
Randomized Algorithms, Summer 2016 Lecture 3 (7 pages)

Quicksort and Randomized Incremental Constructions

Instructor: Thomas Kesselheim and Kurt Mehlhorn

1 Quicksort

This is Section 5.4 in Mehlhorn/Sanders [DMS14, MS08]
Quicksort is a divide-and-conquer algorithm. Let S be the set to be sorted. We select a uniformly

random element p from S and split S into three parts. The set S< of elements smaller than p, the set
S= of elements equal to p and the set S> of elements larger than p. The element p is usually called the
pivot. Then we apply the algorithm recursively to S< and S>.

1.1 Analysis

To analyze the running time of quicksort for an input sequence s = {e1, . . . , en}, we focus on the number of
element comparisons performed. We allow three-way comparisons here, with possible outcomes “smaller”,
“equal”, and “larger”. Other operations contribute only constant factors and small additive terms to the
execution time.

Let C(n) denote the worst-case number of comparisons needed for any input sequence of size n and
any choice of pivots. The worst-case performance is easily determined. The subsequences S<, S=, and
S> are formed by comparing the pivot with all other elements. This requires n − 1 comparisons. If we
use k and k′ to denote the number of elements smaller, respectively larger, than the pivot, we obtain the
following recurrence relation: C(0) = C(1) = 0 and

C(n) ≤ n− 1 + max{C(k) + C(k′) | 0 ≤ k ≤ n− 1, 0 ≤ k′ < n− k}.

It is easy to verify by induction that

C(n) ≤ n(n− 1)

2
= Θ(n2).

The worst case occurs if all elements are different and we always pick the largest or smallest element as
the pivot. Thus C(n) = n(n− 1)/2.

The expected performance is much better. We first show a bound of 2n lnn and then argue that
the running time is sharply concentrated around the expectation. We concentrate on the case where all
elements are different. Other cases are easier because a pivot that occurs several times results in a larger
middle sequence S= that need not be processed any further.

Theorem 3.1. The expected number of comparisons performed by quicksort is

C̄(n) ≤ 2n lnn ≤ 1.39n log n.

Proof. Let e′1, . . . , e
′
n denote the elements of the input sequence in sorted order. Every comparison

involves a pivot element. If an element is compared to a pivot, the pivot and the element end up in
different subsequences. Hence any pair of elements is compared at most once, and we can therefore count
comparisons by looking at the indicator random variables Xij , i < j, where Xij = 1 if e′i and e′j are
compared and Xij = 0 otherwise. We obtain

C̄(n) = E

 n∑
i=1

n∑
j=i+1

Xij

 =

n∑
i=1

n∑
j=i+1

E [Xij] =

n∑
i=1

n∑
j=i+1

Pr [Xij = 1] .

The middle transformation follows from the linearity of expectations. The last equation uses the definition
of the expectation of an indicator random variable E [Xij] = Pr [Xij = 1]. Before we can further simplify
the expression for C̄(n), we need to determine the probability of Xij being 1.

Lemma 3.2. For any i < j, Pr [Xij = 1] =
2

j − i+ 1
.

Randomized Algorithms, Summer 2016 Lecture 3 (page 2 of 7)

good pivots

Figure 1: The line segment represents the current set in sorted order. If the pivot is chosen from the
middle half, both subproblems have size at most 3/4 times the size of the current set.

Proof. Consider the j − i + 1-element set M = {e′i, . . . , e′j}. As long as no pivot from M is selected, e′i
and e′j are not compared, but all elements from M are passed to the same recursive calls. Eventually, a
pivot p from M is selected. Each element in M has the same chance 1/|M | of being selected. If p = e′i
or p = e′j , we have Xij = 1. Otherwise, e′i and e′j are passed to different recursive calls, so that they will
never be compared. Thus Pr [Xij = 1] = 2/ |M | = 2/(j − i+ 1).

We can now complete the proof of Theorem 3.1 by a relatively simple calculation:

C̄(n) =

n∑
i=1

n∑
j=i+1

Pr [Xij = 1] =

n∑
i=1

n∑
j=i+1

2

j − i+ 1
=

n∑
i=1

n−i+1∑
k=2

2

k

≤
n∑
i=1

n∑
k=2

2

k
= 2n

n∑
k=2

1

k
= 2n(Hn − 1) ≤ 2n(1 + lnn− 1) = 2n lnn.

For the last three steps, recall the properties of the n-th harmonic number Hn :=
∑n
k=1 1/k ≤ 1+lnn.

1.2 Sharp Concentration

Consider a fixed element e, and let Xe denote the total number of times e is compared with a pivot
element. Note that we charge a comparison between an element and a pivot to the element. There is no
charge to the pivot. Then

∑
eXe is the total number of comparisons. Whenever e is compared with a

pivot element, it ends up in a smaller subproblem. Therefore, Xe ≤ n − 1, and we have another proof
for the quadratic upper bound.

Let us call a comparison “good” for e if e moves to a subproblem of at most three-quarters the size.
Any e can be involved in at most blog4/3 nc good comparisons.1 The probability that a pivot which
is good for e is chosen, is at least 1/2; this holds because any pivot chosen from the middle half of
the set is good; see Figure 1. So2 E [Xe] ≤ 2 log4/3 n, and hence E [

∑
eXe] ≤ 2n log4/3 n. Note that

log4/3 n ≤ 3.5 lnn and log4/3 n ≤ 2.41 log n.
This analysis can be sharpened to show that the number of comparisons in O(n log n) with high

probability. Intuitively, the argument is as follows. We will see the precise argument in a later lecture.
Let k = blog4/3 nc. We consider a sequence of m = 10 · k coin tosses. A coin comes up head with
probability 1/2. On average, we will see m/2 heads. The probability that we see at most k heads will
be small. Indeed, let pi be the probability that we see exactly i heads. Then34

pk =

(
m

k

)
2−m ≤ mk

k!
2−11k ≤ m

(k/e)k
2−10k =

(
e · 10 · k
k · 210

)k
≤
(

30

1000

)k
≤
(

1

32

)k
≤
(

1

2

)5·((log4/3 n)−1)

≤ 25
(

1

n

)5/ log 4/3

≤ 25
1

n10
.

and for i < k

pi
pi+1

=

(
m
i

)(
m
i+1

) =
m(m− 1) · · · (m− i+ 1) · (i+ 1)!

m(m− 1) · · · (m− i) · i!
=

i+ 1

m− i
≤ k

m− k
≤ 1

9
.

1After k good comparisons for e, the set containing e has cardinality at most (2/3)kn. Thus k ≤ (logn)/ log(3/2).
2Formaly, we should define Xe =

∑
1≤j≤log4/3 n Xej , where Xej is the number of comparisons after the j − 1-th good

comparison and up to and including the j-th good comparison. Define Xej = 0 if the element e is already in a singleton set
after the j−1-th good comparison. Since a comparison is good with probability at least 1/2 we have E [Xej] ≤ 2 (compare
the first lecture).

3We use kk/k! ≤
∑

i k
i/i! = ek and hence k! ≥ (k/e)k.

4log 3 ≈ 1.58.

Randomized Algorithms, Summer 2016 Lecture 3 (page 3 of 7)

Figure 2: The binomial distribution.

Thus
∑
i≤k pi ≤ 2pk ≤ 26/n10. We conclude that the probability that a particular element is involved

in more than 10 · k comparisons is O(1/n10) and hence the probability that some element is involved in
10 · k comparisons is O(1/n9).

Figure 2 illustrates the binomial distribution. Let α < 1 be arbitrary. For k ≤ αn/2, the pk grow
exponentially. Indeed,

pk
pk−1

=
n− k + 1

k
≥ (1− α/2)n

α/2n
=

2

α
− 1.

In the interval n − β
√
n to n + β

√
n, where β is a constant, the distribution is essentially flat. Indeed,

(for simplicity, I assume that n is even and β ≥ 1/4 and β ≤
√
n/8)

pn/2−β
√
n

pn/2
=
n(n− 1) · · · (n/2 + β

√
n+ 1)

(n/2− β
√
n)!

· (n/2)!

n(n− 1) · · ·n/2

=
n/2(n/2− 1) · · · (n/2− β

√
n+ 1)

(n/2 + 1) · · · (n/2 + β
√
n)

≥
(
n/2− β

√
n+ 1

n/2 + β
√
n

)β√n

=

(
1− 2β√

n
+ 2

n

1 + 2β√
n

)β√n
=

(
1−

4β√
n

+ 2
n

1 + 2β√
n

)β√n

≥
(

1− 4β√
n

)β√n
true for β ≥ 1/4

=

((
1− 4β√

n

)√n/(4β))4β2

=

((
1− 4β√

n

)
·
(

1− 4β√
n

)√n/(4β)−1)4β2

≥
((

1− 4β√
n

)
· 1

e

)4β2

Fact 1.2 (b) of first lecture

≥ ·(2e)−4β
2

uses 4β/
√
n ≤ 1/2

1.3 Backwards Analysis

Let π be a permutation of the integers 1 to n. We associate a run of quicksort on the integers 1 to n with
π. Store the integers in sorted order in an array and color all elements white. We scan the permutation

Randomized Algorithms, Summer 2016 Lecture 3 (page 4 of 7)

Figure 3: The execution of quicksort corresponding to the permutation π = (2, 3, 5, 4, 1).

from left to right. When we encounter π(i), we change the color of π(i) from white to black and charge
a cost equal to the size of the white interval containing π(i), see Figure 3 for an example.

For the analysis, we run the execution backwards. Initially all elements are black and the permutation
is completely undefined. As long as there is a black element, we choose a random black element, change
its color from black to white and push the element to the front of the permutation. The cost of changing
an element from black to white is the length of the white interval formed. Observe that we construct a
random permutation in this way and executing quicksort with this permutation as described in the first
paragraph is simply the reversal of the process described in the second paragraph.

For the analysis, consider the situation when there are still k black elements. They split the array
into white intervals. The total length of the white intervals is n − k. When we change the color of a
black element, the cost is the length of the white interval formed. Let Bk be the set of black elements
and let Xk be the length of the white interval formed. Then

E [Xk] =
1

k

∑
x∈Bk

length of white interval formed when x is recolored

=
1

k

∑
x∈Bk

(1 + length of white interval left of x (if any) + length of white interval right of x (if any))

≤ 1

k
(k + 2(n− k))

≤ 2n

k
.

The first inequality follows from the fact that each current white interval is counted at most twice, once
for the black element following it and once for the black element preceding it. Thus

E

 ∑
1≤k≤n

Xk

 ≤ 2nHn.

2 Randomized Incremental Constructions

Randomized incremental constructions (RICs) are a generalization of quicksort to the geometric setting.
For many geometric problems, e.g., convex hulls in arbitrary dimension, Voronoi diagrams, Delaunay
diagrams, the RIC paradigm leads to simple algorithms that at least match the running time of the best
deterministic algorithms. RICs were introduced by Clarkson and Shor [CS89]. Our colleague Raimund

Randomized Algorithms, Summer 2016 Lecture 3 (page 5 of 7)

s0

s(i+1)

e

u

v

e’
f

sj

s0

s5

sn

s1

s2

s3

s4

Figure 4: The left part shows the addition of si+1 to Si. The point sj was associated with the edge e′

of Si and becomes associated with the edge f of Si+1.
The right part shows an insertion sequence with quadratic cost. Note that the ray s0sn intersects the
edge s1s2 of conv(S3), the edge s1s4 of conv(S4), . . . , and the edge s1sn−1 of conv(Sn−1). Generally,
the ray s0si intersects distinct hull edges of conv(S3) to conv(Si−1).
When the points s4 to sn are inserted in random order, the association of sn is changed only O(log n)
times in expectation.

Seidel [Sei91] much simplified the analysis of RICs by introducing the technique of backward analysis.
It is by now the standard method for analyzing RICs.

We exemplify RICs on the convex hull problem in the plane. We are given a set S of points in the
plane and want to computer their convex hull conv(S). We assume that the points in S are in general
position, i.e., no three lie on a common line.

We consider the points in turn. Let Si be the set formed by the first i points. The first three
points form a triangle; let s0 be a point in the interior of this triangle. We maintain the following data
structures:

• The vertices of conv(Si) in counterclockwise order in a cyclic list.

• For each s ∈ S \ Si, a pointer to the edge of conv(Si) that is intersected by the ray s0s (if any).
For every edge e of conv(Si), we keep the list of points s ∈ S \ Si for which e is intersected by the
ray s0s.

The data structure is readily initialized for i = 3. As s0 we may choose the center of gravity of the points
in S3.

Let us next see how we can go from Si to Si+1. The point si+1 lies inside or outside conv(Si). We
distinguish these cases by inspecting the pointer associated with si+1. If the pointer is nil, si+1 lies
inside conv(Si−1 and nothing needs to be done. Otherwise, it points to an edge e of conv(Si) that is
intersected by the ray s0si+1. Walking from e in both directions along the boundary of conv(Si), we can
find the two vertices u and v of conv(Si) that together with si+1 form new hull edges of conv(Si+1).

We update our data structure as follows:

• We remove all vertices between u and v from the cyclic list of hull vertices and add si+1 in their
place.

• For each edge e that we removed from conv(Si) and each s in the list associated with s, we check
whether the ray s0s intersects one of the new hull edges. If so we store a pointer to the edge with
s (otherwise we set the pointer to nil) and associate s with the edge.

This ends the description of the algorithm. You must agree that it is a simple algorithm.

We come to the analysis. What is the cost of adding s = si+1? If s lies inside conv(S), the cost of
adding s is one. If s lies outside, we first determine the edges that are to be removed from the hull. If
there are k edges to be removed, we find them in time O(k). We also add two new edges. Thus the total
number of edges added is bounded by 2n and the number of edges removed can be no more. Thus the
amortized cost of deleting and constructing hull edges is O(1) be insertion.

Finally, for each edge removed, we need to look at all points associates with it. There can be many.
In the worst-case all points still to be added are associated with the removed edges and hence the cost
of the i-th insertion will be Ω(n− i). Figure 4 shows an example.

Randomized Algorithms, Summer 2016 Lecture 3 (page 6 of 7)

s1

s2

s3

s4

s5

s6

Figure 5: Higher-dimensional hull algorithm

For the probabilistic analysis we assume that the points are inserted in random order, i.e., any of the
n! ordering of the points are equally likely. We partition the insertion orders into classes according to
the first three points that are inserted. For the insertion orders in a class, the point s0 is fixed. Consider
now a particular point s ∈ S \S3. How often does the hull edge intersecting the ray s0s change? Imagine
that we run the construction backwards, i.e., we start with conv(Sn) and then remove the points one by
one. Assume we are back to conv(Si+1) and delete si+1. If si+1 is not a vertex of the hull, nothing
changes. If si+1 is a vertex of the hull, two edges disappear and a chain of edges appears. How does this
effect the ray s0s. The edge intersected by this ray changes only if si+1 is equal to one of the endpoints
of the hull edge intersected by the ray. The probability for this is 2/(i+ 1− 3). Recall that we fixed S3

and note that |Si+1 \ S3| = i + 1− 3. Thus the expected number of distinct hull edges ever intersected
by the ray s0s is bounded by

1 +
∑

3≤i≤n−1

2

i+ 1− 3
≤ 2Hn,

where the 1 counts the edge of the initial triangle intersected by the ray. Since s was arbitrary, the total
expected cost of updating the edge-ray associations is O(n log n).

Theorem 3.3. The algorithm of this section constructs the convex hull of n points in general position
in the plane in expected time O(n log n).

The theorem above is also true without the general position assumption [MN99, Section 10.1]. This
is open for RICs in general.

The algorithm above extends to higher dimensions. The algorithm maintains a triangulation of
conv(Si), i.e., a partition of conv(Si) into simplices. It starts with the simplex formed by the first d+ 1
points, where d is the dimension of the space. When a new point s = si+1 is to be inserted, we proceed
as follows. Let again s0 be a point in the first simplex.

1. We walk along the ray s0s through the triangulation. We start the walk in the simplex containing
s0. Let C be the current simplex. We determine whether the ray leaves the simplex. If it does not
leave the simplex, we are done. Otherwise, let f be the facet of C through which the ray leaves C.
If f is a facet of conv(Si), we proceed to step 2. Otherwise, let C be the simplex on the other side
of f .

2. Starting from f , we find the set F of all facets of conv(Si) that cease to be hull facets.

3. For each f ′ ∈ F , we add the simplex S(f ′, s) to the triangulation.

See Figure 5 for an illustration and [CMS93] for the analysis.
We refer out students to the textbooks in computation geometry, for example [dBKOS97] and Mot-

wani/Raghavan, for further applications of the paradigm.

References

[CMS93] K. Clarkson, K. Mehlhorn, and R. Seidel. Four Results on Randomized Incremental Con-
structions. Computational Geometry: Theory and Applications, 3:185–212, 1993.

http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/CMS-FourResults.ps
http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/CMS-FourResults.ps

Randomized Algorithms, Summer 2016 Lecture 3 (page 7 of 7)

[CS89] K.L. Clarkson and P.W. Shor. Applications of random sampling in computational geometry,
II. Journal of Discrete and Computational Geometry, 4:387–421, 1989.

[dBKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer, 1997.

[DMS14] Martin Dietzfelbinger, Kurt Mehlhorn, and Peter Sanders. Algorithmen und Datenstrukturen
- die Grundwerkzeuge. Springer, 2014. German translation of Mehlhorn/Sanders.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, 1999.

[MS08] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer,
2008. Translations into German, Greek, Japanese, and Chinese.

[Sei91] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete and
Computational Geometry, 6:423–434, 1991.

	Quicksort
	Analysis
	Sharp Concentration
	Backwards Analysis

	Randomized Incremental Constructions

