
Randomized Algorithms, Summer 2016 Lecture 1 (5 pages)

Contention Resolution

Instructor: Thomas Kesselheim

1 Waiting for One Success

Assume you are rolling a dice over and over again. How long to expect until it shows “6”
for the first time? More generally, we observe a random process that is either “successful” or
“not successful” in every round. All rounds are independent and in each we get the outcome
“successful” with probability p. Let T denote the random variable indicating the number of
rounds it takes until we see “successful” for the first time.

As it is a non-negative integer random variable, we can use the following formula to calculate
the expectation.

E [T ] =
∞∑
t=1

Pr [T ≥ t] .

What is Pr [T ≥ t]? Note that we have T ≥ t if and only if in the first t − 1 rounds we
see “not successful”. For an event E , we let E denote its complementary event. Regarding the
probabilities, we have Pr

[
E
]

= 1−Pr [E ]. Letting St′ denote the event that we see “successful”
in round t′, this can be written as

T ≥ t occurs if and only if
t−1⋂
t′=1

St′ occurs .

And therefore

Pr [T ≥ t] = Pr

[
t−1⋂
t′=1

St′
]
.

As all rounds are independent, we have

Pr

[
t−1⋂
t′=1

St′
]

=
t−1∏
t′=1

Pr
[
St′
]
.

Furthermore, Pr
[
St′
]

= 1− p. So overall

Pr [T ≥ t] = (1− p)t−1 .

For the expectation, this gives us the following geometric sum

E [T ] =

∞∑
t=1

Pr [T ≥ t] =

∞∑
t=1

(1− p)t−1 =
1

p
.

2 Collecting Coupons

In the previous example, we were rolling a dice until we saw one particular number for the first
time. Next, we consider the number of rounds it takes until we have seen all of the numbers
at least once. In the literature this question is known as the coupon collector’s problem. There
are n coupons one of which is drawn uniformly in every round with replacement. Let T be the
number of rounds it takes until we have seen all coupons at least once. Clearly, T is never less
than n but of course it can be much bigger. Figure 1 visualizes an experiment with n = 100.



Randomized Algorithms, Summer 2016 Lecture 1 (page 2 of 5)

0 100 200 300 400 500
0

20

40

60

80

100

round

n
u

m
b

er
of

d
is

ti
n

ct
co

u
p

on
s

se
en

Figure 1: The progress made when collecting n = 100 coupons.

While we see many different coupons at the beginning, it takes more and more time until we
see a new coupon.

To calculate the expectation of T , we use a trick. We divide the rounds into phases. Phase
1 is only the first round. Phase j starts after phase j − 1 and ends in a round when we see a
new coupon. Let Xj denote the length of phase j. By this definition, the time it takes until we

see at least k different coupons is
∑k

j=1Xj and therefore T =
∑n

j=1Xj .
When we are in phase j, we have already seen j−1 different coupons. So n−(j−1) = n−j+1

coupons are still new. The probability to see such a coupon in a particular round is n−j+1
n . By

the result in Section 1, the expected length of phase j is therefore

E [Xj ] =
n

n− j + 1
.

To get the expectation of T , we use linearity of expectation.

Lemma 1.1 (Linearity of Expectation). Let X1, . . . , Xn be (not necessarily independent) ran-
dom variables. Then

E

 n∑
j=1

Xj

 =

n∑
j=1

E [Xj ] .

So, we get

E [T ] = E

 n∑
j=1

Xj

 =

n∑
j=1

E [Xj ] =

n∑
j=1

n

n− j + 1
= n

n∑
i=1

1

i
= nHn .

Hn is the n-th harmonic number. It is easy to show that ln(n + 1) < Hn < 1 + lnn for all
n and therefore Hn = Θ(log n).

3 Contention Resolution

The coupon collector’s problem may seem to be not much more than a mathematical puzzle.
The following application shows that it actually many applications can be considered in a similar
way.

We start with a typical example of a randomized algorithm. Assume there are n processes
that each want to access a shared resource, which can only be accessed by one process at a



Randomized Algorithms, Summer 2016 Lecture 1 (page 3 of 5)

time. For example, they each want to perform a radio transmission. If two processes attempt
a transmission simultaneously, both fail. There is no way of coordinating processes, except for
designing an algorithm.

In more detail, we have synchronized rounds. Our protocol starts in round 1. We want to
minimize the time until all processes have successfully accessed the resource at least once. If
the processes had IDs, we could have process i access the resource in round i and we would be
done in n rounds. What can we do instead?

We let each process access the resource in each round with probability p = 1
n independently,

even if it has already been successful once. Setting p this way seems reasonable for the time
being; in the exercises, you will try out other values. Let T be the random variable repre-
senting the number of rounds until each process has been successful at least once. Whats T ’s
distribution? Can we bound its expectation?

We define three kinds of events for every process i and every round t

• Ai,t is the event that process i accesses the resource in round t.

• Si,t is the event that process i successfully accesses the resource in round t.

• Fi,t is the event that process i does not successfully access the resource in any round
1, . . . , t.

By these definitions, we have

T > t occurs if and only if
⋃
i

Fi,t occurs .

3.1 The Probability of a Single Success

We first start with the event Ai,t. Naturally, we defined the probability of this event to occur
to be p. So, formally, Pr [Ai,t] = p. The probability of the complementary event is therefore
Pr
[
Ai,t

]
= 1− p.

What is the probability of the event Si,t? We can write it as the intersection of access events

Si,t = Ai,t ∩

⋂
j 6=i
Aj,t

 .

This does not tell us anything about its probability yet. We need that the access attempts
are independent between processes in a round. So therefore

Pr [Si,t] = Pr [Ai,t] ·
∏
j 6=i

Pr
[
Aj,t

]
= p · (1− p)n−1 .

The functions are visualized in Figure 2.

Fact 1.2.

(a) The function x 7→
(
1− 1

x

)x
converges monotonically from 1

4 up to 1
e as n increases from 2.

(b) The function x 7→
(
1− 1

x

)x−1
converges monotonically from 1

2 down to 1
e as n increases

from 2.

So, using Fact 1.2, we get that with p = 1
n for all i and all t

1

en
≤ Pr [Si,t] ≤

1

2n
.

This bound is already enough to bound the expectation of T by Θ(n log n) using the same
calculations as for the coupon collector’s problem. You will do this in the exercises.



Randomized Algorithms, Summer 2016 Lecture 1 (page 4 of 5)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 2: The functions bounded in Fact 1.2.

3.2 Bounding the Success Probability over Multiple Rounds and Multiple
Processes

Bounding only the expectation does not tell us a lot about the actual distribution. Therefore, we
have a closer look at the respective probabilities now. To this end, we will bound the probability
of an event Fi,t. It is defined as

Fi,t =

t⋂
r=1

Si,r .

We can use independence between rounds to get

Pr [Fi,t] =
t∏

r=1

Pr
[
Si,r
]
.

We have already shown that Pr
[
Si,r
]
≤ 1− 1

en . So therefore

Pr [Fi,t] ≤
(

1− 1

en

)t
.

Now let c be an arbitrary constant integer and set t = cden lnne. We get

Pr [Fi,t] ≤
(

1− 1

en

)t
≤ e−c lnn =

1

nc
.

This gives us a bound on the probability that a fixed process waits for more than t rounds
for its first success. However, we are interested in the probability of the event that there is a
process that waits for more than t rounds. Formally, we would like to bound the probability

Pr [T > t] = Pr

[⋃
i

Fi,t

]
.

Unfortunately, the events Fi,t are not independent. Therefore, we cannot apply the tech-
niques used so far. Instead, we rely on an apparently weak but very useful bound.

Lemma 1.3 (Union Bound). Given (not necessarily disjoint) events E1, E2, . . . , En, we have

Pr

[
n⋃
i=1

Ei

]
≤

n∑
i=1

Pr [Ei] .



Randomized Algorithms, Summer 2016 Lecture 1 (page 5 of 5)

With the union bound, we get that for t = cden lnne

Pr [T > t] = Pr

[⋃
i

Fi,t

]
≤
∑
i

Pr [Fi,t] ≤ n ·
1

nc
=

1

nc−1
.

This bound on the probability gives us another way to bound the expectation of T as follows

E [T ] =

∞∑
k=1

Pr [T ≥ k]

≤
∞∑
c=0

den lnne∑
k=1

Pr [T ≥ cden lnne+ k]

≤
∞∑
c=0

Pr [T > cden lnne] den lnne

= O(n log n)

∞∑
c=0

Pr [T > cden lnne]

= O(n log n)

(
1 +

∞∑
c=0

1

nc

)

= O(n log n)

(
1 +

1

1− 1
n

)
= O(n log n) .

Indeed, we showed a much stronger guarantee, namely that T is bounded by O(n log n) with
high probability.

Definition 1.4. Let f : N → R>0 be a function. A sequence of random variables (Xn)n∈N is
bounded by O(f(n)) with high probability if for every constant α there is a constant β such that

Pr [Xn ≥ βf(n)] ≤ 1

nα
for all n ∈ N .

Definition 1.5. Let f : N → R>0 be a function. A sequence of random variables (Xn)n∈N is
bounded by Ω(f(n)) with high probability if for every constant α there is a constant β such that

Pr [Xn ≤ βf(n)] ≤ 1

nα
for all n ∈ N .

Definition 1.6. Let f : N → R>0 be a function. A sequence of random variables (Xn)n∈N is
bounded by Θ(f(n)) with high probability if it is bounded by O(f(n)) with high probability and
bounded by Ω(f(n)) with high probability.


	Waiting for One Success
	Collecting Coupons
	Contention Resolution
	The Probability of a Single Success
	Bounding the Success Probability over Multiple Rounds and Multiple Processes


