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The Probabilistic Method in a Nutshell

Color the edges of Kn with two colors so that it has no
monochromatic Kk?

In order to show the existence of an object with certain
properties, demonstrate a sample space of objects in which
the probability is positive that a randomly selected object
has the property.

Since we work with finite sample spaces, the existence
proofs are, in principle, algorithmic. An object with the
desired properties can be found be exhaustive search.

Sometimes, the existence proofs can be converted into
efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on
the subject is “The Probabilistic Method” by Noga Alon and Joel Spencer.
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The Basic Counting Argument

Theorem

If
(n

k

)
< 2(

k
2)−1, then it is possible to color the edges of Kn with

two colors so that it has no monochromatic Kk .

There are 2(
n
2) possible colorings. We pick each one with

probability 2−(
n
2).

There are
(n

k

)
different k -vertex cliques in Kn. Number them.

Let Ai be the event that the i-th clique is monochromatic.
Then Pr [Ai ] = 2−(

k
2)−1.

By union bound, Pr
[
A1 ∨ . . . ∨ A(n

k)

]
≤
(n

k

)
2−((

k
2)−1) < 1.

Thus Pr
[
A1 ∧ . . . ∧ A(n

k)

]
> 0.

n = 1000, k = 20.
(n

k

)
≤

( en
k

)k ≤ 15020 ≤ 2160, 2(
k
2)−1 = 220·19/2−1 = 2189
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Finding a Large Cut

Theorem
In an undirected graph G with m edges there is always a cut of
size at least m/2.

We construct a random cut by assigning the vertices
randomly to the two sides of the cut.

For an edge e, let Xe = 1 if the endpoints are assigned to
different sides, and 0 otherwise. Then E [Xe] = 1/2.

Let X =
∑

e∈E Xe be the expected size of the cut. Then
E [X ] =

∑
e∈E E [Xe] = m/2.

Thus there exists a cut (A,B) of size m/2.
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A Las Vegas Algorithm for Finding a Large Cut

For a partition (A,B) of the vertices, let C(A,B) be the
capacity of the cut (= number of edges with one endpoint on
both sides). Clearly, C(A,B) ≤ m always.
Let p = Pr [C(A,B) ≥ m/2]. Then

m
2

= E [C(A,B)] =
∑

i<m/2

i · Pr [C(A,B) = i] +
∑

i≥m/2

i · Pr [C(A,B) = i]

≤ (1− p)
(

m
2
− 1

2

)
+ pm,

which implies p ≥ 1/(m + 1).

The algorithm is now clear: Generate a random cut and
determine its capacity. Repeat until a cut of capacity at least
m/2 has been found.

The expected number of repetitions is 1/p = O(m).
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Derandomization (Method of Conditional Expectations)

Number the vertices v1, v2 to vn.

E [C(A,B) | x1, . . . , xk ] = conditional expectation of C(A,B)
given that we place vertex vi on side xi ∈ {A,B } for
1 ≤ i ≤ k .

To show: can efficiently find x1 to xn such that
E [C(A,B)] ≤ E [C(A,B) | x1, . . . , xk ] for all k .

k = 1: E [C(A,B)] = E [C(A,B) | x1] since RHS does not
depend on x1.

Induction step: place vk+1 randomly. Then

E [C(A,B) | x1, . . . , xk ] =
1
2

E [C(A,B) | x1, . . . , xk ,A]

+
1
2

E [C(A,B) | x1, . . . , xk ,B] .

Compute both expectations on the right and fix xk+1 to
choose the larger one.
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Derandomization, Continued

How to compute E [C(A,B) | x1, . . . , xk ,A].

for edges having both endpoints among v1 to vk+1
contribution is clear.

other edges contribute with probability 1/2.

contribution by other edges is the same for both placements.

So we place vk+1 such that we cut at least half of the edges
connecting it to vertices v1 to vk .

direct analysis of deterministic algorithm: Let d ′k+1 be the
number of edges connecting vk+1 to { v1, . . . , vk }.
Place v1 arbitrarily and vk+1, k ≥ 1, such that at least
d ′k+1/2 edges are cut. Then total number of edges cut is at
least

∑
1≤k≤n d ′k/2 = m/2.
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Independent Sets

Theorem
A graph G = (V ,E) with n vertices and m edges has an
independent set of size at least n2/(4m).

Let d = 2m/n be the average degree of the vertices.
Delete each vertex independently with probability 1− 1/d .
For each remaining edge, remove it and one of its adjacent
vertices.

Let X be the number of vertices surviving the first step.
Then E [X ] = n/d . Let Y be the number of edges surviving
the first step. Then E [Y ] = nd/2 ·

( 1
d

)2
= n

2d .

The second step removes the surviving edges and at most
Y vertices. Thus alg outputs an independent set of size at
least X − Y and

E [X − Y ] =
n
d
− n

2d
=

n
2d

=
n2

4m
.
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Graphs with Large Girth

Theorem
For every k ≥ 3 and large n, there is a graph with n vertices,
1
4n1+1/k edges, and girth (length of a shortest cycle) at least k.

Sample a random graph G ∈ Gn,p with p = n1/k−1.
Let X = # of edges. Then E [X ] =

(n
2

)
· p = 1

2

(
1− 1

n

)
n1+1/k .

Let Y = number of cycles in G of length at most k − 1.

There are at most
(n

i

) (i−1)!
2 candidate cycles of length i and

each one is present with probability pi . Thus

E [Y ] =
k−1∑
i=3

(
n
i

)
(i − 1)!

2
pi ≤

k−1∑
i=3

nipi =
k−1∑
i=3

ni/k < kn(k−1)/k .

For each cycle of length ≤ k − 1 in G, we remove one of its
edges. The expected number of edges remaining is

E [X − Y ] ≥ 1
2

(
1− 1

n

)
n1+1/k − kn(k−1)/k ≥ 1

4
n1+1/k .



The Lovasz Local Lemma

Let E1 to En be a set of “bad events” in a probability space. We
want to show that the probability that no bad event occurs is
positive. This is easy if the events are mutually independent,
i.e., for any I ⊆ {1, . . . ,n }

Pr [∩i∈IEi ] =
∏
i∈I

Pr [Ei ] .

Then the events Ei are also independent (prove it) and hence

Pr
[
∩1≤i≤nEi

]
=
∏

1≤i≤n

Pr
[
Ei
]
=
∏

1≤i≤n

(1− Pr [Ei ]) > 0

provided that Pr [Ei ] < 1 for all i .

Lovasz showed that less than mutual independence suffices to
show that the probability of no bad event happening is positive.
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The Dependency Graph

An event E is mutually independent of the events E1 to En if for
any subset I ⊆ {1, . . . ,n }, Pr [E | ∩i∈IEi ] = Pr [E ].

Dependency Graph
A dependency graph for a set of events E1 to En is a graph
G = (V ,E) on vertex set {1, . . .n } such that for all i , Ei is
mutually independent of the events

{
Ej
∣∣ (i , j) 6∈ E

}
.

Example (Edge Disjoint Paths)
n pairs of users need to communicate in a graph. Each pair
i ∈ {1, . . . ,n } can choose from a collection Fi of paths.
For i 6= j , let E{ i,j } be the event that the paths chosen by pairs i
and j share an edge; this is a bad event. Then Ei,j is
independent of all events E{ i ′,j ′ } when { i , j } ∩ { i ′, j ′ } = ∅. So
each event has < 2n neighbors in the dependency graph.
Note that there are n(n − 1)/2 events.
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Statement of Lovasz Local Lemma

Theorem
Let d ∈ N and p ∈ R with 4dp ≤ 1. Let E1, . . . ,En be events. If
1. Pr [Ei ] ≤ p for all i , and
2. the degree of their dependency graph is bounded by d, then

Pr
[
∩1≤i≤nEi

]
> 0.

Disjoint Paths: Assume each Fi consists of m paths. For i and
j : a path in Fi intersects with at most k paths in Fj . Then

Pr
[
E{ i,j }

]
≤ k

m
and d < 2n and hence 4dp <

8nk
m

.

So if 8nk/m ≤ 1, there is a choice of paths such that the n
paths are disjoint.
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Application: k -Satisfiability

Theorem
Let ϕ = C1 ∧ . . . ∧ Cm, where each Ci has exactly k literals. If
no variable appears in more than T = 2k/(4k) clauses, ϕ is
satisfiable.

We assign random truth values to the variables.

Let Ei be the event that i-th clause is false. Then
Pr [Ei ] = 2−k . Thus p = 2−k .

Ci is independent of Cj if they do not share a variable.

Each of the k variables of a clause can appear in T other
clauses. Hence d ≤ k · T ≤ 2k/4.

Thus 4pd ≤ 1 and hence a satisfying assignment exists.

Under somewhat stronger assumptions, this can be turned into
an algorithm.
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Proof of Local Lemma

Claim
For all S ⊆ {1, . . . ,n } and k 6∈ S

Pr
[
Ek
∣∣ ∩i∈SEi

]
≤ 2p.

Claim→ Local Lemma

Pr
[
∩1≤i≤nEi

]
=
∏

1≤i≤n

Pr
[
Ei
∣∣ ∩1≤j<iEj

]
=
∏

1≤i≤n

(
1− Pr

[
Ei
∣∣ ∩1≤j<iEj

])
≥
∏

1≤i≤n

(1− 2p) > 0
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Proof of Claim

For all S ⊆ {1, . . . ,n } and k 6∈ S : Pr
[
Ek
∣∣ ∩i∈SEi

]
≤ 2p.

Show Pr
[
∩i∈SEi

]
> 0 as in Claim→ Local Lemma.

Use induction on s = |S|. s = 0 is trivial. Split S into
S1 = {i | k and i are connected in dependency graph} and
S2 = S \ S1. If S1 is empty, full independence. So assume
|S2| < |S|. Let FS1 = ∩i∈S1Ei . Similarly, FS2 ,FS. Note |S1| ≤ d .

Pr [Ek | FS] =
Pr [Ek ∩ FS]

Pr [FS]
=

Pr
[
Ek ∩ FS1

∣∣ FS2

]
Pr
[
FS2

]
Pr
[
FS1

∣∣ FS2

]
Pr
[
FS2

]
Pr
[
Ek ∩ FS1

∣∣ FS2

]
≤ Pr

[
Ek
∣∣ FS2

]
≤ p Ek indep of S2

Pr
[
FS1

∣∣ FS2

]
= Pr

[
∩i∈S1Ei

∣∣ FS2

]
≥ 1−

∑
i∈S1

Pr
[
Ei
∣∣ FS2

]
≥ 1−

∑
i∈S1

2p ≥ 1− 2pd ≥ 1/2.



Summary

In order to show the existence of an object with certain
properties, demonstrate a sample space of objects in which
the probability is positive that a randomly selected object
has the property.

Since we work with finite sample spaces, the existence
proofs are, in principle, algorithmic. An object with the
desired properties can be found be exhaustive search.

Sometimes, the existence proofs can be converted into
efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on
the subject is “The Probabilistic Method” by Noga Alon and Joel Spencer.
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