
Randomized Algorithms, Summer 2016 Lecture 5 (5 pages)

Load Balancing and Chernoff Bounds

Instructor: Thomas Kesselheim

This week, we consider a very simple load-balancing problem. Suppose you have n machines
and m jobs. You want to assign the jobs to machines such that all machines have approximately
the same load. Of course, there is a solution with load at most dmn e on every machine, but that
requires central coordination. Without central coordination, the easiest thing you can do is let
each job drawn one machine uniformly and independently.

Such random assignments are prevalent in different settings. In the general setting, one
assumes that balls (in our case jobs) are thrown into bins (in our case machines) at random.
We will study the balls-into-bins problems for the case that m = n. We are interested in the
number of balls within a single bin.

Formally, let Li be the load of bin i. By symmetry reasons, E [Li] = 1 for any fixed i.
However, the expected maximum load E [maxi Li] is higher. Just consider the case that n = 2.
Then, only with probability 1

2 the maximum load is 1 (the balls fall into different bins), with
probability 1

2 it is 2 (the balls fall into the same bin).
In the first lecture, we used a union bound to upper-bound the distribution of the maxi-

mum of some random variables. To apply the union bound, we first need to understand the
distribution of Li.

Lemma 5.1 (Markov’s Inequality). Let X be a non-negative random variable. Then for every

a > 0 we have Pr [X ≥ a] ≤ E[X]
a .

So, Markov’s inequality gives us Pr [Li ≥ a] ≤ 1
a . This means, we could use a union bound to

get Pr [maxi Li ≥ a] ≤
∑

iPr [Li ≥ a] ≤ n · 1a . Unfortunately, this bound is totally meaningless
here. Only for a > n, we get a non-trivial bound on the probability. But we already know that
maxi Li ≤ n because there are at most n balls overall. Therefore, we need a stronger bound
than the one given by Markovs inequality.

1 Chernoff Bounds

In general, Markov’s inequality is tight. However, it is particularly loose for sums of independent
random variables. In these settings, we get a lot better guarantees with Chernoff bounds. There
are many different variants, also for random variables that are correlated in the right sense. We
provide a cheat sheet, giving you an overview many different versions. In the following, we
prove the best known basic variant.
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Figure 1: The loads of n = 100 bins.
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Lemma 5.2 (Chernoff Bound). Let X1, . . . , Xn be independent 0/1 random variables and let
X be their sum, i.e., X = X1 + . . .+Xn. For every µ ≥ E [X] and every δ > 0, we have

Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
.

At this point, we can do a quick sanity check. This bound is a lot stronger. For a fixed
bin, let Xi = 1 if ball i falls into this bin. Then we can set µ = 1, δ = 2 log2 n. If n is large

enough, then eδ

(1+δ)1+δ
≤ 2−δ = 1

n2 . So the probability that a bin gets more than O(log n) balls

is at most by 1
n2 and we can apply a union bound. Later on, we will do this calculation more

exactly but first, we need to show that the bound is actually correct.

Proof of Lemma 5.2. To prove Lemma 5.2, we apply Markov’s inequality on the random variable
etX for some t ∈ R to be defined later. Observe that no matter how we choose t, etX will always
be a non-negative random variable. So, we have by Markov’s inequality

Pr [X ≥ (1 + δ)µ] = Pr
[
etX ≥ et(1+δ)µ

]
≤

E
[
etX
]

et(1+δ)µ
. (1)

Next, we bound E
[
etX
]
. We have

etX = et
∑n
i=1Xi =

n∏
i=1

etXi ,

and therefore by independence of (Xi)i∈[n] also

E
[
etX
]

= E

[
n∏
i=1

etXi

]
=

n∏
i=1

E
[
etXi

]
.

Every Xi is a 0/1 random variable. So let us define pi by setting Pr [Xi = 1] = pi. Of course
Pr [Xi = 0] = 1− pi by this definition. As we have

etXi =

{
et if Xi = 1

1 otherwise

we can write the expectation of etXi as

E
[
etXi

]
= pi · et + (1− pi) · 1 = pi(e

t − 1) + 1 .

So far, all steps work for any t ∈ R. In the following, we set t = ln(1 + δ). In the previous
equation, this gives us

E
[
etXi

]
= pi(e

t − 1) + 1 = pi(e
ln(1+δ) − 1) + 1 = piδ + 1 ≤ epiδ ,

where the last step is true because ex ≥ x+ 1 for all x ∈ R.
Overall, this gives us for the expectation of etX

E
[
etX
]
≤

n∏
i=1

epiδ = e
∑n
i=1 piδ .

Next, we use that E [Xi] = Pr [Xi = 1] = pi. So

n∑
i=1

pi =

n∑
i=1

E [Xi] = E

[
n∑
i=1

Xi

]
= E [X] ≤ µ ,

and therefore
E
[
etX
]
≤ eµδ .

Plugging in this bound and the definition of t = ln(1 + δ) in Equation (1), we get

Pr [X ≥ (1 + δ)µ] ≤
E
[
etX
]

et(1+δ)µ
≤ eµδ

(1 + δ)(1+δ)µ
=

(
eδ

(1 + δ)1+δ

)µ
.
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2 Upper Bound

Theorem 5.3. The maximum bin load is O
(

logn
log logn

)
with high probability.

Proof. We use Lemma 5.2 to bound the load Lj of a single bin j. The load of bin j is given as

Lj = X1 + . . .+Xn =: X ,

where Xi is 1 if ball i falls into bin j and 0 otherwise. The Xi random variables are independent
and Pr [Xi = 1] = 1

n .
Set µ = 1, now Lemma 5.2 gives us for all δ > 0

Pr [X ≥ 1 + δ] ≤
(

eδ

(1 + δ)1+δ

)µ
=

1

e

(
e

1 + δ

)1+δ

.

With 1 + δ = max
{

e
√

lnn, 2α lnn
ln lnn

}
, we get

Pr [X ≥ 1 + δ] ≤ 1

e

(
e

e
√

lnn

)2α lnn
ln lnn

≤ 1

e

(
1

lnn

)α lnn
ln lnn

=
1

enα
.

The bound on maxj Lj now follows by a union bound.

3 Lower Bound

Theorem 5.4. The maximum bin load is Ω
(

logn
log logn

)
with constant probability.

Proof. The probability that bin j gets exactly k balls is given as

Pr [Lj = k] =

(
n

k

)(
1

n

)k (
1− 1

n

)n−k
≥
(n
k

)k 1

nk
1

e
=

1

ekk

For k = lnn
3 ln lnn we have kk ≤ (lnn)

lnn
3 ln lnn = n

1
3 .

Let Yj = 1 if bin j gets exactly k balls and 0 otherwise. We have

Pr [Yj = 1] ≥ Pr [Lj = k] ≥ 1

en
1
3

.

This tells us that E
[∑n

j=1 Yj

]
≥ 1

en
2/3. So, in expectation, Ω(n2/3) bins have a load of exactly

k. However, this does not tell us yet anything about the maximal load maxj Lj . In principle,
it can happen that the expectation is high but only because with small probability the random
variable takes a very high value.

Lemma 5.5 (Chebyshev’s inequality). Let X be a real-valued random variable with expectation

µ and variance σ2. Then for all a > 0, we have Pr [|X − µ| ≥ a] ≤ σ2

a2
.

We naturally have maxj Lj < k if and only if
∑n

j=1 Yj = 0, which is equivalent to
∣∣∣∑n

j=1 Yj − µ
∣∣∣ ≥

µ for every µ > 0. So setting µ = E
[∑n

j=1 Yj

]
, we now have

Pr

[
max
j
Lj < k

]
= Pr

∣∣∣∣∣∣
n∑
j=1

Yj − µ

∣∣∣∣∣∣ ≥ µ
 ≤ σ2

µ2
,

where σ2 is the variance of
∑n

j=1 Yj .



Randomized Algorithms, Summer 2016 Lecture 5 (page 4 of 5)

So, to get a bound, we need to compute the variance of
∑n

j=1 Yj .

σ2 = V ar

 n∑
j=1

Yj

 =
n∑
j=1

V ar(Yj) +
n∑
j=1

n∑
i=1
i 6=j

Cov(Yj , Yi) .

The variance of a single 0/1 random variable Yj is given as Var(Yj) = Pr [Yj = 1]Pr [Yj = 0] ≤
Pr [Yj = 1] = E [Yj ]. The covariance for two random variables Yj and Yi, j 6= i, is defined as
Cov(Yj , Yi) = E [YjYi] − E [Yj ]E [Yi]. The intuition is as follows. If one variable has a high
value is it then more or less likely that the other one has a high value, too. Independent
random variables have covariance 0. But in our case Yj and Yi are not independent. As one
correctly expects, it is less likely that Yj has a high value if Yi already has, which means that
the covariance is negative (or possibly zero).

To show this formally, observe that

Pr [Lj = k | Li = k] =

(
n− k
k

)(
1

n− 1

)k (
1− 1

n− 1

)n−k
≤
(
n

k

)(
1

n

)k (
1− 1

n

)n−k
= Pr [Lj = k] .

So, we have Pr [Yj = 1 | Yi = 1] ≤ Pr [Yj = 1] and therefore E [YjYi] = Pr [Yj = 1, Yi = 1] ≤
Pr [Yj = 1]Pr [Yi = 1] = E [Yj ]E [Yi]. This implies Cov(Yj , Yi) = E [YjYi]−E [Yj ]E [Yi] ≤ 0 for
j 6= i

So, therefore σ2 ≤
∑n

j=1E [Yj ] = µ.
Overall, this implies

Pr

[
max
j
Lj < k

]
≤ σ2

µ2
≤ 1

µ
≤ e

n2/3
.

4 An Application: Coin Tosses

We toss n coins. How likely is it that we see more than n/2 + c
√
n heads?

Let Xi, 1 ≤ i ≤ n be independent 0-1 random variables with Pr [Xi = 1] = 1/2. Let
X =

∑
iXi and µ = n/2 = E [X]. Let δ = c

√
n/(n/2). Then

Pr
[
X ≥ n

2
+ c
√
n
]

= Pr

[
X ≥

(
1 +

2c√
n

)
n

2

]

≤

(
e2c/

√
n

(1 + 2c√
n

)1+2c/
√
n

)n/2
= exp

(
n

2

(
2c√
n
− (1 +

2c√
n

) ln((1 +
2c√
n

))

))
≤ exp

(
n

2

(
2c√
n
− (1 +

2c√
n

)(
2c√
n
− 4c2

n
)

))
= exp

(
n

2

(
−4c2

n
+ (1 +

2c√
n

)
4c2

2n

))
= exp

(
n

2

(
−4c2

n
+

3c2

n

))
= exp

(
−c2/2

)
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The second inequality uses ln(1 + x) ≥ x− x2/2 for small positive x. The last inequality holds
for 2c/

√
n ≤ 1/2.

For c = 2, the probability is bounded by e−2, for c = 10, the probability is bounded by e−50

and for c =
√

2 log n the probability is bounded by 1/n.
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