Randomized Algorithms

The Probabilistic Method

Thomas Kesselheim Kurt Mehlhorn

June, 2016

The Probabilistic Method in a Nutshell

Color the edges of K_n with two colors so that it has no monochromatic K_k ?

- In order to show the existence of an object with certain properties, demonstrate a sample space of objects in which the probability is positive that a randomly selected object has the property.
- Since we work with finite sample spaces, the existence proofs are, in principle, algorithmic. An object with the desired properties can be found be exhaustive search.
- Sometimes, the existence proofs can be converted into efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on the subject is "The Probabilistic Method" by Noga Alon and Joel Spencer.

If $\binom{n}{k} < 2^{\binom{k}{2}-1}$, then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_k .

- There are $2^{\binom{n}{2}}$ possible colorings. We pick each one with probability $2^{-\binom{n}{2}}$.
- There are ⁽ⁿ⁾/_k different *k*-vertex cliques in *K_n*. Number them. Let *A_i* be the event that the *i*-th clique is monochromatic. Then **Pr** [*A_i*] = 2^{-(^k₂)-1}.
- By union bound, $\Pr\left[A_1 \vee \ldots \vee A_{\binom{n}{k}}\right] \leq \binom{n}{k} 2^{-\binom{k}{2}-1} < 1.$

• Thus
$$\Pr\left[\overline{A_1} \land \ldots \land \overline{A_{\binom{n}{k}}}\right] > 0.$$

 $n = 1000, \, k = 20. \, {n \choose k} \le \left(rac{en}{k}
ight)^k \le 150^{20} \le 2^{160}, \, 2^{{k \choose 2}-1} = 2^{20 \cdot 19/2 - 1} = 2^{189}$

In an undirected graph G with m edges there is always a cut of size at least m/2.

- We construct a random cut by assigning the vertices randomly to the two sides of the cut.
- For an edge *e*, let $X_e = 1$ if the endpoints are assigned to different sides, and 0 otherwise. Then **E** $[X_e] = 1/2$.
- Let $X = \sum_{e \in E} X_e$ be the expected size of the cut. Then $\mathbf{E}[X] = \sum_{e \in E} \mathbf{E}[X_e] = m/2.$
- Thus there exists a cut (*A*, *B*) of size *m*/2.

A Las Vegas Algorithm for Finding a Large Cut

For a partition (A, B) of the vertices, let C(A, B) be the capacity of the cut (= number of edges with one endpoint on both sides). Clearly, C(A, B) ≤ m always.

• Let
$$p = \Pr[C(A, B) \ge m/2]$$
. Then

$$\frac{m}{2} = \mathbf{E}\left[C(A,B)\right] = \sum_{i < m/2} i \cdot \Pr\left[C(A,B) = i\right] + \sum_{i \ge m/2} i \cdot \Pr\left[C(A,B) = i\right]$$
$$\leq (1-p)\left(\frac{m}{2} - \frac{1}{2}\right) + pm,$$

- which implies $p \ge 1/(m+1)$.
- The algorithm is now clear: Generate a random cut and determine its capacity. Repeat until a cut of capacity at least m/2 has been found.
- The expected number of repetitions is 1/p = O(m).

Derandomization (Method of Conditional Expectations)

- Number the vertices *v*₁, *v*₂ to *v*_n.
- $E[C(A, B) | x_1, ..., x_k] =$ conditional expectation of C(A, B) given that we place vertex v_i on side $x_i \in \{A, B\}$ for $1 \le i \le k$.
- To show: can efficiently find x_1 to x_n such that $\mathbf{E}[C(A, B)] \leq \mathbf{E}[C(A, B) \mid x_1, \dots, x_k]$ for all k.
- *k* = 1: E [*C*(*A*, *B*)] = E [*C*(*A*, *B*) | *x*₁] since RHS does not depend on *x*₁.
- Induction step: place v_{k+1} randomly. Then

$$E[C(A, B) | x_1, \dots, x_k] = \frac{1}{2} E[C(A, B) | x_1, \dots, x_k, A] + \frac{1}{2} E[C(A, B) | x_1, \dots, x_k, B].$$

 Compute both expectations on the right and fix x_{k+1} to choose the larger one.

Derandomization, Continued

- How to compute $\mathbf{E}[C(A, B) | x_1, \dots, x_k, A]$.
- for edges having both endpoints among v₁ to v_{k+1} contribution is clear.
- other edges contribute with probability 1/2.
- contribution by other edges is the same for both placements.
- So we place v_{k+1} such that we cut at least half of the edges connecting it to vertices v₁ to v_k.
- direct analysis of deterministic algorithm: Let d'_{k+1} be the number of edges connecting v_{k+1} to { v₁,..., v_k }.
- Place v_1 arbitrarily and v_{k+1} , $k \ge 1$, such that at least $d'_{k+1}/2$ edges are cut. Then total number of edges cut is at least $\sum_{1 \le k \le n} d'_k/2 = m/2$.

Independent Sets

Theorem

A graph G = (V, E) with n vertices and m edges has an independent set of size at least $n^2/(4m)$.

- Let d = 2m/n be the average degree of the vertices.
 - Delete each vertex independently with probability 1 1/d.
 - For each remaining edge, remove it and one of its adjacent vertices.
- Let X be the number of vertices surviving the first step. Then $\mathbf{E}[X] = n/d$. Let Y be the number of edges surviving the first step. Then $\mathbf{E}[Y] = nd/2 \cdot \left(\frac{1}{d}\right)^2 = \frac{n}{2d}$.
- The second step removes the surviving edges and at most Y vertices. Thus alg outputs an independent set of size at least X – Y and

$$\mathbf{E}\left[X-Y\right] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d} = \frac{n^2}{4m}.$$

For every $k \ge 3$ and large n, there is a graph with n vertices, $\frac{1}{4}n^{1+1/k}$ edges, and girth (length of a shortest cycle) at least k.

- Sample a random graph $G \in \mathcal{G}_{n,p}$ with $p = n^{1/k-1}$. Let X = # of edges. Then $\mathbf{E}[X] = {n \choose 2} \cdot p = \frac{1}{2} \left(1 - \frac{1}{n}\right) n^{1+1/k}$.
- Let Y = number of cycles in G of length at most k 1.
- There are at most $\binom{n}{i} \frac{(i-1)!}{2}$ candidate cycles of length *i* and each one is present with probability p^i . Thus

$$\mathbf{E}[Y] = \sum_{i=3}^{k-1} \binom{n}{i} \frac{(i-1)!}{2} p^i \le \sum_{i=3}^{k-1} n^i p^i = \sum_{i=3}^{k-1} n^{i/k} < k n^{(k-1)/k}.$$

 For each cycle of length ≤ k − 1 in G, we remove one of its edges. The expected number of edges remaining is

$$\mathbf{E}[X-Y] \geq \frac{1}{2} \left(1-\frac{1}{n}\right) n^{1+1/k} - k n^{(k-1)/k} \geq \frac{1}{4} n^{1+1/k}.$$

The Lovasz Local Lemma

Let E_1 to E_n be a set of "bad events" in a probability space. We want to show that the probability that no bad event occurs is positive. This is easy if the events are mutually independent, i.e., for any $I \subseteq \{1, ..., n\}$

$$\Pr\left[\bigcap_{i\in I} E_i\right] = \prod_{i\in I} \Pr\left[E_i\right].$$

Then the events $\overline{E_i}$ are also independent (prove it) and hence

$$\Pr\left[\cap_{1\leq i\leq n}\overline{E_i}\right] = \prod_{1\leq i\leq n}\Pr\left[\overline{E_i}\right] = \prod_{1\leq i\leq n} (1 - \Pr\left[E_i\right]) > 0$$

provided that $\Pr[E_i] < 1$ for all *i*.

Lovasz showed that less than mutual independence suffices to show that the probability of no bad event happening is positive.

The Dependency Graph

An event *E* is mutually independent of the events E_1 to E_n if for any subset $I \subseteq \{1, ..., n\}$, $\Pr[E | \cap_{i \in I} E_i] = \Pr[E]$.

Dependency Graph

A dependency graph for a set of events E_1 to E_n is a graph G = (V, E) on vertex set $\{1, ..., n\}$ such that for all i, E_i is mutually independent of the events $\{E_j \mid (i, j) \notin E\}$.

Example (Edge Disjoint Paths)

n pairs of users need to communicate in a graph. Each pair $i \in \{1, ..., n\}$ can choose from a collection F_i of paths. For $i \neq j$, let $E_{\{i,j\}}$ be the event that the paths chosen by pairs *i* and *j* share an edge; this is a bad event. Then $E_{i,j}$ is independent of all events $E_{\{i',j'\}}$ when $\{i,j\} \cap \{i',j'\} = \emptyset$. So each event has < 2n neighbors in the dependency graph. Note that there are n(n-1)/2 events.

Let $d \in \mathbb{N}$ and $p \in \mathbb{R}$ with $4dp \leq 1$. Let E_1, \ldots, E_n be events. If

1. **Pr** $[E_i] \leq p$ for all *i*, and

2. the degree of their dependency graph is bounded by d, then $\Pr\left[\cap_{1 \le i \le n} \overline{E_i}\right] > 0.$

Disjoint Paths: Assume each F_i consists of *m* paths. For *i* and *j*: a path in F_i intersects with at most *k* paths in F_j . Then

$$\Pr\left[E_{\{i,j\}}\right] \leq \frac{k}{m} \text{ and } d < 2n \text{ and hence } 4dp < \frac{8nk}{m}.$$

So if $8nk/m \le 1$, there is a choice of paths such that the *n* paths are disjoint.

Let $\varphi = C_1 \wedge \ldots \wedge C_m$, where each C_i has exactly k literals. If no variable appears in more than $T = 2^k/(4k)$ clauses, φ is satisfiable.

- We assign random truth values to the variables.
- Let E_i be the event that *i*-th clause is false. Then **Pr** $[E_i] = 2^{-k}$. Thus $p = 2^{-k}$.
- C_i is independent of C_j if they do not share a variable.
- Each of the *k* variables of a clause can appear in *T* other clauses. Hence $d \le k \cdot T \le 2^k/4$.
- Thus $4pd \leq 1$ and hence a satisfying assignment exists.

Under somewhat stronger assumptions, this can be turned into an algorithm.

Proof of Local Lemma

Claim

For all
$$S \subseteq \{1, \ldots, n\}$$
 and $k \notin S$

$$\Pr\left[E_k \mid \cap_{i \in S} \overline{E_i}\right] \leq 2p.$$

Claim \rightarrow Local Lemma

$$\Pr\left[\bigcap_{1 \le i \le n} \overline{E_i}\right] = \prod_{1 \le i \le n} \Pr\left[\overline{E_i} \mid \bigcap_{1 \le j < i} \overline{E_j}\right]$$
$$= \prod_{1 \le i \le n} \left(1 - \Pr\left[E_i \mid \bigcap_{1 \le j < i} \overline{E_j}\right]\right)$$
$$\ge \prod_{1 \le i \le n} \left(1 - 2p\right) > 0$$

Proof of Claim

For all $S \subseteq \{1, \ldots, n\}$ and $k \notin S$: $\Pr\left[E_k \mid \bigcap_{i \in S} \overline{E_i}\right] \leq 2p$.

Show $\Pr\left[\bigcap_{i \in S} \overline{E_i}\right] > 0$ as in Claim \rightarrow Local Lemma.

Use induction on s = |S|. s = 0 is trivial. Split *S* into $S_1 = \{i \mid k \text{ and } i \text{ are connected in dependency graph}\}$ and $S_2 = S \setminus S_1$. If S_1 is empty, full independence. So assume $|S_2| < |S|$. Let $F_{S_1} = \bigcap_{i \in S_1} \overline{E_i}$. Similarly, F_{S_2} , F_S . Note $|S_1| \le d$.

$$\Pr\left[E_{k} \mid F_{S}\right] = \frac{\Pr\left[E_{k} \cap F_{S}\right]}{\Pr\left[F_{S}\right]} = \frac{\Pr\left[E_{k} \cap F_{S_{1}} \mid F_{S_{2}}\right]\Pr\left[F_{S_{2}}\right]}{\Pr\left[F_{S_{1}} \mid F_{S_{2}}\right]\Pr\left[F_{S_{2}}\right]}$$

$$\Pr\left[E_k \cap F_{\mathcal{S}_1} \mid F_{\mathcal{S}_2}\right] \leq \Pr\left[E_k \mid F_{\mathcal{S}_2}\right] \leq p \qquad E_k \text{ indep of } \mathcal{S}_2$$

$$\begin{split} \mathbf{Pr}\left[F_{\mathcal{S}_{1}} \mid F_{\mathcal{S}_{2}}\right] &= \mathbf{Pr}\left[\cap_{i \in \mathcal{S}_{1}} \overline{E_{i}} \mid F_{\mathcal{S}_{2}}\right] \geq 1 - \sum_{i \in \mathcal{S}_{1}} \mathbf{Pr}\left[E_{i} \mid F_{\mathcal{S}_{2}}\right] \\ &\geq 1 - \sum_{i \in \mathcal{S}_{1}} 2p \geq 1 - 2pd \geq 1/2. \end{split}$$

Summary

- In order to show the existence of an object with certain properties, demonstrate a sample space of objects in which the probability is positive that a randomly selected object has the property.
- Since we work with finite sample spaces, the existence proofs are, in principle, algorithmic. An object with the desired properties can be found be exhaustive search.
- Sometimes, the existence proofs can be converted into efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on the subject is "The Probabilistic Method" by Noga Alon and Joel Spencer.