
Randomized Algorithms, Summer 2016 Lecture 11 (4 pages)

Randomized Rounding

Instructor: Thomas Kesselheim

One of the key ideas in randomized algorithms is that good outcomes are likely enough to
happen if we flip coins. This allows us to avoid distinguishing many cases and treating each
separately. In this lecture, we will study one particular such technique, which allows us to design
approximation algorithms. In all of our algorithms, we will rely on linear programs (LPs). The
examples are selected in a way that it is not necessary to have much background in LP theory.
As a matter of fact, we will only need that LPs of polynomial size can be solved in polynomial
time.

1 Set Cover

As a first example, we study the set cover problem in its weighted variant. You are given a
universe of elements U = {1, . . . ,m} and a family of subsets of U called S ⊆ 2U . For each
S ∈ S, there is a weight wS . Your task is to find a cover C ⊆ S of minimum weight

∑
S∈C wS .

A set C is a cover if for each i ∈ U there is an S ∈ C such that i ∈ S. Alternatively, you could
say

⋃
S∈C S = U .

We assume that each element of U is included in at least one S ∈ S. So in other words S is
a feasible cover. Otherwise, there might not be a feasible solution.

This problem is NP hard. We will devise an algorithm that computes an approximate
solution in polynomial time. As a matter of fact, the basic algorithm description only runs in
expected polynomial time.

We can state it as an integer program as follows

minimize
∑
S∈S

wSxS (minimize the overall weight)

subject to
∑

S : i∈S
xS ≥ 1 for all i ∈ U (cover every element at least once)

xS ∈ {0, 1} for all S ∈ S (every set is either in the set cover or not)

We can relax the problem by exchanging the constraints xS ∈ {0, 1} by 0 ≤ xS ≤ 1. (These are
the only constraints requiring integrality of the solution.) We get the following LP relaxation

minimize
∑
S∈S

wSxS

subject to
∑

S : i∈S
xS ≥ 1 for all i ∈ U

0 ≤ xS ≤ 1 for all S ∈ S

This LP can be solved in polynomial time. Every set cover solution C corresponds to a feasible
solution of this LP with the objective-function value being exactly the weight of the cover.
However, feasible solutions of the LP are generally fractional and might have a smaller value
than the best set cover

Example 11.1. Consider U = {1, 2, 3}, S = {{1, 2}, {1, 3}, {2, 3}}, wS = 1 for all S ∈ S.
The optimal set cover solution has weight 2 because we need to take two sets. However, setting
xS = 1

2 for all S ∈ S is a feasible solution to the LP relaxation.

How can be turn a fractional solution of the LP into an integral one? This step is generally
called rounding. One of the easiest approaches is to do it in a randomized way. Let us consider
the following algorithm to derive a set R, which is usually not a cover.

Randomized Algorithms, Summer 2016 Lecture 11 (page 2 of 4)

• Let x∗ be an optimal solution to the LP relaxation

• Add S ∈ S to R with probability x∗S independently

We have to ask two questions: What is the weight of the set R? How likely is it that
elements are covered?

Lemma 11.2. The expected weight of R is E
[∑

S∈RwS

]
=
∑

S∈S wSx
∗
S. In particular, it is

bounded by the weight of an optimal set cover solution.

Proof. For S ∈ S, let XS be a 0/1 random variable that is 1 is S ∈ R and 0 otherwise. We now
have by linearity of expectation

E

[∑
S∈R

wS

]
= E

[∑
S∈S

wSXS

]
=
∑
S∈S

wSE [XS] =
∑
S∈S

wSx
∗
S .

Lemma 11.3. Each element i ∈ U is covered by R with probability at least 1− 1
e .

Proof. Fix an element i ∈ U . Let T be the subset of S of sets S that contain i.
The element i is covered by R if and only if

∑
S∈T XS ≥ 1.

As we add each set S to R independently, we have

Pr [i is not covered by R] = Pr

[∧
S∈T

S 6∈ R

]
=
∏
S∈T

Pr [S 6∈ R]

Now, we plug in the definition of the probabilities. We have Pr [S 6∈ R] = 1− x∗S . Further-
more,

∑
S∈T x

∗
S ≥ 1 by the LP constraints. This gives us

Pr [i is not covered by R] =
∏
S∈T

(1− x∗S)
(∗)
≤
∏
S∈T

e−x
∗
S = e−

∑
S∈T x∗S ≤ 1

e
,

where (∗) follows from ey ≥ 1 + y for all y ∈ R.

Observe that it is highly unlikely that the set R covers all our elements. However, each
single element is covered with decent probability. Therefore, if we repeatedly compute such as
set R, we will end up with a cover quickly. This is the idea of Algorithm 1.

Algorithm 1: Set Cover via Randomized Rounding

let x∗ be an optimal solution to the LP relaxation
repeat

for t = 1, . . . , T do
add S ∈ S to Rt with probability x∗S independently

let C =
⋃T

t=1Rt

until C is a cover and
∑

S∈C wS ≤ 4T
∑

S∈S wSx
∗
S

Theorem 11.4. For T ≥ ln(4m), Algorithm 1 completes after one iteration of the repeat-loop
with probability at least 1

2 . Consequently, the expected number of repeat-iterations is at most 2.

Proof. Let us first bound the expected weight of C using Lemma 11.2

E

[∑
S∈C

wS

]
≤ E

[
T∑
t=1

∑
S∈Rt

wS

]
= T

∑
S∈S

wSx
∗
S .

Randomized Algorithms, Summer 2016 Lecture 11 (page 3 of 4)

Therefore, by Markov’s inequality

Pr

[∑
S∈C

wS > 4T
∑
S∈S

wSx
∗
S

]
≤ 1

4
.

Next, we bound the probability that C is a cover. Consider an arbitrary element i ∈ U . By
Lemma 11.3, the probability that it is not covered by the set C is at least

Pr [i is not covered by C] =

T∏
t=1

Pr [i is not covered by Rt] ≤
1

eT
=

1

4m
.

By a union bound, we get

Pr [C is not a cover] ≤
∑
i∈U

Pr [i is not covered by C] ≤ m 1

4m
=

1

4
.

By a union bound, the repeat loop does not stop after one iteration is at most 1
2 .

Overall, we find a feasible set cover solution that is at most an O(logm)-factor worse than
the optimal fractional solution in expected polynomial time.

2 Integer Multi-Commodity Flow

Next, we consider the following problem in an undirected graph G = (V,E) with m = |E| edges.
We are given k pairs of vertices (si, ti). We have to connect as many of them as possible using
a path. Our selection is constrained by the fact that every edge has only capacity C, i.e., for
every e ∈ E only C paths may include e. Letting Pi denote the set of paths between si and ti,
we get the following integer program.

maximize
k∑

i=1

∑
P∈Pi

xi,P

subject to
k∑

i=1

∑
P∈Pi
e∈P

xi,P ≤ C for all e ∈ E

∑
P∈Pi

xi,P ≤ 1 for all i ∈ [k]

xi,P ∈ {0, 1} for all i ∈ [k], P ∈ Pi
Again, we can get an LP by exchanging xi,P ∈ {0, 1} by 0 ≤ xi,P ≤ 1 in the last constraint. This
LP generally has a size that is exponential in the graph because the number of paths can be
huge. However, it is still pretty easy to solve in polynomial time because it is a multi-commodity
flow problem.

We will assume that C ≥ 12 lnm and we will get within a constant factor of the LP optimum.
Generally, one gets even better guarantees for larger C and it is also possible to get results for
small C. In all cases, the algorithm and its analysis follow the same pattern devised here.

Algorithm 2: Integer Multi-Commodity Flow via Randomized Rounding

let x∗ be an optimal solution to the LP relaxation
foreach i ∈ [k] do

choose a single P ∈ Pi by setting set Yi,P = 1 with probability 1
2x
∗
i,P , no path is

selected with probability 1− 1
2

∑
P∈Pi

x∗i,P

if all Yi,P define a feasible selection of paths then Zi,P = Yi,P for all i, P
else Zi,P = 0 for all i, P
output the path selection by Zi,P

Randomized Algorithms, Summer 2016 Lecture 11 (page 4 of 4)

Theorem 11.5. If C ≥ 12 lnm, the expected number of pairs that are connected by Algorithm 2
is at least 1

4

∑k
i=1

∑
P∈Pi

x∗i,P .

Proof. Let consider a fixed j ∈ [k] and let us condition on Yj,P̃ = 1 for some P̃ ∈ Pi. As all
other pairs are independent, we have for each edge e ∈ E that

E

∑
i 6=j

∑
P∈Pi
e∈P

Yi,P

∣∣∣∣∣∣∣ Yj,P̃ = 1

 =
∑
i 6=j

∑
P∈Pi
e∈P

1

2
x∗i,P ≤

1

2
C .

By a Chernoff bound using δ = 1 and µ = 1
2C, it follows that

Pr

∑
i 6=j

∑
P∈Pi
e∈P

Yi,P ≥ C

∣∣∣∣∣∣∣ Yj,P̃ = 1

 ≤ Pr

∑
i 6=j

∑
P∈Pi
e∈P

Yi,P ≥ 2µ

∣∣∣∣∣∣∣ Yj,P̃ = 1


≤ exp

(
−µ

3

)
= exp

(
−C

6

)
≤ exp

(
−12 lnm

6

)
=

1

m2
.

The next step is to see that one of the edge constraints is violated only if after taking out one
path the remaining number of paths crossing this edge is still at least C. Therefore, we get

Pr
[
edge e is overloaded

∣∣∣ Yj,P̃ = 1
]

= Pr

 m∑
i=1

∑
P∈Pi
e∈P

Yi,P > C

∣∣∣∣∣∣∣ Yj,P̃ = 1

 ≤ 1

m2
.

By a union bound, it follows that

Pr
[
Zj,P̃ = 0

∣∣∣ Yj,P̃ = 1
]

= Pr
[
the path selection is not feasible

∣∣∣ Yj,P̃ = 1
]
≤ 1

m
≤ 1

2
.

So

Pr
[
Zj,P̃ = 1

]
≥ 1

2
Pr
[
Yj,P̃ = 1

]
Finally, because E [Yi,P] = 1

2x
∗
i,P , we have

E

 k∑
i=1

∑
P∈Pi

Zi,P

 ≥ 1

2

k∑
i=1

∑
P∈Pi

E [Yi,P] =
1

4

k∑
i=1

∑
P∈Pi

x∗i,P

3 Further Reading

• Chapter 14 in Vazirani, Approximation Algorithms

• Chapters 5 and 12 in Williamson/Shmoys, The Design of Approximation Algorithms,
http://www.designofapproxalgs.com

http://www.designofapproxalgs.com

	Set Cover
	Integer Multi-Commodity Flow
	Further Reading

