
Randomized Algorithms, Summer 2016 Lecture 12 (4 pages)

Yao’s Principle and the Secretary Problem

Instructor: Thomas Kesselheim

Let us consider the following online selection problem, in which you have to make commit-
ments before you know all you choices. Suppose you want to buy a house. You go see several
houses and (a bit simplifying here) after each visit you have to decide immediately and irrevoca-
bly if you want to buy this particular house or if you want to keep on looking – then somebody
else will buy it. Another motivation would be that you want to find the love of your life. You
start dating and (even more simplifying here) after each first date you have to decide whether
you you want to marry this person or if you want to keep looking.

We can model this problem as follows. There are n candidates of values v1, . . . vn ∈ R,
vi ≥ 0. You see the values of these candidates in order 1, . . . , n. After having seen the i-th
candidate you can choose to select it or to reject it. The goal is to maximize the value of the
candidate that you select.

The way such online problems are usually analyzed in algorithmic theory is to perform a
worst-case analysis. That is, our goal is to find an algorithm that performs well on all possible
instances. A common way to think about this is to consider a hypothetical adversary that
defines the numbers. Note that in this setting, we don’t know anything about the values that
come later on, not even their range.

Definition 12.1. A (possibly randomized) online algorithm is α-competitive if for every se-
quence of values v1, . . . , vn. we have E [v(ALG)] ≥ αmaxi vi.

Observation 12.2. There is no deterministic online algorithm that is better than 0-competitive
for any n.

Proof. Assume there is an α-competitive deterministic algorithm for α > 0. Consider its de-
cisions made on the sequence v1 = 1, v2 = 2

α , v3 = . . . = vn = 0. It has to select the second
candidate, otherwise it is not α-competitive. In particular, this means it rejects the first candi-
date. Now consider the sequence v1 = 1, v2 = . . . = vn = 0. Because the first candidate looks
the same, as in the other sequence, it has to be rejected. This implies that ALG = 0.

Note that this bound relies on the fact that the algorithm never picks the first candidate.
An easy fix is to flip a coin and depending on this outcome to pick the first candidate or to
wait. This generally gives you something better than 0.

Observation 12.3. There is a 1
n -competitive randomized online algorithm.

Proof. The algorithm is trivial: Draw X uniformly from {1, . . . , n} and pick the candidate that
comes at position X. With probability 1

n , it is the one with the highest value.

We are actually still not happy with this result. This algorithm does not even look at the
values. Can’t we do better by being a bit smarter? It turns out that on arbitrary sequences
this is impossible. Today, we will learn a technique to show impossibility results for randomized
algorithms. One consequence is the fact that this stupid algorithm is indeed the best that we
can hope for in terms of the competitive ratio.

1 Yao’s Principle

Yao’s principle is a very simple, yet powerful tool to prove impossibility results regarding worst-
case performance randomized algorithms. We state it for algorithms that always do something

Randomized Algorithms, Summer 2016 Lecture 12 (page 2 of 4)

correct but the profit or cost may vary. Such algorithms are called Las Vegas algorithms. We
first state it for minimization problems because this is the usual way.

We assume that we have a class of deterministic algorithms A and a class of instances X . In
order to avoid technicalities, assume that both classes are finite. Algorithm a ∈ A on instance
x ∈ X incurs cost c(a, x) ∈ R. A randomized algorithm is simply a probability distribution over
the set of deterministic algorithms A. So, let A be a randomized algorithm (which is now a
random variable), then A’s worst-case cost is maxx∈X E [c(A, x)].

Theorem 12.4 (Yao’s Principle). Let A be a random variable with values in A and let X be a
random variable with values in X . Then,

max
x∈X

E [c(A, x)] ≥ min
a∈A

E [c(a,X)] .

Proof. Let us first write the expectations as sums over all possible outcomes of X and A.

E [c(A, x)] =
∑
a∈A

Pr [A = a] c(a, x) and E [c(a,X)] =
∑
x∈X

Pr [X = x] c(a, x)

Now we use that the weighted average of a sequence is always upper-bounded by its maximum
value. In our case, the weights are Pr [X = x]. As

∑
x∈X Pr [X = x] = 1, we have

max
x∈X

E [c(A, x)] = max
x∈X

∑
a∈A

Pr [A = a] c(a, x) ≥
∑
x∈X

Pr [X = x]
∑
a∈A

Pr [A = a] c(a, x) .

We can now reorder the sums and get∑
x∈X

Pr [X = x]
∑
a∈A

Pr [A = a] c(a, x) =
∑
a∈A

Pr [A = a]
∑
x∈X

Pr [X = x] c(a, x) .

Finally, we can use that
∑

a∈APr [A = a] = 1 the same way as above to obtain∑
a∈A

Pr [A = a]
∑
x∈X

Pr [X = x] c(a, x) ≥ min
a∈A

∑
x∈X

Pr [X = x] c(a, x) = min
a∈A

E [c(a,X)] .

The analogous statement holds maximization problems, where we have a profit p(a, x) that
algorithm a achieves on instance x. By setting c(a, x) = −p(a, x), we get the following corollary.

Corollary 12.5. . Let A be a random variable with values in A and let X be a random variable
with values in X . Then,

min
x∈X

E [p(A, x)] ≤ max
a∈A

E [p(a,X)] .

2 Application to the Selection Problem

Let us now apply Yao’s principle to the selection problem. We first consider a simplified variant,
in which we are only have with the maximum.

Lemma 12.6. No randomized algorithm guarantees to select the best candidate with probability
more than 1

n on sequences on {0, 1, . . . , n}.

Proof. As the set of instances X consider all sequences on numbers {0, 1, . . . , n}. Let A be the
set of all deterministic online algorithms. That is, the point at which some algorithm a stops a
sequence x is deterministic. We denote it by s(a, x).1 Furthermore, it does not depend on the
values xi for i > s(a, x). (These are the values we haven’t seen until making our decision.) We
define p(a, x) = 1 if a selects the maximum number in x, p(a, x) = 0 otherwise.

1In principle, algorithms are allowed not to make any decision. In these cases, set s(a, x) = n.

Randomized Algorithms, Summer 2016 Lecture 12 (page 3 of 4)

Observe that a randomized algorithm A selects the maximum number on a fixed sequence
x with probability E [p(A, x)]. We want to show that minx∈X E [p(A, x)] ≤ 1

n . To this end, we
use Corollary 12.5. It is enough to show that there is a probability distribution over instances
X such that maxa∈AE [p(a,X)] = 1

n

Let x(t) be the sequence defined as

x(t) = (1, 2, . . . , t, 0, . . . , 0) .

Intuitively, it is difficult to select the maximum element in this sequence because we do not
know t in advance and sequences look alike until it is too late, we have no point of reference to
make our selection.

Let us now define a probability distribution over these instances as follows. Let T be drawn
uniformly at random from 1, . . . , n and set X = x(T). We now claim that this way

max
a∈A

E [p(a,X)] =
1

n
.

Let us consider an arbitrary deterministic algorithm a on the input x(n) = (1, 2, . . . , n). It
will select one number in this sequence; that selection’s index we denote be s := s(a, x(n)). Now,
let us consider some other x(t). If s ≤ t, then the algorithm will make exactly the same decisions
because sequences x(t) and x(n) look the same until position t. If s > t, then the algorithm
selects 0. Therefore, we have p(a, x(t)) = 1 if and only if s = t. In combination, this yields

E [p(a,X)] = E
[
p(a, x(T))

]
= Pr [T = s] =

1

n
.

As this holds for any possible algorithm a, we have shown the claim.

Theorem 12.7. No randomized algorithm for the selection problem is α-competitive for α > 1
n .

Proof. Suppose there is a randomized algorithm A that is α-competitive for α = 1
n + ε, ε > 0.

We use this algorithm to derive a contradiction to Lemma 12.6. Let M � 1 be a huge number.
Given a sequence x on {0, 1, . . . , n}, in step i feed vi = Mxi to the algorithm and mirror the
selection choice.

Let v∗ denote the maximum value given by this sequence, i.e., v∗ = maxi vi = Mmaxi xi .
Observe that v(ALG) is v∗ if A stops the sequence at its maximum. Otherwise, it is at most
v∗/M . So, we have

E [v(ALG)] ≤ v∗Pr [A selects maximum element] +
v∗

M
.

If our algorithm is α-competitive, then E [v(ALG)] ≥ αv∗. Therefore, we have

1

n
+ ε ≤ Pr [A selects maximum element] +

1

M
,

and thus

Pr [A selects maximum element] ≥ 1

n
+ ε− 1

M
,

Setting M = 2
ε then leads to a contradiction.

3 Random Arrival Order

For the negative result it is essential that candidates arrive in order of increasing value. But
what if the elements do not come in a worst-case order? We will now consider the case that
first an adversary defines values v1, . . . , vn but then a randomly drawn permutation π is applied
before we get to see and select the candidates. This problem is known as the secretary problem.
To simplify the argument, we assume that all values are distinct, i.e., vi 6= vj for i 6= j.

Randomized Algorithms, Summer 2016 Lecture 12 (page 4 of 4)

Theorem 12.8. For the secretary problem, there is an algorithm that selects the maximum-
weight element with probability 1

e −
1
n .

Proof. Consider the algorithm that observes the first τ elements in the sequence, without se-
lecting any of these. Afterwards, it selects an element if it is the best one so far.

Without loss of generality, let v1 < v2 < . . . < vn. By this definition, the step in which the
maximum-weight element arrives is given as π(n) and so on.

Observe that the algorithm succeeds if π(n) > τ and no other element is picked before that
round.

Pr [correct selection] =

n∑
t=τ+1

Pr [π(n) = t,no element is picked before round t] .

Let St ⊆ [n] be the set of elements that arrive before round t. Among these elements, maxSt
is the one with highest value. Observe that no element is picked before round t if and only if
π(maxSt) ≤ τ . This gives us

Pr [correct selection] =
n∑

t=τ+1

Pr [π(n) = t] Pr [π(maxSt) ≤ τ | π(n) = t] .

It is clear that Pr [π(n) = t] = 1
n but what is Pr [π(maxSt) ≤ τ | π(n) = t]? By conditioning

on π(n) = t, the set St is a uniformly random subset of size t − 1 drawn from n − 1 possible
elements. Each possible outcome, gives us a minimum. And this minimum is within the first τ
rounds with probability τ

t−1 . Very formally, we can write this as

Pr [π(maxSt) ≤ τ | π(n) = t]

=
∑

M⊆{2,...,n}

Pr [St = M,π(maxM) ≤ τ | π(n) = t]

=
∑

M⊆{2,...,n}

Pr [St = M, | π(n) = t] Pr [π(maxM) ≤ τ | St = M,π(n) = t]

=
∑

M⊆{2,...,n}

Pr [St = M, | π(n) = t]
τ

t− 1

=
τ

t− 1
.

Note that in this argument it is very crucial that if you condition on M = St you have only
fixed which elements arrive in rounds 1, . . . , t− 1 but not their mutual order.

Overall, we now get

Pr [correct selection] =

n∑
t=τ+1

1

n

τ

t− 1
≥ τ

n

∫ n

τ

1

x
dx =

τ

n
ln
(n
τ

)
.

Now setting τ = bne c, gives τ
n ln

(
n
τ

)
≥

n
e
−1
n ln

(
n
n
e

)
= 1

e −
1
n .

	Yao's Principle
	Application to the Selection Problem
	Random Arrival Order

