
4 1 Appendix habe ich am 19. Juli ueberarbeitet

writes b � a. The strict linear order < is defined by a < b if and only if a  b and
a 6= b. The relation < is transitive, irreflexive (a < b implies a 6= b), and total in
the sense that for all a and b either a < b or a = b or a > b. A typical example is
the relation  for real numbers.

linear preorder: (also linear quasi-order) a reflexive, transitive, and total relation.
The symbols  and � are also used for linear preorders. Note that there can be
distinct elements a and b with a  b and b  a. The strict variant < is defined as
a < b if a  b and not a � b. An example is the relation R ✓ ⇥ defined by
x R y if and only if |x| |y|.

median: an element with rank dn/2e among n elements.

multiplicative inverse: if an object x is multiplied by a multiplicative inverse x�1 of
x, we obtain x · x�1 = 1 – the neutral element of multiplication. In particular, in
a field, every element except zero (the neutral element of addition) has a unique
multiplicative inverse.

prime number: an integer n, n � 2, is a prime iff there are no integers a,b > 1 such
that n = a ·b.

rank: Let  be a linear preorder on a set S = {e1, . . . ,en}. A one-to-one mapping
r : S ! 1..n is a ranking function for the elements of S if r(ei)< r(e j) whenever
ei < e j. If  is a linear order, there is exactly one ranking function.

reflexive: a relation R ✓ A⇥A is reflexive if a R a for all a 2 A.

relation: a set of ordered pairs R over some set A. Often, we write relations as infix
operators; for example, if R ✓ A⇥A is a relation, a R b means (a,b) 2R.

symmetric relation: a relation R ✓ A⇥A is symmetric if for all a and b in A, a R b
implies b R a.

total relation: a relation R ✓ A⇥A is total if for all a and b in A, either a R b or
b R a or both. If a relation R is total and transitive, then the relation ⇠R defined
by a ⇠R b if and only if a R b and b R a is an equivalence relation.

total order: a synonym for linear order.

transitive: a relation R ✓ A⇥A is transitive if for all a, b, and c in A, a R b and b R c
imply a R c.

1.3 Basic Probability Theory

Probability theory rests on the concept of a sample space S . For example, to de-
scribe the rolls of two dice, we would use the 36-element sample space {1, . . . ,6}⇥
{1, . . . ,6}, i.e., the elements of the sample space (also called elementary events or
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events) are the pairs (x,y) with 1  x,y  6 and x,y 2 . Generally, a sample space
is any nonempty set. In this book, all sample spaces are finite.1 In a random ex-
periment, any element of s 2 S is chosen with some elementary probability ps,
where Âs2S ps = 1. The function that assigns to each event s its probability ps
is called a distribution. A sample space together with a probability distribution is
called a probability space. In this book, we use uniform distributions almost ex-
clusively; in this case ps = p = 1/|S |. Subsets E of the sample space are called
events. The probability of an event E ✓ S is the sum of the probabilities of its ele-
ments, i.e., prob(E ) = |E |/|S | in the uniform case. So the probability of the event
{(x,y) : x+ y = 7}= {(1,6),(2,5), . . . ,(6,1)} is equal to 6/36 = 1/6, and the prob-
ability of the event {(x,y) : x+ y � 8} is equal to 15/36 = 5/12.

A random variable is a mapping from the sample space to the real numbers.
Random variables are usually denoted by capital letters to distinguish them from
plain values. For our example of rolling two dice, the random variable X could give
the number shown by the first die, the random variable Y could give the number
shown by the second die, and the random variable S could give the sum of the two
numbers. Formally, if (x,y) 2 S , then X((x,y)) = x, Y ((x,y)) = y, and S((x,y)) =
x+ y = X((x,y))+Y ((x,y)).

We can define new random variables as expressions involving other random vari-
ables and ordinary values. For example, if V and W are random variables, then
(V +W )(s) =V (s)+W (s), (V ·W )(s) =V (s) ·W (s), and (V +3)(s) =V (s)+3.

Events are often specified by predicates involving random variables. For exam-
ple, X  2 denotes the event {(1,y),(2,y) : 1  y  6}, and hence prob(X  2) =
1/3. Similarly, prob(X +Y = 11) = prob({(5,6),(6,5)}) = 1/18.

Indicator random variables are random variables that take only the values zero
and one. Indicator variables are an extremely useful tool for the probabilistic analysis
of algorithms because they allow us to encode the behavior of complex algorithms
into simple mathematical objects. We frequently use the letters I and J for indicator
variables. Indicator variables and events are in a one-to-one correspondance. If E is
an event, then IE with IE (s) = 1 iff s2 E is the corresponding indicator variable. If an
event is specificed by a predicate P, one sometimes writes [P] for the corresponding
indicator variable, i.e, [P](s) = 1, if P(s), and [P](s) = 0, otherwise.

The expected value of a random variable Z : S ! is

E[Z] = Â
s2S

ps ·Z(s) = Â
z2

z ·prob(Z = z) , (1.1)

i.e., every sample s contributes the value of Z at s times its probability. Alternatively,
we can group all s with Z(s) = z into the event Z = z and then sum over the z 2 .

In our example, E[X ] = (1+2+3+4+5+6)/6= 21/6= 3.5, i.e., the expected
value of the first die is 3.5. Of course, the expected value of the second die is also
3.5. For an indicator random variable I, we have

1 All statements made in this section also hold for countable infinite sets, essentially with the
same proofs. Such sample spaces are for example needed to model the experiment “throw
a dice repeatedly until the value six occurs”.
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E[I] = 0 ·prob(I = 0)+1 ·prob(I = 1) = prob(I = 1) .

Sometimes, we are more interested in a random variable Z and its behavior than
in the underlying probability space. In such a situation, it suffices to know the set
Z[S ] and the induced probabilities prob(Z = z), z 2 Z[S ]. We refer to the function
z 7! prob(Z = z) defined on Z[S ] as the distribution of Z. Two random variables X
and Y with the same distribution, are called identically distributed.

For a random variable Z that takes only values in the natural numbers, there is a
very useful formula for its expected value:

E[Z] = Â
k�1

prob(Z � k), if Z[S ]✓ .

The formula is easy to prove. For k, i2 , let pk = prob(Z � k) and qi = prob(Z = i).
Then pk = Âi�k qi and hence

E[Z] = Â
z2Z[S ]

z ·prob(Z = z) = Â
i2

i ·prob(Z = i) = Â
i2

Â
1ki

qi = Â
k�1

Â
i�k

qi = Â
k�1

pk.

Here the next to last equality is a change of order of summation.
Often, we are interested in the expectation of a random variable that is defined

in terms of other random variables. This is particulary easy for sums of random
variables: reason is the linearity of expectations of random variables: for any two
random variables V and W ,

E[V +W ] = E[V ]+E[W ] . (1.2)

This equation is easy to prove and extremely useful. Let us prove it. It amounts
essentially to an application of the distributive law of arithmetic. We have

E[V +W ] = Â
s2S

ps · (V (s)+W (s))

= Â
s2S

ps ·V (s)+ Â
s2S

ps ·W (s)

= E[V ]+E[W ] .

As our first application, let us compute the expected sum of two dice. We have

E[S] = E[X +Y ] = E[X ]+E[Y ] = 3.5+3.5 = 7 .

Observe that we obtain the result with almost no computation. Without knowing
about the linearity of expectations, we would have to go through a tedious calcula-
tion:

E[S] = 2 · 1
36 +3 · 2

36 +4 · 3
36 +5 · 4

36 +6 · 5
36 +7 · 6

36 +8 · 5
36 +9 · 4

36 + . . .+12 · 1
36

=
2 ·1+3 ·2+4 ·3+5 ·4+6 ·5+7 ·6+8 ·5+ . . .+12 ·1

36
= 7 .
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Exercise 1.1. What is the expected sum of three dice?

We shall now give another example with a more complex sample space. We con-
sider the experiment of throwing n balls into m bins. The balls are thrown at random
and distinct balls do not influence each other. Formally, our sample space is the set of
all functions f from 1..n to 1..m. This sample space has size mn, and f (i), 1  i  n,
indicates the bin into which the ball i is thrown. All elements of the sample space
are equally likely. How many balls should we expect in bin 1? We use W to denote
the number of balls in bin 1. To determine E[W ], we introduce indicator variables
Ii, 1  i  n. The variable Ii is 1, if ball i is thrown into bin 1, and is 0 otherwise.
Formally, Ii( f ) = 0 iff f (i) 6= 1. Then W = Âi Ii. We have

E[W ] = E[Â
i

Ii] = Â
i

E[Ii] = Â
i

prob(Ii = 1) ,

where the second equality is the linearity of expectations and the third equality fol-
lows from the Ii’s being indicator variables. It remains to determine the probability
that Ii = 1. Since the balls are thrown at random, ball i ends up in any bin2 with the
same probability. Thus prob(Ii = 1) = 1/m, and hence

E[I] = Â
i

prob(Ii = 1) = Â
i

1
m

=
n
m

.

Products of random variables behave differently. In general, we have E[X ·Y ] 6=
E[X ] ·E[Y ]. There is one important exception: if X and Y are independent, equality
holds. Random variables X1, . . . , Xk are independent if and only if

8x1, . . . ,xk : prob(X1 = x1 ^ · · ·^Xk = xk) = ’
1ik

prob(Xi = xi) . (1.3)

As an example, when we roll two dice, the value of the first die and the value of the
second die are independent random variables. However, the value of the first die and
the sum of the two dice are not independent random variables.

Exercise 1.2. Let I and J be independent indicator variables and let X = (I+J) mod
2, i.e., X is one iff I and J are different. Show that I and X are independent, but that
I, J, and X are dependent.

Assume now that X and Y are independent. Then

2 Formally, there are exactly mn�1 functions f with f (i) = 1.
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E[X ] ·E[Y ] =
✓

Â
x

x ·prob(X = x)
◆
·
 

Â
y

y ·prob(X = y)

!

= Â
x,y

x · y ·prob(X = x) ·prob(X = y)

= Â
x,y

x · y ·prob(X = x^Y = y)

= Â
z

Â
x,y with z=x·y

z ·prob(X = x^Y = y)

= Â
z

z · Â
x,y with z=x·y

prob(X = x^Y = y)

= Â
z

z ·prob(X ·Y = z)

= E[X ·Y ] .

How likely is it that a random variable will deviate substantially from its expected
value? Markov’s inequality gives a useful bound. Let X be a nonnegative random
variable and let c be any constant. Then

prob(X � c ·E[X ]) 1
c
. (1.4)

The proof is simple. We have

E[X ] = Â
z2

z ·prob(X = z)

� Â
z�c·E[X ]

z ·prob(X = z)

� c ·E[X ] ·prob(X � c ·E[X ]) ,

where the first inequality follows from the fact that we sum over a subset of the
possible values and X is nonnegative, and the second inequality follows from the
fact that the sum in the second line ranges only over z such that z � cE[X ].

Much tighter bounds are possible for some special cases of random variables.
The following situation arises several times, in the book. We have a sum X = X1 +
· · ·+Xn of n independent indicator random variables X1,. . . , Xn and want to bound
the probability that X deviates substantially from its expected value. In this situation,
the following variant of the Chernoff bound is useful. For any e > 0, we have

prob(X < (1� e)E[X ]) e�e2E[X ]/2 , (1.5)

prob(X > (1+ e)E[X ])
 

ee

(1+ e)(1+e)

!E[X ]

. (1.6)

A bound of the form above is called a tail bound because it estimates the “tail” of
the probability distribution, i.e., the part for which X deviates considerably from its
expected value.
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Let us see an example. If we throw n coins and let Xi be the indicator variable
for the i-th coin coming up heads, X = X1 + · · ·+Xn is the total number of heads.
Clearly, E[X ] = n/2. The bound above tells us that prob(X  (1� e)n/2) e�e2n/4.
In particular, for e = 0.1, we have prob(X  0.9 ·n/2) e�0.01·n/4. So, for n= 10000,
the expected number of heads is 5 000 and the probability that the sum is less than
4 500 is smaller than e�25, a very small number.

Exercise 1.3. Estimate the probability that X in the above example is larger than
5 050.

If the indicator random variables are independent and identically distributed with
prob(Xi = 1) = p, X is binomially distributed, i.e.,

prob(X = k) =
✓

n
k

◆
pk(1� p)(n�k) . (1.7)

Exercise 1.4 (balls and bins continued). Let, as above, W denote the number of
balls in bin 1. Show

prob(W = k) =
✓

n
k

◆✓
1
m

◆k ✓
1� 1

m

◆(n�k)

,

and then attempt to compute E[W ] as Âk prob(W = k)k.

1.4 Useful Formulae

We shall first list some useful formulae and then prove some of them.

• A simple approximation to the factorial:
⇣n

e

⌘n
 n!  nn or, more precisely e

⇣n
e

⌘n
 n!  (en)

⇣n
e

⌘n
. (1.8)

• Stirling’s approximation to the factorial:

n! =
✓

1+O
✓

1
n

◆◆p
2pn

⇣n
e

⌘n
. (1.9)

• An approximation to the binomial coefficients:
✓

n
k

◆

⇣n · e

k

⌘k
. (1.10)

• The sum of the first n integers:

n

Â
i=1

i =
n(n+1)

2
. (1.11)


