{i\in S}\overline{E_i}\right] \leq 2p.
$$

Claim → Local Lemma

$$
\begin{aligned} \Pr\left[\cap_{1\leq i\leq n}\overline{E_{i}}\right] &= \prod_{1\leq i\leq n} \Pr\left[\overline{E_{i}} \mid \cap_{1\leq j="" -="" 0="" 2p\right)="" \\="" \cap_{1\leq="" \end{aligned}<="" \left(1="" \mid="" \pr\left[e_{i}="" \prod_{1\leq="" i\leq="" j
$$

$\text{For all } S \subseteq \{1, \ldots, n\} \text{ and } k \notin S: \text{Pr}\left[E_k \mid \bigcap_{i \in S} \overline{E_i}\right] \leq 2p.$

Show $\Pr\left[\cap_{i \in \mathcal{S}}\overline{E_{i}}\right]>0$ as in Claim \rightarrow Local Lemma. Use induction on $s = |S|$. $s = 0$ is trivial. Split *S* into $S_1 = \{i \mid k \text{ and } i \text{ are connected in dependency graph} \}$ and $S_2 = S \setminus S_1$. If S_1 is empty, full independence. So assume $|S_2| < |S|$. Let $F_{S_1} = \cap_{i \in S_1} E_i$. Similarly, F_{S_2}, F_S . Note $|S_1| \leq d$.

$$
Pr [E_k | F_S] = \frac{Pr [E_k \cap F_S]}{Pr [F_S]} = \frac{Pr [E_k \cap F_{S_1} | F_{S_2}] Pr [F_{S_2}]}{Pr [F_{S_1} | F_{S_2}] Pr [F_{S_2}]}
$$

$$
\Pr\left[E_k \cap F_{S_1} \mid F_{S_2}\right] \le \Pr\left[E_k \mid F_{S_2}\right] \le p \qquad E_k \text{ indep of } S_2
$$

$$
\begin{aligned} \Pr\left[F_{S_1} \mid F_{S_2}\right] &= \Pr\left[\cap_{i \in S_1} \overline{E}_i \mid F_{S_2}\right] \ge 1 - \sum_{i \in S_1} \Pr\left[E_i \mid F_{S_2}\right] \\ &\ge 1 - \sum_{i \in S_1} 2p \ge 1 - 2pd \ge 1/2. \end{aligned}
$$

Summary

- In order to show the existence of an object with certain properties, demonstrate a sample space of objects in which the probability is positive that a randomly selected object has the property.
- Since we work with finite sample spaces, the existence proofs are, in principle, algorithmic. An object with the desired properties can be found be exhaustive search.
- Sometimes, the existence proofs can be converted into efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on the subject is "The Probabilistic Method" by Noga Alon and Joel Spencer.