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The Probabilistic Method in a Nutshell

Color the edges of K, with two colors so that it has no
monochromatic Kj?

= In order to show the existence of an object with certain
properties, demonstrate a sample space of objects in which
the probability is positive that a randomly selected object
has the property.

= Since we work with finite sample spaces, the existence
proofs are, in principle, algorithmic. An object with the
desired properties can be found be exhaustive search.

= Sometimes, the existence proofs can be converted into
efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on
the subject is “The Probabilistic Method” by Noga Alon and Joel Spencer.
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The Basic Counting Argument

If (7) < 2(3)-1, then it is possible to color the edges of K, with
two colors so that it has no monochromatic K.

- There are 2(2) possible colorings. We pick each one with
probability 2-(2).

= There are () different k-vertex cliques in Kj,. Number them.
Let A; be the event that the j-th clique is monochromatic.
Then Pr[A] = 2(2)-1,

= By union bound, Pr [A1 V... \/A(n):| < (,’(’)2‘((3)‘1) <1.

k

- Thus Pr [AiA...AA(Z)} > 0.

n=1000, k = 20. () < (%)k < 15020 < 2160, o(5)—1 — 920-19/2-1 _ 5189
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Finding a Large Cut

In an undirected graph G with m edges there is always a cut of
size at least m/2.

= We construct a random cut by assigning the vertices
randomly to the two sides of the cut.

* For an edge e, let X; = 1 if the endpoints are assigned to
different sides, and 0 otherwise. Then E[Xg] = 1/2.

= Let X = >, Xe be the expected size of the cut. Then
E[X] = Xece E[Xe] = m/2.

= Thus there exists a cut (A, B) of size m/2.
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A Las Vegas Algorithm for Finding a Large Cut

= For a partition (A, B) of the vertices, let C(A, B) be the
capacity of the cut (= number of edges with one endpoint on
both sides). Clearly, C(A, B) < m always.

= Let p=Pr[C(A,B) > m/2]. Then

T_E[CAB]= Y i-Pr[CAB) =i+ 3 i-Pr[C(AB) =1

2 ) .
i<m/2 i>m/2
m 1
<(1-p) (2 - 2) + pm,
= which impliesp > 1/(m+1).

= The algorithm is now clear: Generate a random cut and
determine its capacity. Repeat until a cut of capacity at least
m/2 has been found.

= The expected number of repetitions is 1/p = O(m).
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Derandomization (Method of Conditional Expectations)

= Number the vertices vy, v» 10 vj.

* E[C(A,B) | x4,...,x(] = conditional expectation of C(A, B)
given that we place vertex v; on side x; € { A, B} for
1 <i<k.

= To show: can efficiently find x4 to x, such that
E[C(A,B)] <E[C(A,B) | x4, ..., xk] for all k.

= k=1:E[C(A, B)] = E[C(A, B) | x1] since RHS does not
depend on xj.

* Induction step: place vk, 1 randomly. Then
1
E[C(A.B) | xi.....x] = ZE[C(A.B) | x1..... Xk, Al

1
+§E[C(A,B) | X1,...,Xk, B].

= Compute both expectations on the right and fix xx, 1 to
choose the larger one.
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Derandomization, Continued

* How to compute E[C(A, B) | x1, ..., Xk, Al

= for edges having both endpoints among v; to vk 1
contribution is clear.

= other edges contribute with probability 1/2.

= contribution by other edges is the same for both placements.

= So we place vk ¢ such that we cut at least half of the edges
connecting it to vertices v; to vg.

= direct analysis of deterministic algorithm: Let dj_ ; be the
number of edges connecting vy, 1 to { vy,..., v }.

= Place vy arbitrarily and vx1, kK > 1, such that at least
dy, 1/2 edges are cut. Then total number of edges cut is at

least >y k<, 0k/2 = m/2.
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Independent Sets

A graph G = (V, E) with n vertices and m edges has an
independent set of size at least n?/(4m).

* Let d = 2m/n be the average degree of the vertices.

= Delete each vertex independently with probability 1 — 1/d.
= For each remaining edge, remove it and one of its adjacent
vertices.

= Let X be the number of vertices surviving the first step.
Then E[X] = n/d. Let Y be the number of edges surviving

the first step. Then E[Y] = nd/2 - ((1],)2 = L.
= The second step removes the surviving edges and at most

Y vertices. Thus alg outputs an independent set of size at
least X — Y and

n n n n?
EX-YI=G 24~ 2d am
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Graphs with Large Girth

For every k > 3 and large n, there is a graph with n vertices,
1n'+1/k edges, and girth (length of a shortest cycle) at least k.

= Sample a random graph G € Gpp with p = n'/k=1.
Let X = # of edges. ThenE[X] = (3) -p= 1 (1 - 1) n'+V/k,

= Let Y = number of cycles in G of length at most k — 1.
= There are at most (’,’)% candidate cycles of length i and

each one is present with probability p’. Thus
k—1

. k—1 k—1
n\ (i—1)! i i i/k k—1)/k
E[Y]=) </) P < ,2:3 n'p' = ;:3 n'/k < kntk=1/k,

i=3

* For each cycle of length < k — 1 in G, we remove one of its
edges. The expected number of edges remaining is

E[X-VY]> 1 1_ 1 K k17K s 1n1+1/".
-2 n =4



The Lovasz Local Lemma

Let E; to E, be a set of “bad events” in a probability space. We
want to show that the probability that no bad event occurs is
positive. This is easy if the events are mutually independent,
ie,forany IC {1,...,n}

Pr[Nie/E] = [ PrE].
iel

Then the events E; are also independent (prove it) and hence

Pr[Ni<i<nE] = H Pr[Ej] = H (1 -Pr[E]) >0
1<i<n 1<i<n

provided that Pr [E;] < 1 for all /.

Lovasz showed that less than mutual independence suffices to
show that the probability of no bad event happening is positive.
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The Dependency Graph

An event E is mutually independent of the events E; to E, if for
any subset / C {1,...,n}, Pr[E | Njg/Ej] = Pr[E].

Dependency Graph

A dependency graph for a set of events E; to E, is a graph
G=(V,E)onvertexset {1,...n} such that for all /, E; is
mutually independent of the events {E; | (i,j) & E}.

Example (Edge Disjoint Paths)

n pairs of users need to communicate in a graph. Each pair
ie{1,...,n} can choose from a collection F; of paths.

For i # j, let Ey;;, be the event that the paths chosen by pairs i
and j share an edge; this is a bad event. Then E; ; is
independent of all events Eyy 7y when {i,j} n{7,j'} = 0. So
each event has < 2n neighbors in the dependency graph.

Note that there are n(n — 1)/2 events.
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Statement of Lovasz Local Lemma

LetdeNandp e Rwithddp < 1. LetEy,..., E, be events. If

1. Pr[Ej] < p forall i, and

2. the degree of their dependency graph is bounded by d, then
Pr [N1<i<nEj] > 0.

Disjoint Paths: Assume each F; consists of m paths. For i and
Jj: apathin F; intersects with at most k paths in F;. Then

Pr[Egijy] < ﬁ and d < 2n and hence 4dp < H

So if 8nk/m < 1, there is a choice of paths such that the n
paths are disjoint.
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Application: k-Satisfiability

Letp = Cy A... N Cp, where each C; has exactly k literals. If
no variable appears in more than T = 2¥ /(4k) clauses, ¢ is
satisfiable.

= We assign random truth values to the variables.

= Let E; be the event that i-th clause is false. Then
Pr[Ej] =27k Thus p =27k,

= C; is independent of C; if they do not share a variable.

= Each of the k variables of a clause can appear in T other
clauses. Hence d < k- T < 2k/4.

= Thus 4pd < 1 and hence a satisfying assignment exists.

Under somewhat stronger assumptions, this can be turned into
an algorithm.
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Proof of Local Lemma

Claim
Forall SC{1,...,n}and k¢ S

Pr [E | riesE] < 2p.

Claim — Local Lemma

Pri<icnEi] = [ Pr[Ei | nig<iEj]

1<i<n

= [[ (1—Pr[&|nigE])
1<i<n

> ] 01-2p)>0
1<i<n
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Proof of Claim

Forall SC {1,...,n}and k & S: Pr[Ey | NjesEi] < 2p.

Show Pr [N;csE;j] > 0 as in Claim — Local Lemma.

Use induction on s = |S|. s = 0 is trivial. Split S into

S1 = {i| k and i are connected in dependency graph} and

S, = S\ Sy. If Sy is empty, full independence. So assume
‘82| < |S| Let F31 = ﬂ,‘es1E. Similarly, FSZ, Fs. Note |S1’ <d.

Pr[Ex N Fs] _ Pr [Ek N Fs, ‘ Fsz] Pr [Fsz]
Pr [Fs] Pr [F31 ’ Fsz] Pr [FSZ]

Pr{Ey | Fs] =

Pr(ExNFs, | Fs,) <Pr[Ec| Fs,] <p  ExindepofS;

Pr [FS1 | Fsz} =Pr [mie&E ’ Fsz} >1- Z Pr [E/ ’ FS2]
i€Sy

>1-> 2p>1-2pd>1/2.

i€S;



Summary

= In order to show the existence of an object with certain
properties, demonstrate a sample space of objects in which
the probability is positive that a randomly selected object
has the property.

= Since we work with finite sample spaces, the existence
proofs are, in principle, algorithmic. An object with the
desired properties can be found be exhaustive search.

= Sometimes, the existence proofs can be converted into
efficient randomized or even deterministic algorithms.

Lecture is based on Chapter 6 in Mitzenmacher/Upfal. The definitive book on
the subject is “The Probabilistic Method” by Noga Alon and Joel Spencer.
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