Thomas Kesselheim Kurt Mehlhorn Pavel Kolev

Randomized Algorithms and Probabilistic Analysis of Algorithms

Summer 2016

Exercise Set 1

Please hand in your solutions at the beginning of the lecture on May 9. You may work in groups of up to three students.

Exercise 1:

(4 Points) Show that in the contention-resolution algorithm with $p = \frac{1}{n}$ it takes $\Theta(n \log n)$ rounds in expectation until all processes have accessed the resource successfully at least once. Use linearity of expectation as we did in the coupon collector's problem.

(Note: This includes both an upper and a lower bound.)

Exercise 2:

(4 Points) Suppose there are n totally drunken sailors returning to their ship and choosing their cabins independently, uniformly at random (i.u.r.)¹. What is the expected number of sailors sleeping in their own cabin?

Exercise 3:

- (a) Given an example of random variables X and Y such that $\mathbf{E}[X \cdot Y] \gg \mathbf{E}[X] \cdot \mathbf{E}[Y]$ and an example such that $\mathbf{E}[X \cdot Y] \ll \mathbf{E}[X] \cdot \mathbf{E}[Y]$.
- (b) Show that if $(X_n)_{n \in \mathbb{N}}$ and $(Y_n)_{n \in \mathbb{N}}$ are bounded by O(f(n)) and O(g(n)) respectively with high probability, then $(X_n \cdot Y_n)_{n \in \mathbb{N}}$ is bounded by $O(f(n) \cdot g(n))$ with high probability. (Hint: Union Bound)

Exercise 4:

(4 Points)

(2+4 Points)

Consider a cut (S, \overline{S}) in a graph such that the number of edges crossing (S, \overline{S}) is at most α -times the number of edges in a minimum cut. Formally: $|E_S| \leq \alpha \cdot \min_{(S', \bar{S}') \text{ is a cut}} |E_{S'}|$. Show that the probability that (S, \overline{S}) survives the first $n - 2\alpha$ steps of the simple contraction algorithm with probability at least $\frac{1}{\binom{n}{2\alpha}}$ if $2\alpha \in \mathbb{N}$.

¹Even drunk, they preserve their intimacy and don't share cabins.