
Randomized Algorithms, Summer 2016 Lecture 9 (11 pages)

Markov Chains: Graph Connectivity, Satisfiability, Rapid Mixing,

Gambler’s Ruin, Move-To-Front

Instructor: Thomas Kesselheim and Kurt Mehlhorn

1 Overview

We will apply our knowledge about random walks to the connectivity problem in graphs and to
the satisfiability problem. We will see a connectivity algorithm that works in logarithmic space
and a satisfiability algorithm that runs in expected time Õ((4/3)n) and hence is much faster
than the naive 2n algorithm that tries all possible assignments.

In the second part, we ask how fast a chain converges to its stationary distribution. Suppose
we shuffle a deck of 52 cards by repeatedly selecting a random card and moving it to the top
of the deck. The stationary distribution of this Markov chain is the uniform distribution. Let
ε = 10−3 and let A be a subset of the state space. We start in state x. Let XT be the state
after T steps. How many steps do we have to make until

Pr [XT ∈ A] ≤ |A| /52! + ε

for every A? Are 50 steps, 500 steps, 5000 steps sufficient?
To fill the two lectures, we consider two examples of Markov chains: gambler’s ruin and the

move-to-front heuristic for maintaining linear lists.
These lectures follow Sections 7.2 and 7.4.1 and Chapter 11 in Mutzenmacher/Upfal.
The material in these notes covers two lectures.

2 Connectivity

Given an undirected graph G = (V,E) and two vertices s and t, we want to know whether there
is a path from s to t. Depth-first search solves the problem in linear time and linear space.
Alternatively, we may perform a random walk starting at s and report success when we reach
t. More precisely, we perform a random walk of length L · 8nm for some parameter L.

Theorem 9.1. If s and t are in the same connected component of G, the algorithm returns NO
with probability at most 2−L. The algorithm needs space O(log n+ logL).

Proof. By the preceding lecture, the cover time of the graph is at most 4nm, i.e., starting from
any vertex we will reach t (in fact all vertices) in an expected number of at most 4nm steps.
By Markov’s inequality, we will reach t with probability 1/2 within 8nm steps.

Divide time into epochs of length 8nm. In each epoch, we reach t with probability at least
1/2. Hence we do not reach t with probability at most 1/2. Since there are L epochs, the
probability that t is not reached is at most 2−L.

The algorithm needs to keep track of the current vertex (log n bits) and the time (O(log n+
logL) bits).

3 2-SAT

Let φ be a satisfiable 2-SAT formula, i.e., φ is a conjunction of clauses and each clause contains
two literals. Let n be the number of variables. Consider the following algorithm.

Choose a random assignment A.
while A is not satisfying do

Randomized Algorithms, Summer 2016 Lecture 9 (page 2 of 11)

Let C be a clause that is not satisfied by A;
select one of the two variables in C at random and flip its value;

end while

Theorem 9.2. If φ is satisfiable, the algorithm finds a satisfying assignment within an expected
number of 4n(n+ 1) iterations.

Proof. We observe first that the cover time of a chain graph of length n+ 1 (nodes 0 to n and
edges {i, i+ 1} for 0 ≤ i < n) has cover time at most 4n(n+ 1).

Let S be a satisfying assignment, and let X be the Hamming distance between A and S,
i.e., the number of variables for which A and S differ.

If X = 0, A = S, and we have found a satisfying assignment.
If X = n, flipping the value of any variable will reduce the distance by one.
Assume 1 ≤ X ≤ n− 1, and let C be the clause selected. Then A and S differ in the value

of at least one of the variables in C; they may differ in both. Hence X is reduced by 1 with
probability at least 1/2 and increased by 1 with probability at most 1/2.

Thus, we perform a walk on the chain graph where we have bias for going to a node with
smaller index. Thus the walk will reach state 0 in an expected number of at most 4n(n + 1)
steps.

4 3-SAT

Let φ be a satisfiable 3-SAT formula, i.e., φ is a conjunction of clauses and each clause contains
three literals. Let n be the number of variables. A first attempt is to generalize the algorithm
of the preceding section in the obvious way.

Choose a random assignment A.
while A is not satisfying do

Let C be a clause that is not satisfied by A;
select one of the three variables in C at random and flip its value;

end while

We assume that φ is satisfiable and use S to denote a satisfying assignment. Let Xt be the
number of variables in which A and S agree after t iterations. Then, for 1 ≤ j ≤ n− 1

Pr [Xt+1 = j + 1 | Xt = j] ≥ 1/3;

Pr [Xt+1 = j = 1 | Xt = j] ≤ 2/3;

Pr [Xt+1 = n− 1 | Xt = n] = 1.

The distance shrinks with probability at least 1/3 since A and S must differ in at least variable
appearing in clause C.

As before, we consider the process where we replace ≥ and ≤ by equality.

Pr [Yt+1 = j + 1 | Yt = j] = 1/3;

Pr [Yt+1 = j − 1 | Yt = j] = 2/3;

Pr [Yt+1 = 1 | Yt = 0] = 1.

Let hj be the expected number of steps to reach n when starting from j. Then the following
equations hold:

hn = 0;

hj = 1 +
2

3
hj−1 +

1

3
hj+1; for 1 ≤ j ≤ n− 1

h0 = 1 + h1;

Randomized Algorithms, Summer 2016 Lecture 9 (page 3 of 11)

This is a system of n+1 linear equations in n+1 unknowns. It has a unique solution. Computing
the solution for small values of n suggests that hj = hj+1 + f(j) for some function f . Clearly
f(0) = 1. Also, for 1 ≤ j ≤ n− 1,

hj = 1 +
2

3
hj−1 +

1

3
hj+1

= 1 +
2

3
(hj + f(j − 1)) +

1

3
hj+1 induction hypothesis for j − 1,

and hence
hj = hj+1 + 3 + 2f(j − 1).

Thus

f(j) = 3 + 2f(j − 1) = 2jf(0) + 3(1 + 2 + . . .+ 2j−1) = 2j + 3(2j − 1) = 2j+2 − 3,

and hence
hj = hj+1 + 2j+2 − 3 = 2n+2 − 2j+2 − 3(n− j).

Let us interpret this result. If we start with a good initial assignment (big j) the expected
number of steps is small. However, if we start with an average initial assignment, say j = n/2,
the expected number of steps is big. This suggests to try many initial assignments and for each
one of them walk only a small number of steps. The following algorithm results.

for up to L times, terminating if all clauses are satisfied; do
Choose a random assignment A;
for up to 3n times, terminating when all clauses are satisfied; do

Let C be a clause that is not satisfied by A;
select one of the three variables in C at random and flip its value;

end for
end for

Warning: I am changing the meaning of j. Before it was the number of variables in which
A and S agree. Now it will be the number of variables in which they disagree.

Let qj be the probability that the inner loop finds a satisfying assignment given that the
Hamming distance between S and the initial assignment is j. This is certainly the case, if the
inner loop finds the assignment within 3j steps. This is certainly the case, if among the first 3j
steps, 2j are improving and j are deteriorating. Thus, for j ≥ 1,

qj ≥
(

3j

2j

)(
1

3

)2j (2

3

)j

.

Also, q0 = 1.
In order to estimate qj we use (n/e)n ≤ n! ≤ (en)(n/e)n for all n. Thus, for j ≥ 1,

qj ≥
(3j)!

j!(2j)!

(
1

3

)2j (2

3

)j

≥ (3j/e)3j

(ej)(j/e)j · (e2j)(2j/e)2j

(
1

3

)2j (2

3

)j

=
33j2j

2e2j222j32j3j
=

1

2e2j22j
≥ 1

2e2n22j
.

Randomized Algorithms, Summer 2016 Lecture 9 (page 4 of 11)

This inequality is also true for j = 0. Let q be the probability that the inner loop finds a
satisfying assignment when starting from a random assignment:

q ≥
∑

0≤j≤n
Pr [initial random assignment has distance j from S] · qj

≥
∑

0≤j≤n

(
n

j

)
2−n

1

2e2n22j

≥ 1

2e2n22n

∑
0≤j≤n

(
n

j

)(
1

2

)j

1n−j

=
1

2e2n22n

(
3

2

)n

=
1

2e2n2

(
3

4

)n

,

where the next to last equality uses
(
1 + 1

2

)n
=
∑

0≤j≤n
(
n
j

) (
1
2

)j
1n−j .

Theorem 9.3. Assuming that φ is satisfiable, the algorithm finds a satisfying assignment after
an expected number of 1/q = O(n2(4/3)n) iterations.

The factor n2 can be replaced by
√
n by using a better approximation of the factorial

function, namely, √
2πm(m/e)m ≤ m! ≤ 2

√
2πm(m/e)m.

5 Uniform Stationary Distribution for any Undirected Transi-
tion System

Let G = (V,E) be an undirected connected graph. We will define a Markov chain whose
stationary distribution is the uniform distribution. This is useful when we want to sample a
state of the Markov chain (almost) uniformly. We simulate the chain for a sufficient number of
steps. If the chain converges quickly to its stationary distribution, the state reached is close to
being a random state.

Let N be the maximum degree of any vertex, and let M be any integer with M ≥ N . For
x, y ∈ V , let

Px,y =

1/M if x 6= y and (x, y) ∈ E;

0 if x 6= y and (x, y) 6∈ E;

1− d(v)/M if x = y.

Theorem 9.4. If M > N , the chain is aperiodic. If the graph is connected, the chain is
irreducible. If the chain is aperiodic and irreducible, the uniform distribution is the stationary
distribution.

Proof. If the graph is connected, one can go from any node to any other node. Thus the chain
is irreducible. If M > N , the probability of staying in a node is nonzero. Hence the chain is
aperiodic. Let π be the uniform distribution and let π′ = πTP . Then

π′y = (πTP)y =
∑

x; (x,y)∈E

1

M
πx + (1− d(y)

M
)πy =

1

n

(
d(y)

M
+ 1− d(y)

M

)
=

1

n
.

Randomized Algorithms, Summer 2016 Lecture 9 (page 5 of 11)

6 Speed of Convergence to the Stationary Distribution

We know that an ergodic chain converges to its stationary distribution. How fast is the conver-
gence process? Fast convergence is important for at least two reasons: it allows us to determine
the stationary distribution by simulating the chain (this is how the page rank in search engines
is computed), and it allows us to sample a state according to the stationary distribution by
simulating the chain.

We first define a distance between distributions. We can then define the number of steps
required to come ε-close to the stationary distribution. Next we introduce the concept of a
coupling to prove rapid convergence.

6.1 Variation Distance

Let S be a set of states and let D1 and D2 be probability distributions on S. The variation
distance between D1 and D2 is defined as

‖D1 −D2‖ =
1

2

∑
s∈S
|D1(s)−D2(s)| .

Note that we simply add up the absolute values of all differences. The factor one-half guarantees
that the variation distance is between 0 and 1. The following alternative characterization is
easier to work with.

Lemma 9.5. For a subset S′ ⊆ S and i = 1, 2, let Di(S
′) =

∑
s∈S′ Di(s). Then

‖D1 −D2‖ = max
S′⊆S

∣∣D1(S
′)−D2(S

′)
∣∣ .

Proof. Consider Figure 1.

S

Di(s)

D2(s)

D1(s)
A B

Figure 1: The figure illustrates two distributions over S. The height of the curve at s is equal
to Di(s). The area under either curve is equal to one because we are dealing with distributions.
Therefore the area A (D1(s) ≥ D2(s)) is equal to the area B (D1(s) < D2(s)). The variation
distance of D1 and D2 is equal to one half of the area of the union of A and B and hence
equal to the area of A (or B). Thus ‖D1 −D2‖ = |D1(S

+)−D2(S
+)| = |D1(S

−)−D2(S
−)| =

maxS′⊆S |D1(S
′)−D2(S

′)| , where S+ = {s ∈ S | D1(s) ≥ D2(s)} and S− = {s ∈ S | D1(s) <
D2(s)}.

Let π be the stationary distribution of a Markov chain with state space S and let ptx be the
distribution on S obtained by running the chain for t steps steps starting in state x. Then ∆x(t)
denotes the variation distance between π and ptx and ∆(t) is the maximum of these values over
all states x, i.e.,

∆x(t) = ‖ptx − π‖; ∆(t) = max
x∈S

∆x(t).

Randomized Algorithms, Summer 2016 Lecture 9 (page 6 of 11)

We use τx(ε) to denote the first step t such that ∆x(t) is no more than ε and τ(ε) the maximum
of these values over all states x, i.e.,

τx(ε) = min{t | ∆x(t) ≤ ε}; τ(ε) = max
x∈S

τx(ε).

The function τ is called the mixing time of the chain. If τ is polynomial in log(1/ε) and the
size of the problem, the chain is called rapidly mixing. As for the running time of algorithms,
the size of a problem is a convention. For example, when shuffling cards, the size of the problem
is the number of cards.

Lemma 9.6. For an ergodic chain: ∆(T + 1) ≤ ∆(T) for all T .

Proof. See Theorem 11.4 in Mutzenmacher/Upfal.

6.2 Couplings

We next learn a powerful technique for bounding the mixing time of a chain. In a coupling of
a Markov chain Mt with state space S, we run two instances of the chain in parallel. Formally,
the coupling Zt = (Xt, Yt) has state space S × S and satisfies:

Pr
[
Xt+1 = x′

∣∣ Zt = (x, y)
]

= Pr
[
Mt+1 = x′

∣∣Mt = x
]

;

Pr
[
Yt+1 = y′

∣∣ Zt = (x, y)
]

= Pr
[
Mt+1 = y′

∣∣Mt = y
]
.

Moreover, if x = y, both components make the same transition. When the two instances of the
chain reach the same state, they are said to have coupled.

Note that each instance behaves like the original chain. However, the two instances are, in
generally, dependent; see Figure ??. In fact, coupling arguments are the art of finding the right
dependence between the two instances.

x

x2

y

y1

(x,y)

1/4 3/4 1/2 1/2 1/4 1/2

x1 y2

1/4

(x1,y1) (x2,y1) (x2,y2)

Figure 2: In M , we have the transitions out of states x and y shown on the left. The transitions
in Z are shown on the right. Note that there is no transition from (x, y) to (x1, y2), i.e., the
two instances are not independent.

6.3 Shuffling Cards

Consider a deck of n cards. In each step, one of the cards is chosen uniformly at random and
moved to the top of the deck. The state space has cardinality n!. The chain is ergodic. Prove
it.

We use the following coupling: Let i be a random number between 1 and n. In the first
instance, we select the i-th card from the top and move it to the top. Let C be this card. In
the second instance, we move C to the top. Note that in both copies, the probability that a
particular card is moved to the top is 1/n, i.e., both copies are instances of the shuffling chain.
If both instances are in the same state, they make the same move.

Randomized Algorithms, Summer 2016 Lecture 9 (page 7 of 11)

Lemma 9.7. Assume that the instances start in states x and y, respectively. Let xt and yt be
the states after t steps and let kt be the number of distinct cards accessed in the first t steps.
Then the top kt cards of xt and yt are these kt cards in the order of their last access (later
accessed cards are nearer to the top).

Proof. This is true before the first step since k0 = 0. Consider step t. By induction hypothesis,
xt−1 = cx′t−1, yt−1 = cy′t−1, where c consists of the kt−1 distinct cards accessed in the first t− 1
steps. If the card accessed at time t was never accessed before, then the new common prefix is
Cc, where C is the card accessed at time t. If the card was accessed before then c = c′Cc′′ and
the new common prefix is Cc′c′′.

We conclude that once all cards have been selected, the two instances are in the same state.
By the coupon collector problem, if we run the chain for n lnn+ cn steps, then the probability
that a particular card was never chosen, is(

1− 1

n

)n lnn+cn

≤ e−(lnn+c) =
e−c

n
,

and hence the probability that some card was never chosen is no more than e−c. Let c = ln(1/ε).
Then the probability that the chains have not coupled after n lnn+ n ln(1/ε) = n ln(n/ε) steps
is no more than ε. The following Lemma allows us to transfer this statement to the variation
distance.

6.4 The Coupling Lemma

The variation distance between the distribution after T steps and the uniform distribution is
bounded by the probability that the states after T steps are distinct. The coupling lemma
captures this intuition.

Lemma 9.8 (Coupling Lemma). Let Zt = (Xt, Yt) be a coupling for a Markov chain with state
space S. For every integer T and positive real ε: if Pr [XT 6= YT | X0 = x, Y0 = y] ≤ ε for all
x and y in S then τ(ε) ≤ T .

Proof. Consider the coupling when X0 is an arbitrary state x and Y0 is chosen according to
the stationary distribution π. Let A ⊆ S be arbitrary. We show

∣∣ptx(A)− π(A)
∣∣ ≤ ε. Then

Lemma 9.5 implies that the variation distance between ptx and π is at most ε.

pTx (A) = Pr [XT ∈ A] ≥ Pr [(XT = YT) ∩ (YT ∈ A]

= 1−Pr [(XT 6= YT) ∪ (YT 6∈ A)]

≥ 1− (Pr [(XT 6= YT)] + Pr [(YT 6∈ A)])

= (1−Pr [(YT 6∈ A)])−Pr [(XT 6= YT)]

≥ Pr [YT ∈ A]− ε
= π(A)− ε,

where the second inequality uses the union bound and the last equality follows from the fact that
yT is distributed according to π; recall that y0 is chosen according to the stationary distribution.

The same argument for the set S − A shows pTx (S \ A) ≥ π(S \ A) − ε and hence pTx (A) ≤
π(A) + ε.

Randomized Algorithms, Summer 2016 Lecture 9 (page 8 of 11)

6.5 Shuffling Cards, Continued

Consider a deck of n cards. In each step, a random card is selected from the deck and moved
to the top of the deck. After T = n lnn + n ln(1/ε) = n ln(n/ε) steps the variation distance
between the distribution pTx and the uniform distribution is no more than ε. Here x is the initial
state. In particular, for any subset A of states,

∣∣pTx (A)− |A| /n!
∣∣ ≤ ε. For n = 52 and ε = 10−3,

the number of steps required is 52 ln(52000) ≤ 580.

6.6 Independent Sets

Let G = (V,E) be an undirected graph and let ∆ be the maximum degree of any vertex of G.
We study a chain whose states are the independent sets of size k in G. We will show that the
chain is rapidly mixing provided that k ≤ n/(3∆ + 3).

Let Xt be an independent set of size k. A move is made by choosing a random vertex v ∈ Xt

and a random vertex w ∈ V . Then

Xt+1 =

{
(Xt \ v) ∪ w if (Xt \ v) ∪ w is an independent set of size k

Xt otherwise.

We denote this transition as move(v, w,Xt). Please verify that the chain is irreducible and
ergodic and hence has a stationary distribution.

We consider the following coupling Zt = (Xt, Yt). Let v be a random vertex in Xt and
w a random vertex in V . In the first component we perform move(v, w,Xt). For the second
component, we determine a random vertex v′ ∈ Yt as follows.

v′ =

{
v if v ∈ Yt ∩Xt

a random vertex in Yt \Xt if v ∈ Xt \ Yt.

On Yt, we perform move(v′, w, Yt). Once both components are in the same state, they perform
the same move. So we have a coupling.

Let dt = |Xt \ Yt| be the number of elements in Xt that are not in Yt. We show that dt is
more likely to decrease than increase in a step and use this to estimate the mixing time. Note
that Pr [dt > 0] is the probability that the states at time t are distinct.

Assume dt > 0. If v ∈ Xt ∩ Yt, and w is added to both or neither sets, the distance does
not change. If w is added to exactly one of the sets, the distance may increase. If v ∈ Xt \ Yt,
the distance decreases if w is added to both sets, the distance does not change if w is added
to neither set, and the distance does not increase if w is added to exactly one of the sets. We
conclude:

• If dt+1 = dt +1 then v ∈ Xt∩Yt (k−dt choices out of k choices) and w is chosen such that
there is a transition in exactly one of the chains. Then w must be a vertex or a neighbor
of a vertex in the set (Xt \ Yt) ∪ (Yt \Xt). Thus

Pr [dt+1 = dt + 1 | dt > 0] ≤ k − dt
k
· 2dt(∆ + 1)

n
.

• If v ∈ Xt \ Yt (dt choices out of k choices) and w is chosen such that it neither a vertex
or a neighbor of a vertex in the set Xt ∪ Yt \ {v, v′} then dt+1 = dt − 1. Note that
|Xt ∪ Yt| = k + dt. Thus

Pr [dt+1 = dt − 1 | dt > 0] ≥ dt
k
· n− (k + dt − 2)(∆ + 1)

n
.

Randomized Algorithms, Summer 2016 Lecture 9 (page 9 of 11)

For dt > 0, we thus have:

Ex [dt+1 | dt] = dt + Pr [dt+1 = dt + 1 | dt]−Pr [dt+1 = dt − 1 | dt]

≤ dt +
k − dt
k
· 2dt(∆ + 1)

n
− dt
k
· n− (k + dt − 2)(∆ + 1)

n

= dt ·
(

1− n− (3k − dt − 2)(∆ + 1)

kn

)
≤ dt ·

(
1− n− (3k − 3)(∆ + 1)

kn

)
≤ dt ·

(
1− 1

kn

)
,

where the last inequality certainly holds for k ≤ n/(3∆ + 3). This inequality also holds for
dt = 0, since the two chains follow the same path once dt = 0.

We obtain for E [dt+1]:

E [dt+1] =
∑
d≥0

Ex [dt+1 | dt = d]Pr [dt = d]

≤
∑
d≥0

d ·
(

1

kn

)
Pr [dt = d]

≤ E [dt]

(
1

kn

)
.

Induction then yields

E [dt] ≤ d0
(

1

kn

)t

.

Since d0 ≤ k and dt is a nonnegative integer, it follows that

Pr [dt ≥ 1] ≤ E [dt] ≤ k
(

1

kn

)kn·t/(kn)
≤ ke−t/(kn).

and hence

Pr [dt ≥ 1] ≤ ke−t/(kn)
!
≤ ε,

provided that
t ≥ kn ln(k/ε).

Thus
τ(ε) ≤ 1 + kn ln(kε),

and τ(ε) is polynomial in n and ln(1/ε).

Theorem 9.9. For k ≤ n/(3∆ + 3), the chain is rapidly mixing.

7 Gambler’s Ruin

We observe a gambler who repeatedly plays a fair game. In each round, he wins or looses a Euro
with probability one-half. He stops playing when he either looses `1 Euros or wins `2 Euros.

The gambler gives rise to a Markov chain with states i, −`1 ≤ i ≤ `2. For −`1 < i < `2 we
go to states i− 1 and i+ 1 with probability 1/2 each. States −`2 and `1 are absorbing ; the only
transition is a self-loop and we take it with probability one. We start in state 0.

The states i, −`1 < i < `2 are transient, i.e., limt→∞ P
t
i = 0, where P t

i is the probability of
being in state i after t steps. With which probability do we end up in state `2.

Randomized Algorithms, Summer 2016 Lecture 9 (page 10 of 11)

Method 1: For each j, let qj be the probability that we end up in state `2 when we start in
state j. Then

q`2 = 1;

qj = (qj+1 + qj−1)/2 for −`2 < j < `1;

q−`1 = 0.

This system is easy to solve. Rewrite the second equation as qj+1 = 2qj − qj−1 and apply it for
j = −`1 + 1 to `2. Then

q−`1+2 = 2q−`1+1 − q−`1 = 2q−`1+1;

q−`1+3 = 2q−`1+2 − q−`1+1 = 2q−`1+2 − q−`+1 = 3q−`1+1;

q−`1+4 = 2q−`1+3 − q−`1+2 = 6q−`1+2 − 2q−`+1 = 4q−`1+1;

and hence by induction 1 = q`2 = q−`1+(`1+`2) = (`1 + `2)q`+1 or q−`1 = 1/(`1 + `2) and thus
q−`1+j = j/(`1 + `2). In particular q0 = `1/(`1 + `2).

Method 2: Let q be the probability of ending in state `2, and let W t be the state after t steps
(win of the player). Since the expected win of the player in each round is zero, E

[
W t
]

= 0 for
all t. Also E

[
W t
]

=
∑
−`1≤i≤`2 iP

t
i and hence

0 = lim
t→∞

E
[
W t
]

=
∑

−`1≤i≤`2

i lim
t→∞

P t
i = −`1(1− q) + `2q.

Thus,

q =
`1

`1 + `2
.

Exercise 1. Redo the above for an unfair game. The player looses with probability 2/3 and
wins with probability 1/3.

8 Move-to-Front Heuristic for Maintaining Ordered Lists

Assume we store n items in a linear list. The i-th item is accessed with probability pi and
accessing an item in position j of the list has cost j. The probabilities are unknown to us. We
may assume p1 ≥ p2 ≥ . . . ≥ pn. If we know the probabilities we would store the items in order
of decreasing probability and the expected access cost would be

Opt =
∑

1≤i≤n
ipi.

We use the move-to-front heuristic for maintaining the list. Whenever an item is accessed, we
move it to the front of the list (all items preceding it before the access are moved back by one
position). Our hope is that frequently accessed items tend to stay near the front of the list.

We can view the list as a Markov chain with n! states; the states correspond to the n! linear
arrangements of n items. Let S be the set of states. The chain has a stationary distribution;

Randomized Algorithms, Summer 2016 Lecture 9 (page 11 of 11)

call it π. Assuming that the chain is in stationary distribution, the expected access cost is1

A =
∑

1≤i≤n
pi ·
∑
s∈S

π(s) · position of i in s

=
∑

1≤i≤n
pi ·
∑
s∈S

π(s) ·

1 +
∑
j 6=i

[j is before i in s]

= 1 +

∑
1≤i≤n

pi ·
∑
j 6=i

∑
s∈S

j is before i in s

π(s)

In order to compute the probability that j is before i, we split the set of states into two classes,
one where i is before j and one where j is before i, and obtain a Markov chain with only two
states. If an item different from i and j is accessed, we stay in the class, if item i is accessed,
we move to the class (if not already there), where i precedes j, and if item j is accessed, we
move to the class, where j precedes i.

i is before j j is before i

pj

pi

1 − pj
1 − pi

It is easy to check that the stationary probability of having j before i is pj/(pi + pj . Indeed,

pj
pi + pj

= pj
pi

pi + pj
+ (1− pi)

pj
pi + pj

.

Plugging this expression into the expression for A yields

A = 1 +
∑

1≤i≤n
pi ·
∑
j 6=i

∑
s∈S

j is before i in s

π(s)

= 1 +
∑

1≤i≤n
pi
∑
j 6=i

pj
pi + pj

= 1 +
∑

1≤i,j≤n, i 6=j

pipj
pi + pj

= 1 + 2 ·
∑

1≤i≤n
pi
∑
j<i

pj
pi + pj

≤ 1 + 2 ·
∑

1≤i≤n
pi(i− 1) recall that p1 ≥ p2 ≥ . . . ≥ pn

≤ 2Opt.

Remark 9.10. Try to think of a similar scheme for trees. Accessed elements are always moved
to the root. How will you rearrange the elements on the search path to the accessed element and
the two children trees of the accessed element.

Assume i precedes j in key-order. Does your scheme satisfy the following statement. i is an
ancestor of j if since the last access to i, no key in {i+ 1, . . . , j} was accessed.

1The expression [j is before i in s] evaluates to 1 if j precedes i in s and evaluates to 0 otherwise.

	Overview
	Connectivity
	2-SAT
	3-SAT
	Uniform Stationary Distribution for any Undirected Transition System
	Speed of Convergence to the Stationary Distribution
	Variation Distance
	Couplings
	Shuffling Cards
	The Coupling Lemma
	Shuffling Cards, Continued
	Independent Sets

	Gambler's Ruin
	Move-to-Front Heuristic for Maintaining Ordered Lists

