
Contents

1 Synchronizing Clocks 1

1.1 The Clock Synchronization Problem 1

1.2 The Max Algorithm . 3

1.3 Lower Bound on the Global Skew 4

1.4 Refining the Max Algorithm . 8

1.5 Afterthought: Stronger Lower Bound 10

2 Gradient Clock Synchronization 13

2.1 Formalizing the Problem . 13

2.2 Averaging Protocols . 14

2.3 GCS Algorithm . 16

2.4 Analysis of the GCS Algorithm 19

3 Lower Bound on the Local Skew 27

3.1 Lower Bound with Bounded Clock Rates 27

3.2 Lower Bound with Arbitrary Clock Rates 32

4 Fault-Tolerant Clock Synchronization 37

4.1 The Pulse Synchronization Problem 38

4.2 A Variant of the Srikanth-Toueg Algorithm 38

4.3 Impossibility of Synchronization for 3f ≥ n 42

5 Synchronizing by Approximate Agreement 47

5.1 Approximate Agreement . 47

5.2 A Variant of the Lynch-Welch Algorithm 51

6 Metastability 57

6.1 Kleene Logic and Circuits . 58

6.2 The Limits of Metastability-Containment 61

6.3 Hardness of Containment . 62

6.4 Containing a Bounded Number of Metastable Inputs 63

7 Metastability-Containing Control Loops 67

7.1 Metastability in Control Loops 68

7.2 First Try: Binary Counters . 69

7.3 Second Try: Unary “Counters” 72

7.4 Third Try: Gray Codes . 76

i

ii CONTENTS

8 Metastability-Containing Sorting 79
8.1 4-valued Comparison of BRGC Strings 80
8.2 Determining the Output Bits . 83
8.3 Parallel Prefix Computation . 86

9 Self-Stabilization 89
9.1 Making Lynch-Welch Self-Stabilizing 92
9.2 First Attempt: Reset on Heartbeats 92
9.3 Second Attempt: Adding Feedback 93
9.4 Third Attempt: Reset on Unexpected Heartbeats Only 94
9.5 Analysis . 97

10 Consensus 103
10.1 The Phase King Algorithm . 104
10.2 Recursive Phase King . 106
10.3 Running Time Lower Bound . 108

11 Synchronous Counting 113
11.1 Synchronous Counting vs. Consensus 113
11.2 Pulsers . 116
11.3 Weak from (less Resilient) Strong Pulsers 120
11.4 Plugging it Together . 129

12 Pulse Synchronization 133
12.1 Outline of the Construction . 133
12.2 Stabilization after Resynchronization Pulse 135

13 Clock Distribution 145
13.1 First Attempt: Clock Trees . 145
13.2 Second Attempt: Lynch-Welch on DAGs 148
13.3 Third Attempt: Fault-tolerant GCS 149
13.4 Fourth Attempt: HEX . 150
13.5 Fifth Attempt: TRIX . 151

A Notation and Preliminaries 157
A.1 Numbers and Sets . 157
A.2 Graphs . 157
A.3 Asymptotic Notation . 158
A.4 Bounding the Growth of a Maximum of Differentiable Functions 160

Lecture 1

Synchronizing Clocks

In this lecture series, we are going to approach fault-tolerant clock genera-
tion and distribution from a theoretical angle. This means we will formal-
ize parametrized problems and prove impossibilities, lower bounds, and upper
bounds for them. However, make no mistake: these tasks are derived from real-
world challenges, and a lot of the ideas and concepts can be used in the design of
highly reliable and scalable hardware solutions. The first lecture focuses on the
basic task at hand, without bells and whistles. Asking more refined questions
will prompt more refined answers later in the course; nonetheless, the initial
lecture offers a good impression of the general approach and flair of the course.

1.1 The Clock Synchronization Problem

We describe a distributed system by a simple, connected graph G = (V,E) (see
Appendix A), where V is the set of n := |V | nodes (our computational entities,
e.g., computers in a network) and nodes v and w can directly communicate
if and only if there is an edge {v, w} ∈ E. Each node is equipped with a
local or hardware clock. We model this clock as a strictly increasing function
Hv : R+

0 → R+
0 , whose rate of increase is between 1 and ϑ > 1:

∀v ∈ V, t, t′ ∈ R+
0 , t ≥ t′ : t− t′ ≤ Hv(t)−Hv(t

′) ≤ ϑ(t− t′) ,

where t ∈ R+
0 denotes “perfect” Newtonian real time (which is not known to

the nodes). For simplicity, we assume that hardware clocks are differentiable
and denote the derivative by hv. Thus, the above inequalities are equivalent to
hv(t) ∈ [1, ϑ] at all times t. However, all claims can be shown solely based on
the above requirement.

Note that even if the hardware clocks of nodes v and w would be initially
perfectly synchronized (i.e., Hv(0) = Hw(0)), over time they could drift apart
at a rate of up to ϑ − 1. Accordingly, we refer to ϑ − 1 as the maximum drift,
or, in short, drift. In order to establish or maintain synchronization, nodes
need to communicate with each other. To this end, on any edge {v, w}, v
can send messages to w (and vice versa). However, it is not known how long
such a message is under way. A message sent at time t is received at a time
t′ ∈ (t + d − u, t + d), where d is the (maximum) delay and u is the (delay)
uncertainty. We subsume possible delays due to computations in d, i.e., at the

1

2 LECTURE 1. SYNCHRONIZING CLOCKS

time t′ when the message is received in our abstract model, all updates to the
state of the receiving node take effect and any message it sends in immediate
response is sent. Nodes may also send messages later, at a time t′′ specified by
some hardware clock value H > Hv(t

′); the messages are then sent at the time
t′′ when Hv(t

′′) = H, unless reception of a message at an earlier time makes v
“change its mind.”

An execution of an algorithm on a system is given by specifying clock func-
tions Hv as above to each v ∈ V and assigning to each message a reception time
t′ ∈ (t + d − u, t + d), where t is the time it was sent. Note that by perform-
ing this inductively over increasing reception times enables to always determine
from the execution up to the current time what the state of each node is and
which messages are in transit, i.e., choosing clock functions and delays fully
determines an execution.

The clock synchronization problem requires each node v ∈ V to compute a
logical clock Lv : R+

0 → R+
0 , where Lv(t) is determined from the current state

of the node (computed when receiving the most recent message, or the initial
state if no message has been received yet) and Hv(t). The goal is to minimize,
for any possible execution E , the global skew

G := sup
t∈R+

0

{G(t)} ,

where

G(t) := max
v,w∈V

{|Lv(t)− Lw(t)|} = max
v∈V
{Lv(t)} −min

v∈V
{Lv(t)}

is the global skew at time t.
For simplicity, this notation does not reflect the dependence on the execution.

The goal is to bound G for all possible executions, yet frequently we will argue
about specific executions. We will make the dependence explicit only when
reasoning about different executions concurrently.

Remarks:

• For practical purposes, clocks are discrete and bounded (i.e., wrap around
to 0 after reaching a maximum value), and nodes may not be able to read
them (perform computations, send messages, etc.) at arbitrary times. We
hide these issues in our abstraction, as they can be handled easily, by
adjusting d and u to account for them and making minor adjustments to
algorithms.

• A cheap quartz oscillator has a drift of ϑ − 1 ≈ 10−5, which will be
more than accurate enough for running all the algorithms we’ll get to see.
In some cases, however, one might only want to use basic digital ring
oscillators (an odd number of inverters arranged in a cycle), for which
ϑ− 1 ≈ 10% is not unusual.

• There are other forms of communication than point-to-point message pass-
ing. Changing the mode of communication has, in most cases, little influ-
ence on a conceptual level, though.

• Another issue is that clocks may not be perfectly synchronized at time
0. After all, we want to run a synchronization algorithm to make clocks

1.2. THE MAX ALGORITHM 3

agree, so assuming that this is already true from the start would create
a chicken-and-egg problem. But if we assume that initial clock values are
arbitrary, we cannot bound G. Instead, we assume that, for some F ∈ R+,
it holds that Hv(0) ∈ [0, F] for all v ∈ V . We then can bound G in terms
of F (and, of course, other parameters).

• In order to perform induction over message sending and/or reception
times, we need the additional assumption that nodes send only finitely
many messages in finite time. As physics ensure that is the case (and any
reasonable algorithm should not attempt otherwise), we implicitly make
this assumption throughout the course.

1.2 The Max Algorithm

Let’s start with our first algorithm. It’s straightforward: Nodes initialize their
logical clocks to their initial hardware clock value, increase it at the rate of the
hardware clock, and set it to the largest value they can be sure that some other
node has reached. To make the latter useful, each node broadcasts its clock
value (i.e., sends it to all neighbors) whenever it reaches an integer multiple of
some parameter T . See Algorithm 1.1 for the pseudocode.

Algorithm 1.1: Basic Max Algorithm. Parameter T ∈ R+ controls
the message frequency. The code lists the actions of node v at time t.

1 Lv(0) := Hv(0)
2 at all times, increase Lv at the rate of Hv

3 if received 〈L〉 at time t and L > Lv(t) then
4 Lv(t) := L
5 if Lv(t) = kT for some k ∈ N then
6 send 〈Lv(t)〉 to all neighbors

Lemma 1.1. In a system executing Algorithm 1.1, it holds that

G(t) ≤ ϑdD + (ϑ− 1)T

for all t ≥ dD + T , where D is the diameter of G.

Proof. Set L := maxv∈V {Lv(t−dD−T)}. No node ever sets its logical clock to
a value that has not been reached by another node before. Together with the
fact that hardware clocks increase at rate at most ϑ, this implies that

max
v∈V
{Lv(t)} ≤ max

v∈V
{Lv(t− dD − T)}+ ϑ(dD + T) = L+ ϑ(dD + T) .

Let v be a node such that Lv(t− dD−T) = maxw∈V {Lw(t− dD−T)}. As the
logical clock of v increases at least at rate 1, the minimum rate of its hardware
clock, and is never set back to a smaller value, we have that Lv(t

′) = kT for
some k ∈ N and t′ ∈ [t, t + T). At time t′, v sends 〈kT 〉 = 〈Lv(t′)〉 to all
neighbors. These will receive it before time t′ + d and, if they have not reached
clock value kT and sent a message 〈kT 〉 yet, do so now. By induction, every

4 LECTURE 1. SYNCHRONIZING CLOCKS

node within D hops of v will receive a message 〈kT 〉 by time t′ + dD. As we
assume G to be connected, these are all nodes.

Consider any node w ∈ V . As w sets Lw to value kT when receiving a
message 〈kT 〉 (unless it is already larger), we have that

Lw(t) ≥ Lw(t′ + dD) + t− (t′ + dD)

≥ Lv(t′) + t− (t′ + dD)

≥ Lv(t− dD − T) + t′ − (t− dD − T) + t− (t′ + dD) = L+ T .

As w is arbitary, it follows that

G(t) = max
v∈V
{Lv(t)} − min

w∈V
{Lw(t)} ≤ ϑdD + (ϑ− 1)T .

Theorem 1.2. Set H := maxv∈V {Hv(0)} − minv∈V {Hv(0)}. Then Algo-
rithm 1.1 achieves

G ≤ max{H, dD}+ (ϑ− 1)(dD + T) .

Proof. Consider t ∈ R+
0 . If t ≥ dD+T , then G(t) ≤ dD+(ϑ−1)T by Lemma 1.8.

If t < dD + T , then for any v, w ∈ V we have that

Lv(t)− Lw(t) ≤ Lv(0)− Lw(0) + (ϑ− 1)t ≤ H + (ϑ− 1)(dD + T) .

Remarks:

• H reflects the skew on initialization. Getting H small may or may not be
relevant to applications, but it yields little understanding of the overall
problem; hence we neglect this issue here.

• Making H part of the bound means that we do not bound G for all execu-
tions, as the model allows for executions with arbitrarily large initial clock
offsets Hv(0)−Hw(0). An unconditional bound will require to ensure that
H is small — but of course this “unconditional” bound then still relies on
the assumptions of the model.

• Is this algorithm good? May it even be optimal in some sense?

1.3 Lower Bound on the Global Skew

To argue that we performed well, we need to show that we could not have done
(much) better (in the worst case). We will use the shifting technique, which
enables to “hide” skew from the nodes. That is, we construct two executions
which look completely identical from the perspective of all nodes, but different
hardware clock values are reached at different times. No matter how the algo-
rithm assigns logical clock values, in one of the executions the skew must be
large — provided that nodes do increase their clocks. First, we need to state
what it means that two executions are indistinguishable at a node.

Definition 1.3 (Indistinguishable Executions). Executions E0 and E1 are in-

distinguishable at node v ∈ V until local time H, if H
(E0)
v (0) = H

(E1)
v (0) (where

the superscripts indicate the execution) and, for i ∈ {0, 1}, for each message v

1.3. LOWER BOUND ON THE GLOBAL SKEW 5

receives at local time H ′ ≤ H in Ei from some neighbor w ∈ V , it receives an
identical message from w at local time H ′ in E1−i. If we drop the “until local
time H,” this means that the statement holds for all H, and if we drop the “at
node v,” the statement holds for all nodes.

Remarks:

• If two executions are indistinguishable until local time H at v ∈ V , it sends
the same messages in both executions and computes the same logical clock
values — in terms of its local time — until local time H. This holds because
our algorithms are deterministic and all actions nodes take are determined
by their local perception of time and which messages they received (and
when).

• As long as we can ensure that the receiver of each message receives it at
the same local time in two executions without violating the constraint that
messages are under way between d−u and d real time in both executions,
we can inductively maintain indistinguishability: as long as this condition
is never violated, each node will send the same messages in both executions
at the same hardware times.

Before showing that we cannot avoid a certain global skew, we need to add a
requirement, namely that clocks actually behave like clocks and make progress.
Note that, without such a constraint, setting Lv(t) = 0 at all v ∈ V and times
t is a “perfect” solution for the clock synchronization problem.

Definition 1.4 (Amortized Minimum Progress). For α ∈ R+, an algorithm
satisfies the amortized α-progress condition, if there is some C ∈ R+

0 such that
minv∈V {Lv(t)} ≥ αt− C for all t ∈ R+

0 and all executions.

We now prove that we cannot only “hide hardware clock skew,” but also
keep nodes from figuring out that they might be able to advance their logical
clocks slower than their hardware clocks in such executions.

Lemma 1.5. Fix an arbitrary algorithm and any node v ∈ V . For arbitrarily
small ε > 0, there are executions Ev and E1 that are indistinguishable such that

• H(E1)
x (t) = t for all x ∈ V and t,

• H(Ev)
v (t) = H

(E1)
v (t) + uD − ε for all t ≥ t0 := uD−ε

ρ−1 for some ρ ∈ (1, ϑ],

• H(Ev)
w (t) = t for some w ∈ V and all t.

Proof. In both executions and for all x ∈ V , we set Hx(0) := 0. Denote by
d(x, y) the distance (i.e., hop count of a shortest path) between nodes x and y,
and fix some node w ∈ V with d(v, w) = D. Abbreviate d(x) := d(x,w)−d(x, v).
Execution E1 is given by running the algorithm with all hardware clock rates

being 1 at all times and the message delay from x to y being d−(1
2−

d(x)−d(y)
4)u.

Observe that d(x) ∈ [−D,D], where d(v) = D and d(w) = −D, and that
d(·) differs by at most 2 between neighbors. In Ev, we set the hardware clock

6 LECTURE 1. SYNCHRONIZING CLOCKS

rate of node x ∈ V to 1 + (ρ−1)(d(x)+D)
2D at all times t ≤ t0 and 1 at all times

t > t0 (we will specify ρ ∈ (1, ϑ) later). This implies that

H(Ev)
v (t0) = ρt0 = t0 + (ρ− 1)t0 = t0 + uD − ε = H(E1)

v (t0) + uD − ε and

H(Ev)
w (t0) = t0 .

As clock rates are 1 from time t0 on, this means that the hardware clocks satisfy
all stated constraints.

It remains to specify message delays and show that the two executions are
indistinguishable. We achieve this by simply ruling that a message sent from
some x ∈ V to a neighbor y ∈ V in Ev arrives at the same local time at y as
it does in E1. By induction over the arrival sending times of messages, then
indeed all nodes also send identical messages at identical local times in both
executions, i.e., the executions remain indistinguishable at all nodes and times.
However, it remains to prove that this results in all message delays being in the
range (d− u, d).

To see this, recall that for any {x, y} ∈ E, we have that |d(x) − d(y)| ≤ 2.
As clock rates are 1 after time t0 and constant before, and all hardware clocks
are 0 at time 0, the maximum difference between any two local times between
neighbors is attained at time t0. We compute

H(Ev)
x (t0)−H(Ev)

y (t0) =
d(y)− d(x)

2D
· (ρ− 1)t0 =

d(y)− d(x)

2
·
(
u− ε

D

)
.

In execution E1, a message sent from x to y at local time H
(E1)
x (t) = t is received

at local time H
(E1)
y (t) = H

(E1)
x (t) + d− (1

2 −
d(x)−d(y)

4)u. If a message is sent at
time t in Ev, we have that

H(Ev)
y (t+ d)

≥ H(Ev)
y (t) + d

= H(Ev)
x (t) + d+

d(x)− d(y)

2
·
(
u− ε

D

)
= H(Ev)

x (t) + d−
(

1

2
− d(x)− d(y)

4

)
u+

2 + d(x)− d(y)

4
· u− (d(x)− d(y))ε

2D

> H(Ev)
x (t) + d−

(
1

2
− d(x)− d(y)

4

)
u

where the last inequality uses that d(x)− d(y) ≥ −2 and assumes that ε < uD,
i.e., ε is sufficiently small. On the other hand, as clock rates in Ev are at most ρ,

H(Ev)
y (t+ d− u)

≤ H(Ev)
y (t) + ρd− u

= H(Ev)
x (t) + ρd− u+

d(x)− d(y)

2
·
(
u− ε

D

)
= H(Ev)

x (t) + ρd−
(

1

2
− d(x)− d(y)

4

)
u+

d(x)− d(y)− 2

4
u− (d(x)− d(y))ε

2D
.

We want to bound this term by H
(Ev)
x (t) + d −

(
1
2 −

d(x)−d(y)
4

)
u, which is

equivalent to requiring that

(ρ− 1)d+
d(x)− d(y)− 2

4
· u− (d(x)− d(y))ε

2D
< 0 .

1.4. REFINING THE MAX ALGORITHM 7

We are still free to choose ρ from (1, ϑ]. We set ρ := min{1 + ε/(2dD), ϑ},
implying that the left hand side is smaller than 0 if d(x)− d(y) = 2. The other
case is that d(x) − d(y) ≤ 1, and choosing ε (and thus also ρ − 1) sufficiently
close to 0 ensures that the inequality holds.

Theorem 1.6. If an algorithm satisfies the amortized α-progress condition for
some α ∈ R+, then G ≥ αuD

2 , even if we are guaranteed that Hv(0) = 0 for all
v ∈ V .

Proof. From Lemma 1.5, for arbitrarily small ε > 0 we have two indistinguish-
able executions Ev, E1 and nodes v, w ∈ V such that

• H(E1)
v (t) = H

(E1)
w (t) = H

(Ev)
w (t) = t for all t ∈ R+

0 and

• there is a time t0 such that H
(Ev)
v (t) = t+ uD − ε for all t ≥ t0.

Because the algorithm satisfies the amortized α-progress condition, we have that

L
(E1)
v (t) ≥ αt−C for all t and some C ∈ R+

0 . We claim that there is some t ≥ t0
satisfying that

L(E1)
w (t+ uD − ε)− L(E1)

w (t) ≥ α(uD − 2ε) . (1.1)

Assuming for contradiction that this is false, set ρ := α(uD−2ε)
uD−ε < α and consider

times t := t0 + k(uD − ε) for k ∈ N. We get that

L(E1)
w (t) ≤ L(E1)

w (t0) + ρ(t− t0) = α(t− t0)− (α− ρ)(t− t0) + L(E1)
w (t0) .

Choosing t >
L(E1)

w (t0)+C
α−ρ , we get that L

(E1)
w (t) < αt−C, violating the α-progress

condition. Thus, we reach a contradiction, i.e., the claim must hold true.

Now let t ≥ t0 be such that (1.1) holds. As H
(E1)
w (t) = H

(Ev)
w (t), by indistin-

guishability of E1 and Ev we have that L
(E1)
w (t) = L

(Ev)
w (t). As H

(E1)
v (t+uD−ε) =

t+ uD − ε = H
(Ev)
v (t), we have that L

(Ev)
v (t) = L

(E1)
v (t+ uD − ε). Hence,

L(E1)
w (t+ uD − ε)− L(E1)

v (t+ uD − ε)
≥ L(E1)

w (t) + α(uD − 2ε)− L(E1)
v (t+ uD − ε)

= L(Ev)
w (t)− L(Ev)

v (t) + α(uD − 2ε) .

We conclude in at least one of the two executions, the logical clock difference
between v and w reaches at least αuD

2 − ε. As ε > 0 can be chosen arbitrarily

small, it follows that G ≥ αuD
2 , as claimed.

Remarks:

• The good news: We have a lower bound on the skew that is linear in D.
The bad news: typically u� d, so we might be able to do much better.

• When propagating information, we haven’t factored in yet that we know
that messages are under way for at least d− u time. Let’s exploit this!

8 LECTURE 1. SYNCHRONIZING CLOCKS

Algorithm 1.2: Refined Max Algorithm.

1 Lv(0) := Hv(0)
2 at all times, increase Lv at the rate of Hv

3 if received 〈L〉 at time t and L+ d− u > Lv(t) then
4 Lv(t) := L+ d− u
5 if Hv(t) = kT for some k ∈ N then
6 send 〈Lv(t)〉 to all neighbors

1.4 Refining the Max Algorithm

Lemma 1.7. In a system executing Algorithm 1.2, no v ∈ V ever sets Lv to a
value larger than maxw∈V \{v}{Lw(t)}.

Proof. If any node v ∈ V sends message 〈Lv(t)〉 at time t, it is not received
before time t+ d− u, for which it holds that

max
w∈V
{Lw(t+ d− u)} ≥ Lv(t+ d− u) ≥ Lv(t) + d− u ,

as all nodes, in particular v, increase their logical clocks at least at rate 1, the
minimum rate of increase of their hardware clocks.

Lemma 1.8. In a system executing Algorithm 1.2, it holds that

G(t) ≤ ((ϑ− 1)(d+ T) + u)D

for all t ≥ (d+ T)D, where D is the diameter of G.

Proof. Set L := maxv∈V {Lv(t − (d + T)D)}. By Lemma 1.7 and the fact that
hardware clocks increase at rate at most ϑ, we have that

max
v∈V
{Lv(t)} ≤ max

v∈V
{Lv(t− (d+ T)D)}+ ϑ(d+ T)D = L+ ϑ(d+ T)D .

Consider any node w ∈ V . We claim that Lw(t) ≥ L + (d + T − u)D, which
implies

max
v∈V
{Lv(t)}−Lw(t) ≤ L+ϑ(d+T)D−(L+(d+T−u)D) = ((ϑ−1)(d+T)+u)D ;

as w is arbitary, this yields the statement of the lemma.
It remains to show the claim. Let v ∈ V be such that Lv(t− (d+T)D) = L.

Denote by (vD−h = v, vD−h+1, . . . , vD = w), where h ≤ D, a shortest v-w-path.
Define ti := t− (D− i)(d+T). We prove by induction over i ∈ {D−h,D−h+
1, . . . , D} that

Lvi(ti) ≥ L+ i(d+ T − u) ,

where the base case i = D − h is readily verified by noting that

Lv(ti) ≥ Lv(t− (d+ T)D) + ti − (t− (d+ T)D) = L+ i(d+ T) .

For the induction step from i− 1 ∈ {D − h, . . . ,D − 1} to i, observe that vi−1
sends a message to vi at some time ts ∈ (ti−1, ti−1 + T], as its hardware clock
increases by at least T in this time interval. This message is received by vi at

1.4. REFINING THE MAX ALGORITHM 9

some time tr ∈ (ts, ts + d) ⊆ (ti−1, ti−1 + d+ T). Note that ti−1 < ts < tr < ti.
If necessary, vi will increase its clock at time tr, ensuring that

Lvi(ti) ≥ Lvi(tr) + ti − tr
≥ Lvi−1

(ts) + d− u+ ti − tr
≥ Lvi−1

(ts) + ti − ts − u
≥ Lvi−1

(ti−1) + ti − ti−1 − u
= Lvi−1

(ti−1) + d+ T − u
≥ L+ i(d+ T − u) ,

where the last step uses the induction hypothesis. This completes the induction.
Inserting i = D yields that Lw(t) ≥ LvD (tD) = L + (d + T − u)D, as claimed,
completing the proof.

Theorem 1.9. Set H := maxv∈V {Hv(0)} − minv∈V {Hv(0)}. Then Algo-
rithm 1.2 achieves

G ≤ max{H,uD}+ (ϑ− 1)(d+ T)D .

Proof. Consider t ∈ R+
0 . If t ≥ (d+T)D, then G(t) ≤ uD+ (ϑ− 1)(d+T)D by

Lemma 1.8. If t < (d+ T)D, then for any v, w ∈ V we have that

Lv(t)− Lw(t) ≤ Lv(0)− Lw(0) + (ϑ− 1)t ≤ H + (ϑ− 1)(d+ T)D .

Remarks:

• Note the change from using logical clock values to hardware clock values
to decide when to send a message. The reason is that increasing received
clock values to account for minimum delay pays off only if the increase is
also forwarded in messages. However, sending a message every time the
clock is set to a larger value might cause a lot of messages, as now different
values than kT for some k ∈ N might be sent. The compromise presented
here keeps the number of messages in check, but pays for it by exchanging
the (ϑ− 1)T term in skew for (ϑ− 1)TD.

• Choosing T ∈ Θ(d) means that nodes need to send messages roughly
every d time, but in return G ∈ max{H,uD} +O((ϑ − 1)dD). Reducing
T further yields diminishing returns.

• Typically, u � d, but also ϑ − 1 � 1. However, if u � (ϑ − 1)d, one
might consider to build a better clock by bouncing messages back and
forth between pairs of nodes. Hence, this setting makes only sense if com-
munication is expensive or unreliable, and in many cases one can expect
uD to be the dominant term.

• In the exercises, you will show how to achieve a skew of O(uD+(ϑ−1)d).

• So we can say that the algorithm achieves asymptotically optimal global
skew (in our model). The lower bound holds in the worst case, but we
have shown that it applies to any graph. So, for deterministic guaran-
tees, changing the network topology has no effect beyond influencing the
diameter.

• We neglected important aspects like local skew and fault-tolerance, which
will keep us busy during the remainder of the course.

10 LECTURE 1. SYNCHRONIZING CLOCKS

1.5 Afterthought: Stronger Lower Bound

Both of our algorithms are actually much more restrained in terms of clock
progress than just satisfying an amortized lower bound of 1 on the rates.

Definition 1.10 (Strong Envelope Condition). An algorithm satisfies the strong
envelope condition, if at all times and for all nodes v ∈ V , it holds that
minw∈V {Hw(t)} ≤ Lv(t) ≤ maxw∈V {Hw(t)}.

Corollary 1.11. For any algorithm satisfying the strong envelope condition, it
holds that G ≥ uD, even if we are guaranteed that Hv(0) = 0 for all v ∈ V .

Proof. Apply Lemma 1.5 for some v ∈ V and ε > 0. We have that HE1x (t) = t for
all x ∈ V . The strong envelope condition thus entails that LE1x (t) = HE1x (t) = t
for all x and t. As Ev is indistinguishable from E1, it follows that also LEvx (t) =
HEvx (t) for all x and t. In particular, there is some w ∈ V such that

LEvv (t0)− LEww (t0) = uD − ε .

As this holds for arbitrarily small ε > 0, we conclude that indeed G ≥ uD, as
claimed.

Remarks:

• Thus, in some sense the term uD in the skew bound is optimal.

• If one merely requires the weaker bound t ≤ Lv(t) ≤ maxv∈V {Hv(0)}+ϑt,
then a lower bound of uD

ϑ can be shown.

• Playing with such progress conditions is usually of limited relevance, as
one cannot gain more than a factor of 2 — unless one is willing to simply
slow down everything.

What to Take Home

• The shifting technique is an important source of lower bounds. We will
see it again.

• If all that we’re concerned with is the global skew and we have no faults,
things are easy.

• There are other communication models, giving slightly different results.
However, in a sense, our model satisfies the minimal requirements to be
different from an asynchronous system (in which nodes have no meaningful
sense of time): They can measure time with some accuracy, and messages
cannot be delayed arbitrarily.

• The linear lower bound on the skew is highly resilient to model variations.
If delays are distributed randomly and independently, a probabilistic anal-
ysis yields skews proportional to roughly

√
D, though (for most of the

time). This is outside the scope of this lecture series.

BIBLIOGRAPHY 11

Bibliographic Notes

The shifting technique was introduced by Lundelius and Lynch, who show that
even if the system is fully connected, there are no faults, and there is no drift (i.e.,
ϑ = 1), better synchronization than

(
1− 1

n

)
u cannot be achieved [LL84]. Biaz

and Lundelius Welch generalized the lower bound to arbitrary networks [BW01].
Note that Jennifer Lundelius and Jennifer Lundelius Welch are the same per-
son — and the double name “Lundelius Welch” will be frequently cited as Welch
(as “Lundelius” will be treated as a middle name, both by typesetting systems
and people who don’t know otherwise). I will stick to “Welch” as well, but for
a different reason: “the Lynch-Lundelius-Welch algorithm” is a mouthful, and
“the Lynch-Welch algorithm” rolls off the tongue much better (I hope that I’ll
be forgiven if she ever finds out!).

As far as I know, the max algorithm has been mentioned first in writing by
Locher and Wattenhofer [LW06] — but not because it is such a good synchro-
nization algorithm, but rather due its terrible performance when it comes to the
skew between neighboring nodes (see excersise). Being an extremely straight-
forward solution, it is likely to appear earlier and in other places and should be
considered folklore. In contrast to the earlier works mentioned above (and many
more), [LW06] uses a model in which clocks drift, just like in this lecture. At
least for this line of work, this goes back to a work by Fan and Lynch on gradient
clock synchronization, [FL06] which shows that it is not possible to distribute
the global skew of Ω(uD) “nicely” so that the skew between adjacent nodes is
O(u) at all times; the possibility to “introduce skew on the fly” is essential for
this observation. More on this in the next two lectures!

Bibliography

[BW01] Saâd Biaz and Jennifer Lundelius Welch. Closed Form Bounds for Clock
Synchronization under Simple Uncertainty Assumptions. Information
Processing Letters, 80:151–157, 2001.

[FL06] Rui Fan and Nancy Lynch. Gradient Clock Synchronization. Dis-
tributed Computing, 18(4):255–266, 2006.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound for
Clock Synchronization. Information and Control, 1984.

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In Proc. 20th Symposium on Distributed Computing
(DISC), pages 520–533, 2006.

12 LECTURE 1. SYNCHRONIZING CLOCKS

Lecture 2

Gradient Clock
Synchronization

In the previous lesson, we proved essentially matching upper and lower bounds
on the worst-case global skew for the clock synchronization problem. We saw
that during an execution of the Max algorithm (Algorithm 1.2), all logical clocks
in all executions eventually agree up to an additive term of O(uD) (ignoring
other parameters). The lower bound we proved in Section 1.3 shows that global
skew of Ω(uD) is unavoidable for any algorithm in which clocks run at an amor-
tized constant rate, at least in the worst case. In our lower bound construction,
the two nodes v and w that achieved the maximal skew were distance D apart.
However, the lower bound did not preclude neighboring nodes from remaining
closely synchronized throughout an execution. In fact, this is straightforward if
one is willing to slow down clocks arbitrarily (or simply stop them), even if the
amortized rate is constant.

Today, we look into what happens if one requires that clocks progress at a
constant rate at all times. In many applications, it is sufficient that neighboring
clocks are closely synchronized, while nodes that are further apart are only
weakly synchronized. To model this situation, we introduce the gradient clock
synchronization (GCS) problem. Intuitively, this means that we want to ensure
a small skew between neighbors despite maintaining “proper” clocks. That is,
we minimize the local skew under the requirement that logical clocks always run
at least at rate 1.

2.1 Formalizing the Problem

Let G = (V,E) be a network. As in the previous lecture, each node v ∈ V has
a hardware clock Hv : R+

0 → R+
0 that satisfies for all t, t′ ∈ R+

0 with t′ < t

t− t′ ≤ Hv(t)−Hv(t
′) ≤ ϑ(t− t′) .

Again, we denote by hv(t) the rate of Hv(t) at time t, i.e., 1 ≤ h(t) ≤ ϑ for all
t ∈ R+

0 . Recall that each node v computes a logical clock Lv : R+
0 → R+

0 from
its hardware clock and messages received from neighbors. During an execution
E , for each edge e = {v, w} ∈ E, we define the local skew of e at time t to be

13

14 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Le(t) = |Lv(t)− Lw(t)|. The gradient skew at time t in the network, denoted
L(t), is the largest local skew across any edge: L(t) = maxe∈E Le(t). Finally,
the gradient skew over an execution E is defined to be

L = sup
t∈R+

0

{L(t)} .

The goal of the gradient clock synchronization problem is to minimize L for any
possible execution E .

Attention: In order to simplify our presentation of the gradient clock syn-
chronization problem, we abstract away from the individual messages and mes-
sage delays from the previous chapter. Instead, we assume that throughout an
execution, each node v maintains an estimate of its neighbors’ logical clocks.
Specifically, for each neighbor w ∈ Nv, v maintains a variable L̃vw(t). The pa-
rameter δ represents the error in the estimates: for all {v, w} ∈ E and t ∈ R+

0 ,
we have

Lw(t) ≥ L̃vw(t) > Lw(t)− δ . (2.1)

When the node v is clear from context, we will omit the superscript v, and
simply write L̃w.

In order to obtain the estimates L̃vw(t), each node w periodically broadcasts
its logical clock value to its neighbors. Each neighbor v then computes L̃vw(t)
using the known bounds on message delays, and increases L̃vw at rate hv/ϑ
between messages from w. Thus, an upper bound on the error parameter δ
can be computed as a function of u (the uncertainty in message delay), ϑ (the
maximum clock drift), T (the frequency of broadcasts), and µ (a parameter
determining how fast logical clocks may run, see below); you do this in the
exercises.

To focus on the key ideas, we make another simplifying abstraction: Instead
of analyzing the global skew, we assume that it is taken care of and plug in G
as a parametrized upper bound. You will address this issue as an exercise, too.

2.2 Averaging Protocols

In this section, we consider a natural strategy for achieving gradient clock syn-
chronization: trying to bring the own logical clock to the average value between
the neighbors whose clocks are furthest ahead and behind, respectively. Specif-
ically, each node can be in either fast mode or slow mode. If a node v detects
that its clock is behind the average of its neighbors, it will run in fast mode, and
increase its logical clock at a rate faster than its hardware clock by a factor of
1 +µ, where µ is some appropriately chosen constant. On the other hand, if v’s
clock is at least the average of its neighbors, it will run in slow mode, increasing
its logical clock only as quickly as its hardware clock. Note that this strategy
results in logical clocks that behave like “real” clocks of drift ϑ′ = ϑ(1 + µ)− 1.
If µ ∈ O(ϑ), these clocks are roughly as good as the original hardware clocks.

The idea of switching between fast and slow modes gives a well-defined
protocol if neighboring clock values are known precisely,1 however ambiguity

1There is one issue of pathological behavior in which nodes could switch infinitely quickly
between fast and slow modes. This can be avoided by introducing a small threshold δ so that
a node only changes, say, from slow to fast mode if it detects that its clock is δ time units
behind the average.

2.2. AVERAGING PROTOCOLS 15

arises in the presence of uncertainty.
We consider two natural ways of dealing with the uncertainty. Set Lmax

Nv
(t) :=

maxw∈Nv
{Lw} and Lmin

Nv
(t) := minw∈Nv

{Lw}.
Aggresive strategy: each v computes an upper bound on the average between

Lmax
Nv

and Lmin
Nv

, and determines whether to run in fast or slow mode based
on this upper bound;

Conservative strategy: each v computes a lower bound on the average be-
tween Lmax

Nv
and Lmin

Nv
and determines the mode accordingly.

We will see that, in fact, both strategies yield terrible results, but for opposite
reasons. In Section 2.3, we will derive an algorithm that strikes an appropriate
balance between both stragies, with impressive results!

Aggressive Averaging

Here we analyze the aggressive averaging protocol described above. Specifically,
each node v ∈ V computes an upper bound on the average of its neighbors’
logical clock values:

L̃up
v (t) =

maxw∈Nv{L̃w}+ minw∈Nv{L̃w}
2

+ δ ≥ Lmax
Nv

+ Lmin
Nv

2
.

The algorithm then increases the logical clock of v at a rate of hv(t) if Lt(t) >
L̃up
v (t), and a rate of (1 + µ)hv(t) otherwise. We show that the algorithm

performs poorly for any choice of µ ≥ 0.

Claim 2.1. Consider the aggressive averaging protocol on a path network of
diameter D, i.e., V = {vi | i ∈ [D+ 1]} and E = {vi, vi+1} | i ∈ [D]. Then there
exists an execution E such that the gradient skew satisfies L ∈ Ω(δD).

Proof Sketch. Throughout the execution, we will assume that all clock estimates
are correct: for all v ∈ V and w ∈ Nv, we have L̃wv (t) = Lw(t). This means for all
i ∈ [D]\{0} that L̃up

vi (t) = (Lvi−1
(t)+Lvi+1

(t))/2+δ, whereas L̃up
v0 (t) = Lv1(t)+δ

and L̃up
vD = LvD−1

(t)+δ. Initially, the hardware clock rate of node vi is 1+ i(ϑ−1)
D .

Thus, even though all nodes immediately “see” that skew is building up, they all
set their clock rates to fast mode in order to catch up in case they underestimate
their neighbors’ clock values.

Now let’s see what happens to the logical clocks in this execution. While
nodes are running fast, skew keeps building up, but the property that Lvi(t) =
(Lvi+1(t) − Lvi−1(t)) is maintained at nodes i ∈ [D] \ {0}. In this state, v0 —
despite running fast — has no way of catching up to v1. However, at time
τ0 := δD

(1+µ)(ϑ−1) we would have that LvD (τ0) = LvD−1
(τ0) + δ = L̃up

vD (τ0) and

vD would stop running fast. We set t0 := τ0− ε for some arbitrarily small ε > 0
and set hvD (t) := hvD−1

(t) for all t ≥ t0. Thus, all nodes would remain in fast

mode until the time τ1 := t0 + δD
(1+µ)(ϑ−1) when we had LvD−1

(τ1) = L̃up
vD−1

(τ1).

We set t1 := τ1 − ε and proceed with this construction inductively. Note that,
with every hop, the local skew increases by (almost) 2δ, as this is the additional
skew that Lvi must build up to Lvi−1 when Lvi+1 = Lvi in order to increase

L̃up
vi − Lvi by δ, i.e., for vi to stop running fast. As ε is arbitrarily small, we

build up a local skew that is arbitrarily close to (2D − 1)δ.

16 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Remarks:

• The algorithm is also bad in that the above execution results in a global
skew of Ω(δD2).

• This could be fixed fairly easily, but without further changes still a large
local skew could build up.

• The above argument can be generalized to arbitrary graphs, by taking
two nodes v, w ∈ V in distance D and using the function d(x) = d(x, v)−
d(x,w), just as in Lemma 1.5.

Conservative Averaging

Let’s be more careful. Now each node v ∈ V computes a lower bound on the
average of its neighbors’ logical clock values:

L̃up
v (t) =

maxw∈Nv{L̃w}+ minw∈Nv
{L̃w}

2
≤ Lmax

Nv
+ Lmin

Nv

2
.

The algorithm then increases the logical clock of v at a rate of hv(t) if Lv(t) >
L̃up
v (t), and a rate of (1+µ)hv(t) otherwise. Again, the algorithm fails to achieve

a small local skew.

Claim 2.2. Consider the conservative averaging protocol on a path network
of diameter D. Then there exists an execution E such that the gradient skew
satisfies L ∈ Ω(δD).

Proof Sketch. We do the same as for the aggressive strategy, except that now
for each v ∈ V , w ∈ Nw, and time t, we rule that L̃w(t) = Lw(t) − δ + ε for
some arbitrarily small ε > 0. Thus, all nodes are initially in slow mode. We
inductively change hardware clock speeds just before nodes would switch to fast
mode, building up the exact same skews between logical clocks as in the previous
execution. The only difference is that now it does not depend on µ how long
this takes!

Remarks:

• It seems as if we just can’t do things right. Both the aggressive and
the conservative strategy do not result in a proper response to the gobal
distribution of clock values.

• Surprisingly, mixing the two strategies works! We study this during the
remainder of the lecture.

2.3 GCS Algorithm

The high-level strategy of the algorithm is as follows. As above, at each time
each node can be either in slow mode or fast mode. In slow mode, a node
v will increase its logical clock at rate hv(t). In fast mode, v will increase
its logical clock at rate (1 + µ)hv(t). The parameter µ will be chosen large
enough for nodes whose logical clocks are behind to be able to catch up to

2.3. GCS ALGORITHM 17

other nodes. The conditions for a node to switch from slow to fast or vice versa
are simple, but perhaps unintuititve. In what follows, we first describe “ideal”
conditions to switch between modes. In the ideal behavior, each node knows
exactly the logical clock values of its neighbors. Since the actual algorithm only
has access to estimates of neighboring clocks, we then describe fast and slow
triggers for switching between modes that can be implemented in our model for
GCS. We conclude the section by proving that the triggers do indeed implement
the conditions.

Fast and Slow Conditions

Definition 2.3 (FC: Fast Mode Condition). We say that a node v ∈ V satisfies
the fast mode condition (FC) at time t ∈ R+

0 if there exists s ∈ N such that:

FC 1: ∃x ∈ Nv : Lx(t)− Lv(t) ≥ 2sδ ;

FC 2: ∀y ∈ Nv : Lv(t)− Ly(t) ≤ 2sδ .

Informally, FC 1 says that v has a neighbor x whose logical clock is signifi-
cantly ahead of Lv(t), while FC 2 stipulates that none of v’s neighbors’ clocks
is too far behind Lv(t). In particular, if FC is satisfied with x ∈ Nv satisfying
FC 1, then the local skew across {v, x} is at least 2sδ, where Lx is at least 2sδ
time units ahead of Lv. Since none of v’s neighbors are running more than
2sδ units behind Lv, v can decrease the maximum skew with its neighbors by
increasing its logical clock.

The slow mode condition below is dual to FC. It essentially gives condi-
tions under which v could decrease the maximum skew in its neighborhood by
decreasing its logical clock.

Definition 2.4 (SC: Slow Mode Condition). We say that a node v ∈ V satisfies
the slow mode condition (or SC) at time t ∈ R+

0 if there exists s ∈ N such that:

SC 1: ∃x ∈ Nv : Lv(t)− Lx(t) ≥ (2s− 1)δ ;

SC 2: ∀y ∈ Nv : Ly(t)− Lv(t) ≤ (2s− 1)δ .

Substracting an additional δ in SC 1 and SC 2 ensures that conditions FC
and SC are mutually exclusive. Together, the conditions mean that, if in doubt,
the algorithm alternates between aggressively seeking to reduce skew towards
neighbors that are ahead (FC) and conservatively avoiding to build up ad-
ditional skew to neighbors that are behind (SC), depending on the currently
observed average skew.

Fast and Slow Triggers

While the fast and slow mode conditions described in the previous section are
well-defined (and mutually exclusive), uncertainty on neighbors’ clock values
prevents an algorithm from checking the conditions directly. Here we define
corresponding triggers that our computational model does allow us to check.

The separation of δ between the conditions is just enough for this purpose.
As we assumed that clock values are never overestimated, but may be underes-
timated by δ, the fast mode trigger needs to shift its thresholds by δ.

18 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Definition 2.5 (FT: Fast Mode Trigger). We say that v ∈ V satisfies the fast
mode trigger (FT) at time t ∈ R+

0 if there exists an integer s ∈ N such that:

FT 1: ∃x ∈ Nv : L̃x(t)− Lv(t) > (2s− 1)δ ;

FT 2: ∀y ∈ Nv : Lv(t)− L̃y(t) < (2s+ 1)δ .

Definition 2.6 (ST: Slow Mode Trigger). We say that a node v ∈ V satisfies
the slow mode trigger (or ST) at time t ∈ R+

0 if there exists s ∈ N such that:

ST 1: ∃x ∈ Nv : Lv(t)− L̃x(t) ≥ (2s− 1)δ ;

ST 2: ∀y ∈ Nv : L̃y(t)− Lv(t) ≤ (2s− 1)δ .

Before we formally describe the GCS algorithm, we give two preliminary
results about the fast and slow mode triggers. The first result claims that FT
and ST cannot simultaneously be satisfied by the same node. The second shows
that FT and ST implement FC and SC, respectively. That is, if the fast (resp.
slow) mode condition is satisfied, then the fast (resp. slow) mode trigger is also
satisfied.

Lemma 2.7. No node v ∈ V can simultaneously satisfy FT and ST.

Proof. Suppose v satisfies FT, i.e., there is s ∈ N so that there is some x ∈ Nv
such that L̃x(t)−Lv(t) > (2s− 1)δ and for all y ∈ Nv we have Lv(t)− L̃y(t) <
(2s+ 1)δ. Consider s′ ∈ N. If s′ > s, then for all y ∈ Nv we have that

Lv(t)− L̃x(t) < (2s+ 1)δ ≤ (2s′ − 1)δ ,

so ST 1 is not satisfied for s′. If s′ ≤ s, then there is some x ∈ Nv so that

L̃x(t)− Lv(t) > (2s− 1)δ ≥ (2s′ − 1)δ ,

so ST 2 is not satisfied for s′. Hence, ST is not satisfied.

Lemma 2.8. Suppose v ∈ V satisfies FC (resp. SC) at time t. Then v satisfies
FT (resp. SC) at time t.

Proof. Suppose FC holds (at time t). Then, by (2.1), there is some s ∈ N such
that

∃x ∈ Nv : L̃x(t)− Lv(t) > Lx(t)− δ − Lv(t) ≥ (2s− 1)δ

and
∀y ∈ Nv : Lv(t)− L̃y(t) < Lv(t)− Ly(t) + δ ≤ (2s+ 1)δ ,

i.e., FT holds. Similarly, if SC holds, (2.1) yields that

∃x ∈ Nv : Lv(t)− L̃x(t) ≥ Lv(t)− Lx(t) ≥ (2s− 1)δ

and
∀y ∈ Nv : L̃y(t)− Lx(t) ≤ Ly(t)− Lv(t) ≤ (2s− 1)δ

for some s ∈ N, establishing ST.

We now describe the GCS algorithm. Each node v initializes its logical clock
to its hardware clock value. It continuously checks if the fast (resp. slow) mode
trigger is satisfied. If so, it increases its logical clock at a rate of (1 + µ)hv(t)
(resp. hv(t)). Pseudocode is presented in Algorithm 2.1. The algorithm itself is
simple, but the analysis of the algorithm (presented in the following section) is
rather delicate.

2.4. ANALYSIS OF THE GCS ALGORITHM 19

Algorithm 2.1: GCS algorithm

1 Lv(0) := Hv(0)
2 r := 1
3 at all times t do the following
4 if FT then
5 r := 1 + µ // v is in fast mode
6 if ST then
7 r := 1 // v is in slow mode
8 increase Lv at rate rhv(t)

Remarks:

• In fact, when neither FT nor ST hold, the logical clock may run at any
speed from the range [hv(t), (1 + µ)hv(t)].

• In order for the algorithm to be implementable, δ should leave some wiggle
space. We expressed this by having (2.1) include a strict inequality, but
if the inequality can become arbitrarily tight, the algorithm may have to
switch between slow and fast mode arbitrarily fast.

• For technical reasons, we will assume that logical clocks are differentiable.
Thus, lv := d

dtLv exists and is between 1 and ϑ(1 + µ) at all times. It is
possible to prove the guarantees of the algorithm without this assumption,
but all this does is making the math harder.

• Even with this assumption, we still need Lemma A.1. This is not a math-
ematics lecture, but as we couldn’t find any suitable reference, the lemma
and a proof is given in the appendix.

2.4 Analysis of the GCS Algorithm

We now show that the GCS algorithm (Algorithm 2.1) indeed achieves a small
local skew, which is expressed by the following theorem.

Theorem 2.9. For every network G and every execution E in which Hv(0) −
Hw(0) ≤ δ for all edges {v, w} ∈ E, the GCS algorithm achieves a gradient skew
of L ≤ 2δdlogσ G/δe, where σ := µ/(ϑ− 1).

In order to prove Theorem 2.9, we analyze the average skew over paths in G
of various lengths. For long paths of Ω(D) hops, we will simply exploit that G
bounds the skew between any pair of nodes. For successively shorter paths, we
inductively show that the average skew between endpoints cannot increase too
quickly: reducing the length of a path by factor σ can only increase the skew
between endpoints by an additive constant term. Thus, paths of constant length
(in particular edges) can only have a skew that is logarithmic in the network
diameter.

Leading Nodes

We start by showing that skew cannot build up too quickly. This is captured
by the following functions.

20 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Definition 2.10 (Ψ and Leading Nodes). For each v ∈ V , s ∈ N, and t ∈ R+
0 ,

we define

Ψs
v(t) = max

w∈V
{Lw(t)− Lv(t)− (2s− 1)δd(v, w)} ,

where d(v, w) denotes the distance between v and w in G. Moreover, set

Ψs(t) = max
w∈V
{Ψs

w(t)} .

Finally, we say that w ∈ V is a leading node if there is some v ∈ V so that

Ψs
v(t) = Lw(t)− Lv(t)− (2s− 1)δd(v, w) > 0 .

We will show that Ψs(t) ≤ G/σs for each s ∈ N and all times t. For s =
dlogσ G/δe, this yields that

Lv(t)− Lw(t)− (2s− 1)δ ≤ G/σs ≤ δ ⇒ Lv(t)− Lw(t) ≤ 2δdlogσ G/δe .

The definition of Ψs
v is closely related to the slow mode condition SC. It

makes sure that leading nodes are always in slow mode.

Lemma 2.11 (Leading Lemma). Suppose w ∈ V is a leading node at time t.
Then w satisfies SC and ST.

Proof. As w is a leading node at time t, there are s ∈ N and v ∈ V so that

Ψs
v(t) = Lw(t)− Lv(t)− (2s− 1)δd(v, w) > 0 .

In particular, Lw(t) > Lv(t), so w 6= v. For any y ∈ V , we have that

Lw(t)− Lv(t)− (2s− 1)δd(v, w) = Ψs
v(t) ≥ Ly(t)− Lv(t)− (2s− 1)δd(y, w) .

Rearranging this yields

Lw(t)− Ly(t) ≥ (2s− 1)δ(d(v, w)− d(y, w)) .

In particular, for any y ∈ Nv, d(v, w) ≥ d(y, w)− 1 and hence

Ly(t)− Lw(t) ≤ (2s− 1)δ ,

i.e., SC 2 holds at w. Now consider x ∈ Nv so that d(x,w) = d(v, w) − 1; as
v 6= w, such a node exists. We get that

Lw(t)− Ly(t) ≥ (2s− 1)δ ,

showing SC 1. By Lemma 2.8, w then also satisfies ST at time t.

This can readily be translated into a bound on the growth of Ψs
w whenever

it is positive.

Lemma 2.12 (Wait-up Lemma). Suppose w ∈ V satisfies Ψs
w(t) > 0 for all

t ∈ (t0, t1]. Then

Ψs
w(t1) ≤ Ψs

w(t0)− (Lw(t1)− Lw(t0)) + ϑ(t1 − t0).

2.4. ANALYSIS OF THE GCS ALGORITHM 21

Proof. Fix w ∈ V , s ∈ N and (t0, t1] as in the hypothesis of the lemma. For
v ∈ V and t ∈ (t0, t1], define the function fv(t) = Lv(t) − (2s − 1)δd(v, w).
Observe that

max
v∈V
{fv(t)} − Lw(t) = Ψs

w(t) .

Moreover, for any v satisfying fv(t) = Lw(t) + Ψs
w(t), we have that Lv(t) −

Lw(t) − (2s − 1)δd(v, w) = Ψs
w(t) > 0. Thus, Lemma 2.11 shows that v is in

slow mode at time t. As (we assume that) logical clocks are differentiable, so is
fv, and it follows that d

dtfv(t) ≤ ϑ for any v ∈ V and time t ∈ (t0, t1] satisfying
that fv(t) = maxx∈V {fx(t)}. By Lemma A.1, it follows that maxv∈V {fv(t)}
grows at most at rate ϑ:

max
v∈V
{fv(t1)} ≤ max

v∈V
{fv(t0)}+ ϑ(t1 − t0) .

We conclude that

Ψs
w(t1)−Ψs

w(t0) = max
v∈V
{fv(t1)} − Lw(t1)− (max

v∈V
{fv(t0)} − Lw(t0))

≤ −(Lw(t1)− Lw(t0)) + ϑ(t1 − t0) ,

which can be rearranged into the claim of the lemma.

Trailing Nodes

As Lw(t1) − Lw(t0) ≥ t1 − t0 at all times, Lemma 2.15 shows that Ψs cannot
grow faster than at rate ϑ− 1 when it is positive. This buys us some time, but
we need to show that w will make sufficient progress before Ψs grows larger
than the desired bound. The approach to showing this is very similar to the one
for Lemma 2.12, where now we need to exploit the fast mode condition FC.

Definition 2.13 (Trailing Nodes). We say that w ∈ V is a trailing node at
time t, if there is some s ∈ N and a node v such that

Lv(t)− Lw(t)− 2sδd(v, w) = max
x∈V
{Lv(t)− Lx(t)− 2sδd(v, x)} > 0 .

Lemma 2.14 (Trailing Lemma). Suppose w ∈ V is a trailing node at time t.
Then w satisfies FC and FT.

Proof. Let s and v be such that

Lv(t)− Lw(t)− 2sδd(v, w) = max
x∈V
{Lv(t)− Lx(t)− 2sδd(v, x)} > 0 .

In particular, Lv(t) > Lw(t), implying that v 6= w. For y ∈ V , we have that

Lv(t)− Lw(t)− 2sδd(v, w) ≥ Lv(t)− Ly(t)− 2sδd(v, y)

and thus for all neighbors y ∈ Nw that

Ly(t)− Lw(t) + 2sδ(d(v, y)− d(v, w)) ≥ 0 .

It follows that
∀y ∈ Nv : Lw(t)− Ly(t) ≤ 2sδ ,

i.e., FC 2 holds. As v 6= w, there is some node x ∈ Nv with d(v, x) = d(v, w)−1.
We obtain that

∃x ∈ Nv : Ly(t)− Lw(t) ≥ 2sδ ,

showing FC 1. By Lemma 2.8, w thus also satisfies FT at time t.

22 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Using this, we can show that if Ψs
w(t0) > 0, w will eventually catch up. How

long this takes can be expressed in terms of Ψs−1(t0), or, if s = 1, G.

Lemma 2.15 (Catch-up Lemma). Let s ∈ N and t0, t1 be times. If s = 1,
suppose that t1 ≥ t0 +G/µ; otherwise, suppose that t1 ≥ t0 +Ψs−1(t0)/µ. Then,
for any w ∈ V ,

Lw(t1)− Lw(t0) ≥ t1 − t0 + Ψs
w(t0) .

Proof. Choose v ∈ V such that

Ψs
w(t0) = Lv(t0)− Lw(t0)− (2s− 1)δd(v, w) > 0 .

Define fx(t) := Lv(t0) + (t− t0)−Lx(t)− (2s−2)δd(v, x) for x ∈ V and observe
that Ψs

w(t0) ≤ fw(t0). Hence, if maxx∈V {fx(t)} ≤ 0 for some t ∈ [t0, t1], then

Lw(t1)− Lw(t)− (t1 − t) ≥ 0 ≥ fw(t)

= Lv(t0) + (t− t0)− Lw(t)− (2s− 2)δd(v, x)

= fw(t0) + (t− t0)− (Lw(t)− Lw(t0))

≥ Ψs
w(t0) + (t− t0)− (Lw(t)− Lw(t0)) ,

which can be rearranged into the claim of the lemma.
To show this, consider any time t ∈ [t0, t1] when maxx∈V {fx(t)} > 0 and let

y ∈ V be any node such that maxx∈V {fx(t)} = fy(t). Then y is trailing, as

max
x∈V
{Lv(t)− Lx(t)− (2s− 2)δd(v, x)}

= Lv(t)− Lv(t0)− (t− t0) + max
x∈V
{fx(t)}

= Lv(t)− Lv(t0)− (t− t0) + fy(t)

= Lv(t)− Ly(t)− (2s− 2)δd(v, y)

and

Lv(t)− Lv(t0)− (t− t0) + max
x∈V
{fx(t)} > Lv(t)− Lv(t0)− (t− t0) ≥ 0 .

Thus, by Lemma 2.14 y is in fast mode. As logical clocks are (assumed to be)
differentiable, we get that d

dtfy(t) = 1− ly(t) ≤ −µ.
Now assume for contradiction that maxx∈V {fx(t)} > 0 for all t ∈ [t0, t1].

Then, applying Lemma A.1 again, we conclude that

max
x∈V
{fx(t0)} > −(max

x∈V
{fx(t1)} −max

x∈V
{fx(t0)}) ≥ µ(t1 − t0) .

If s = 1, µ(t1 − t0) ≥ G, contradicting the fact that

fx(t0) = Lv(t0)− Lx(t0) ≤ G

for all x ∈ V . If s > 1, then µ(t1 − t0) ≥ Ψs−1(t0). However, we have that

fx(t0) ≤ Lv(t0)− Lx(t0)− (2s− 3)δd(v, x) ≤ Ψs−1(t0)

for all x ∈ V . As this is a contradiction as well, the claim of the lemma
follows.

2.4. ANALYSIS OF THE GCS ALGORITHM 23

Putting Things Together

Theorem 2.16. Assume that Hv(0)−Hw(0) ≤ δ for all {v, w} ∈ E. Then, for
all s ∈ N, Algorithm 2.1 guarantees Ψs(t) ≤ G/σs, where σ = µ/(1− ϑ).

Proof. Suppose for contradiction that the statement of the theorem is false. Let
s ∈ N be minimal such that there is a time t1 for which Ψs(t1) = G/σs + ε for
some ε > 0. Thus, there is some w ∈ V such that

Ψs
w(t1) = Ψs(t1) =

G
σs

+ ε .

Set t0 := max{t− G/(µσs−1), 0}. Consider the time t′ ∈ [t0, t1] that is minimal
with the property that Ψs

w(t) > 0 for all t ∈ (t′, t1] (by continuity of Ψs
w such a

time exists). Thus, we can apply Lemma 2.12 to this interval, yielding that

Ψs
w(t1) ≤ Ψs

w(t′) + ϑ(t1 − t′)− (Lw(t1)− Lw(t′)) ≤ Ψs
w(t′) + (ϑ− 1)(t1 − t′) .

Ψs
w(t′) cannot be 0, as otherwise

Ψs
w(t1) ≤ (ϑ− 1)(t1 − t′) ≤

(ϑ− 1)

µ
· G
σs−1

=
G
σs

,

contradicting Ψs
w(t1) = G/σs + ε.

On the other hand, if Ψs
w(t′) > 0, we must have t′ = t0 from the definition

of t′, and t0 6= 0 because

max
v,w∈V

{Lv(0)− Lw(0)− (2s− 1)δd(v, w)}

= max
v,w∈V

{Hv(0)−Hw(0)− (2s− 1)δd(v, w)}

≤ max
v,w∈V

{Hv(0)−Hw(0)− δd(v, w)} ≤ 0 ,

as Hv(0) −Hw(0) ≤ δ for all neighbors v, w by assumption. Hence, t′ = t0 =
t1 − G/(µσs−1). If s > 1, the minimality of s yields that Ψs(t0) ≤ G/σs−1. We
apply Lemma 2.15 to level s, node w, and time t′ = t0, yielding that

Ψs
w(t1) ≤ Ψs

w(t0) + ϑ(t1 − t0)− (Lw(t1)− Lw(t0)) ≤ (ϑ− 1)(t1 − t0) ≤ G
σs

,

again contradicting Ψs
w(t1) = G/σs + ε. Reaching a contradiction in all cases,

we conclude that the statement of the theorem must indeed hold.

Our main result, Theorem 2.9, is now immediate.

Proof of Theorem 2.9. We apply Theorem 2.16 and consider s := dlogσ(G/δ)e.
For any {v, w} ∈ E and any time t, we thus have that

Lv(t)−Lw(t)− (2s− 1)δ = Lv(t)−Lw(t)− (2s− 1)δd(v, w) ≤ Ψs(t) ≤ G
σs
≤ δ .

Rearranging this and exchanging the roles of v and w, we obtain

L(t) = max
{v,w}∈E

{|Lv(t)− Lw(t)|} ≤ 2sδ = 2δdlogσ(G/δ)e .

24 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

What to Take Home

• A very simple algorithm achieves a surprisingly good local skew, even if
clocks must advance at all times.

• The base of the logarithm in the bound is typically large. A cheap quartz
oscillator guarantees ϑ − 1 ≤ 10−5, while typically u/d ≥ 10−2. With a
base of roughly 103, the logarithmic term usually remains quite small.

• The algorithmic idea is surprisingly versatile. It works if δ is different
for each link, and with some modifications (to algorithm and analysis),
adversarial changes in the graph can be handled.

Bibliographic Notes

Gradient clock synchronization was introduced by Fan and Lynch [FL06], who
show a lower bound of Ω(log(uD)/ log log(uD)) on the local skew. Some re-
searchers found this result rather counter-intuitive, and it triggered a line of
research seeking to resolve the question what precisely can be achieved. The
first non-trivial upper bound was provided by Locher and Wattenhofer [LW06].
Their blocking algorithm bounds the local skew by O(

√
δD). The first logarith-

mic bound on the local skew was given in [LLW08] and soon after improved
to the algorithm presented here [LLW10]. However, the elegant way of phras-
ing it in terms of the fast and slow modes and conditions is due to Kuhn and
Oshman [KO09].

The algorithmic idea underlying the presented solution turns out to be sur-
prisingly robust and versatile. Essentially the same algorithm works for different
uncertainties on the edges [KO09]. With a suitable method of carefully incor-
porating newly appearing edges, it can handle dynamic graphs [KLLO10] (this
problem is introduced in [KLO11]), in the sense that edges that were continu-
ously present for sufficiently long satisfy the respective guarantee on the skew
between their endpoints. Recently, the approach has been independently dis-
covered (twice!) for solving load balancing tasks that arise in certain packet
routing problems [DLNO17, PR17].

Bibliography

[DLNO17] Stefan Dobrev, Manuel Lafond, Lata Narayanan, and Jaroslav Opa-
trny. Optimal local buffer management for information gathering
with adversarial traffic. In Proceedings of the 29th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA 2017,
Washington DC, USA, July 24-26, 2017, pages 265–274, 2017.

[FL06] Rui Fan and Nancy Lynch. Gradient Clock Synchronization. Dis-
tributed Computing, 18(4):255–266, 2006.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. CoRR, abs/1005.2894, 2010.

BIBLIOGRAPHY 25

[KLO11] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient
Clock Synchronization in Dynamic Networks. Theory Comput. Syst.,
49(4):781–816, 2011.

[KO09] Fabian Kuhn and Rotem Oshman. Gradient Clock Synchronization
Using Reference Broadcasts. In Proc. 13th Conference on Principles
of Distributed Systems (OPODIS), pages 204–218, 2009.

[LLW08] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock
Synchronization with Bounded Global and Local Skew. In Proc. 49th
Symposium on Foundations of Computer Science (FOCS), pages
509–518, 2008.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. J. ACM, 57(2):8:1–8:42, 2010.

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In Proc. 20th Symposium on Distributed Comput-
ing (DISC), pages 520–533, 2006.

[PR17] Boaz Patt-Shamir and Will Rosenbaum. The space requirement of
local forwarding on acyclic networks. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, pages 13–22, 2017.

26 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Lecture 3

Lower Bound on the Local
Skew

In Chapter 1, we proved tight upper and lower bounds of Θ(D) for the global
skew of any clock synchronization algorithm. However, the algorithms achiev-
ing optimal global skew had the undesireable feature that the maximal global
skew could be attained between any pair of nodes in the network—even adja-
cent nodes. In Chapter 2, we developed a more refined algorithm that further
controlled the gradient skew—the maximum skew between any pair of adja-
cent nodes. Specifically, the gradient clock synchronization (GCS) algorithm of
Chapter 2 achieved a local skew of O(δ logD).

In this chapter, we address the question of whether the O(δ logD) skew
upper bound for GCS can be improved. Since gradient clock synchronization is
a local property (in the sense that the definition of gradient skew only references
logical clocks of neighboring nodes), one may expect that a distributed algorithm
may be able to achieve O(δ) local skew. However, we will show that this is
impossible: any GCS algorithm must incur local skew of Ω(u logD) for some
executions. Thus, the GSC algorithm of Chapter 2 is asymptotically optimal.

3.1 Lower Bound with Bounded Clock Rates

In this section, we first prove a lower bound assuming that each logical clock
increases at a rate of at most (1+µ)hv > 1. That is, for all v ∈ V and t, t′ ∈ R+

0

with t < t′, we assume Lv(t
′) − Lv(t) ≤ (1 + µ)(Hv(t

′) −Hv(t)).
1 We use the

model of Chapter 1. Moreover, all logical clocks have a minimum rate of 1: for
all v ∈ V and t, t′ ∈ R+

0 with t < t′, we have Lv(t
′)−Lv(t) ≥ t′− t. Under these

assumptions, we will prove the following theorem.

Theorem 3.1. Any algorithm for the gradient clock synchronization problem
with logical clock rates between 1 and (1 + µ)hv incurs a worst-case gradient
skew of L ≥ (u/4− (ϑ− 1)d) logdσeD, where σ := µ/(ϑ− 1).

1Note that this assumption does not allow for algorithms that increase their clocks dis-
continuously. For example, the argument does not apply to the max algorithm presented in
Chapter 1.

27

28 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

To gain some intuition, assume that (ϑ − 1)d � u, so we can neglect this
term. In order to prove Theorem 3.1, we first show that the adversary can build
up a hardware clock skew of Ω(uk) between any pair of nodes in distance k
in O(uk/(ϑ − 1)) time, in an indistinguishable way. Specifically, for v and w

in distance k, we get that H
(Ev)
v (t) − H(E1)

v (t) ∈ Ω(uk) for some time t, while

H
(Ev)
w (t) = H

(E1)
w (t). By the minimum progress condition, this implies that the

logical clock of v differs by at least Ω(uk) between the two executions. This
is, in fact, a straightforward generalization of Lemma 1.5. The key difference
is that we sacrifice a factor of 2 in the amount of skew we sneak in, so we can
choose the pair of nodes between which we build the skew after examining what
happens in E1, i.e., E1 provides no information regarding where the skew will
“appear.”

We can use this inductively as follows. Assuming that we know how to build
up a skew of αuk between nodes in distance k (initially, k ≈ D and α = 0),
we run a given GCS algorithm for O(uk′/(ϑ− 1)) time with all hardware clock
rates being 1 (that’s the case in E1), where k′ ∈ Θ(k/σ) (with constants chosen
suitably). As logical clock rates are between 1 and 1+µ in E1, the skew between
the original nodes is still αuk −O(uµk′/(ϑ− 1)) = (α −O(1))uk. Thus, there
must be two nodes in distance k′ with skew at least (α −O(1))uk′. If v is the
node with the larger clock value, we now consider Ev, in which the skew is by
Ω(uk′) larger. For the right choice of k′, we end up with a path of length k′

that has skew (α+ Ω(1))uk′! We can repeat this up to Θ(logσD)) many times,
yielding the desired lower bound.

Lemma 3.2. Assume that (ϑ−1)d < u/2 and set t0 := d(v, w)(u/(2(ϑ−1))−d).
For any algorithm, there is an execution E1 such that for any v, w ∈ V , there is
an indistinguishable execution Ev satisfying that

• H(E1)
x (t) = t for all x ∈ V and t,

• H(Ev)
v (t) = H

(E1)
v (t) + d(v, w)(u/2− (ϑ− 1)d) for all t ≥ t0, and

• H(Ev)
w (t) = t for all t.

Proof. The proof is very similar to the one of Lemma 1.5. In both executions
and for all x ∈ V , we set Hx(0) := 0. Execution E1 is given by running the
algorithm with all hardware clock rates being 1 at all times and the message
delay from x to y being d− u/2.

Set

d(x) :=


−d(v, w) if d(x,w)− d(x, v) < −d(v, w)

d(v, w) if d(x,w)− d(x, v) > d(v, w)

d(x,w)− d(x, v) else.

Note that |d(x) − d(y)| ≤ 2 for any {x, y} ∈ E. Moreover, d(v) = d(v, w) and
d(w) = −d(v, w). In Ev, we set the hardware clock rate of node x ∈ V to
1 + (ϑ − 1)(d(x) + d(v, w))/(2d(v, w)) at all times t ≤ t0 and to 1 at all times
t > t0. This implies that

H(Ev)
v (t0) = ϑt0 = H(E1)

v (t0) + d(v, w)
(u

2
− (ϑ− 1)d

)
and

H(Ev)
w (t0) = t0 .

3.1. LOWER BOUND WITH BOUNDED CLOCK RATES 29

As clock rates are 1 from time t0 on, this means that the hardware clocks satisfy
all stated constraints.

It remains to specify message delays and show that the two executions are
indistinguishable. We achieve this by simply ruling that a message sent from
some x ∈ V to a neighbor y ∈ Nx in Ev arrives at the same local time at y as it
does in E1. By induction over the arrival sending times of messages, then indeed
all nodes also send identical messages at identical local times in both executions,
i.e., the executions are indistinguishable. However, it remains to prove that this
results in all message delays being in the range (d− u, d).

To see this, recall that for any {x, y} ∈ E, we have that |d(x) − d(y)| ≤ 2.
As clock rates are 1 after time t0 and constant before, and all hardware clocks
are 0 at time 0, the maximum difference between any two local times between
neighbors is attained at time t0. We compute

H(Ev)
x (t0)−H(Ev)

y (t0) =
d(y)− d(x)

2d(v, w)
· (ϑ− 1)t0 =

d(y)− d(x)

2

(u
2
− (ϑ− 1)d

)
.

In execution E1, a message sent from x to y at local time H
(E1)
x (t) = t is received

at local time H
(E1)
y (t) = H

(E1)
x (t) + d− u/2. If a message is sent at time t in Ev,

we have that

H(Ev)
y (t+ d) ≥ H(Ev)

y (t) + d

= H(Ev)
x (t) + d+

d(x)− d(y)

2

(u
2
− (ϑ− 1)d

)
> H(Ev)

x (t) + d− u

2

where the last inequality uses that d(x) − d(y) ≥ −2 and that u/2 > (ϑ − 1)d
by assumption. On the other hand,

H(Ev)
y (t+ d− u) < H(Ev)

y (t) + ϑd− u

= H(Ev)
x (t) + ϑd− u+

d(x)− d(y)

2

(u
2
− (ϑ− 1)d

)
≤ H(Ev)

x (t) + d− u

2
,

where the final inequality holds with equality if d(x) − d(y) = 2 and thus also
for d(x)− d(y) < 2, as u/2 > (ϑ− 1)d.

Proof of Theorem 3.1. Note that the claim is vacuous if (ϑ− 1)d ≥ u/4, so we
can assume the opposite in the following. Set b := d2σe and imax := blogbDc.
By induction over i ∈ [imax + 1], we show that we can build up a skew of
(i+2)(u/4−(ϑ−1)d)d(v, w) between nodes v, w ∈ V in distance d(v, w) = bimax−i

at a time ti in execution E(i), such that after time ti all hardware clock rates
are 1 and all sent messages have delays of d− u/2.

We anchor the induction at i = 0 by applying Lemma 3.2, choosing t0 as
in the lemma. We pick two nodes v, w ∈ V in distance bimax ≤ D of each

other such that L
(E1)
v (t0) ≥ L

(E1)
w (t0). Now consider Ev for this choice of v, w ∈

V , which satisfies that H
(Ev)
v (t0) = H

(E1)
v (t0) + (u/2 − (ϑ − 1)d)d(v, w) and

H
(Ev)
w (t0) = H

(E1)
w (t0). By indistinguishability of the two executions and the

30 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

minimum logical clock rate of 1, we get that

L(Ev)
v (t0)− L(Ev)

w (t0) = L(E1)
v

(
t0 +

(u
2
− (ϑ− 1)d

)
d(v, w)

)
− L(E1)

w (t0)

≥ L(E1)
v (t0) +

(u
2
− (ϑ− 1)d

)
d(v, w)− L(E1)

w (t0)

≥
(u

2
− (ϑ− 1)d

)
d(v, w) .

We obtain E(0) by changing all hardware clock rates in Ev to 1 at time t0 and
all message delays of messages sent at or after time t0 to d− u/2. As this does
not affect the logical clock values at time t0 — E(0) is indistinguishable from Ev
at x ∈ V until local time H

(E(0))
x (t0) — this shows the claim for i = 0.

For the induction step from i to i+ 1, let v, w ∈ V , E(i), and ti be given by
the induction hypothesis, i.e.,

L(E(i))
v (ti)− L(E(i))

w (ti) ≥ (i+ 2)
(u

4
− (ϑ− 1)d

)
d(v, w) ,

and from time ti on all hardware clock rates are 1 and sent messages have delay
d − u/2. Note that the latter conditions mean that E(i) behaves exactly like
E1 from Lemma 3.2 from time ti on, except that some messages sent at times
t < ti may arrive during [ti, ti + d). Hence, if we apply the same modifications
to E(i) as to E1, but starting from time ti + d instead of time 0, we can, for any
v′, w′ ∈ V , construct an execution Ev′ indistinguishable from E(i), where

• H(E(i))
x (t) = H

(E(i))
x (ti) + t− ti for all x ∈ V and t ≥ ti,

• H(Ev′)
v′ (t) = H

(E(i))
v′ (t) + d(v′, w′)(u/2− (ϑ− 1)d) for all times t ≥ ti + d+

(u/(2(ϑ− 1))− d)d(v′, w′), and

• H(Ev′)
w′ (t) = H

(E(i))
w′ (ti) + t− ti for all t ≥ ti.

Consider the logical clock values of v and w in E(i) at time

ti+1 := ti + d+

(
u

2(ϑ− 1)
− d
)
d(v, w)

b
.

Recall that lv(t) ≥ hv(t) ≥ 1 and lw(t) ≤ (1 + µ)hw(t) at all times t. As

h
(E(i))
w (t) = 1 at times t ≥ ti, we get that

L(E(i))
v (ti+1)− L(E(i))

w (ti+1) ≥ L(E(i))
v (ti)− L(E(i))

w (ti)− µ(ti+1 − ti) . (3.1)

Recall that d(v, w) = bimax−i and that b = d2σe. We split up a shortest path
from v to w in b subpaths of length bimax−(i+1). By the pidgeon hole principle, at
least one of these paths must exhibit at least a 1/b fraction of the skew between
v and w, i.e., there are v′, w′ ∈ V with d(v′, w′) = bimax−(i+1) = d(v, w)/b so

3.1. LOWER BOUND WITH BOUNDED CLOCK RATES 31

that

L
(E(i))
v′ (ti+1)− L(E(i))

w′ (ti+1)

≥ L
(E(i))
v (ti+1)− L(E(i))

w (ti+1)

b
by (3.1) we have:

≥ L
(E(i))
v (ti)− L(E(i))

w (ti)− µ(ti+1 − ti)
b

=
L
(E(i))
v (ti)− L(E(i))

w (ti)− µ(d+ (u/(2(ϑ− 1))− d)d(v′, w′))
b

≥ L
(E(i))
v (ti)− L(E(i))

w (ti)− µud(v′, w′)/(2(ϑ− 1))

b

≥ L
(E(i))
v (ti)− L(E(i))

w (ti)

b
− µ

2σ(ϑ− 1)
· u

2
· d(v′, w′)

=
L
(E(i))
v (ti)− L(E(i))

w (ti)

b
− u

4
· d(v′, w′)

≥ (i+ 2)(u/4− (ϑ− 1)d)d(v, w)

b
− u

4
· d(v′, w′)

=
(

(i+ 2)
(u

4
− (ϑ− 1)d

)
− u

4

)
d(v′, w′) .

In other words, as the average skew on a shortest path from v to w did not de-
crease by more than u/4, there most be some subpath of length d(v, w)/b with
at least the same average skew. Now we sneak in additional skew by advanc-
ing the (hardware and thus also logical) clock of v′ using the indistinguishable
execution Ev′ :

L
(Ev)
v′ (ti+1)− L(Ev)

w′ (ti+1)

= L
(E(i))
v′

(
ti+1 +

(u
2
− (ϑ− 1)d

)
d(v′, w′)

)
− L(E(i))

w′ (ti+1)

≥ L(E(i))
v′ (ti+1) +

(u
2
− (ϑ− 1)d

)
d(v′, w′)− L(E(i))

w′ (ti+1)

≥ (i+ 3)
(u

4
− (ϑ− 1)d

)
d(v′, w′) .

This completes the induction. Plugging in i = imax and noting that log b =
logd2σe ≤ 1+logdσe, we get an execution in which two nodes at distance b0 = 1
exhibit a skew of at least

(imax + 2)
(u

4
− (ϑ− 1)d

)
≥
(u

4
− (ϑ− 1)d

)
(1 + logbD)

≥
(u

4
− (ϑ− 1)d

)
logdσeD .

Remarks:

• It is somewhat “bad form” to adapt Lemma 3.2 on the fly, as we did in the
proof. However, the alternative of carefully defining partial executions,
how to stitch them together, and proving indistinguishability results in
this setting would mean to crack a nut with a sledgehammer.

32 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

• By making the base of the logarithm larger (i.e., making paths shorter
more quickly), we can reduce the “loss” of skew in each step. Thus, we
get a skew of (u/2 − (ϑ − 1)d − ε) per iteration, at the cost of reducing
the number of iterations by a factor of log σ/(log σ − log ε−1).

• We can gain another factor of two by introducing skew more carefully. If
we constract E1 so that messages “in direction of w” have delay (roughly)
d − u and messages “in direction of v” have delay d, we can hide u skew
per hop, just like in Lemma 1.5. We favored the simpler construction to
avoid additional bookkeeping.

• Overall, if (ϑ − 1)d � u, σ � 1, and logσD � 1, we can show a lower
bound of (u− ε) logσD for some small ε > 0.

• Assuming a similar bunch of reasonable things and that T ∈ O(d) (i.e.,
message frequency is not the bottleneck in determining estimates), the
asymptotically optimal choice of µ we computed in the exercises yields a
skew of roughly 2u logσD for our GCS algorithm. Thus, this lower bound
shows that the algorithm is optimal up to a factor of roughly 2, provided
σ � 1 and (ϑ− 1)d� u. Dropping that σ � 1, we still get optimality up
to a constant factor.

• So what of the case that (ϑ−1)d is comparable to u or even larger? Recall
that we have shown how to generate a better “logical hardware clock” in
this case by bouncing messages back and forth between nodes. Using this
idea (with some modifications and the occasional atrocity), one could, up
to an additive O((ϑ− 1)d), eliminate the dependence of the upper bound
on (ϑ− 1)d.

• As for a lower bound construction we can always pretend that clock drifts
are actually smaller, e.g., ϑ′ := min{ϑ, 1 + u/(4d)}, the lower bound is
asymptotically optimal in all cases. . .

• . . . except for unbounded clock rates, which we will deal with next.

3.2 Lower Bound with Arbitrary Clock Rates

It can be shown that clock rates lv(t) ∈ ω(1) do not help. That is, if (ϑ− 1)d <
u/4, we have that L ∈ Ω(u log1/(ϑ−1)D). However, the only (currently known)
proof for this is tedious, to the point where it conveys little insight regarding
what’s going on. Hence, we will settle for a (much) simpler argument by Fan
and Lynch showing a slightly weaker lower bound, followed by some intution as
to why the stronger result is true as well.

We need a technical lemma stating that, provided that we leave some slack
in terms of clock drifts and message delays, we can introduce Ω(u) hardware
clock skew between any pair of neighbors in an indistinguishable manner. As
this follows from repetition of previous arguments, we skip the proof.

Lemma 3.3. Let E be any execution in which clock rates are at most 1+(ϑ−1)/2
and message delays are in the range (d−3u/4, d−u/4). Then, for any {v, w} ∈ E
and sufficiently large times t, there is an indistinguishable execution Ev such that

L
(Ev)
v (t) = L

(E)
v (t+ u/4) and L

(Ev)
w (t) = L

(E)
w (t).

3.2. LOWER BOUND WITH ARBITRARY CLOCK RATES 33

Proof Sketch. The general idea is to use the remaining slack of u/2 to hide the
additional skew, and the slack in the clock rates to introduce it. We can do this
as slowly as needed, just as in the proof of Lemma 1.5. Again, we can choose
the clock rates according to the function d(x) defined in Lemma 3.2; as v and
w are neighbors here, it can only take on values of −1, 0, or 1.

This is all we need to generalize our lower bound to arbitrarily large logical
clock rates.

Theorem 3.4. Assume that ϑ ≤ 2. Any algorithm for the gradient clock syn-
chronization problem with logical clock rates of at least 1 incurs a worst-case
gradient skew of

L ∈ Ω
((u

4
− (ϑ− 1)d

)
log(logD)/(ϑ−1)D

)
.

Proof. Set u′ := u/2, d′ := d − u/4, and ϑ′ := 1 + (ϑ − 1)/2. We perform the
exact same construction as in Theorem 3.1, with three modifications. First, u,
d, and ϑ are replaced by u′, d′, and ϑ′. Second, before starting the construction,
we wait for sufficiently long so that Lemma 3.3 is applicable to all times when
we actually “work,” i.e., we let the algorithm run for the required time with
hardware clock rates of 1 and message delays of d′−u′/2. Third, we assume that
µ = log1/(ϑ−1)D in the construction; if ever we attempt to use this (assumed)
bound on the clock rates in an inequality and it does not hold, the construction
fails.

Now two things can happen. The first is that the construction succeeds.
Note that we may assume that u′/4 > (ϑ′ − 1)d′, as otherwise u/4 < (ϑ− 1)d,
i.e., nothing is to show. Thus, the construction shows a lower bound of(

u′

4
− (ϑ′ − 1)d′

)
logdσeD >

(
u

8
− (ϑ− 1)d

2

)
logdµ/(ϑ′−1)eD

∈ Ω
((u

4
− (ϑ− 1)d

)
logµ/(ϑ−1)D

)
.

As

logµ/(ϑ−1)D =
logD

logµ− log(ϑ− 1)

=
logD

log(logD − log(ϑ− 1))− log(ϑ− 1)

∈ Ω

(
logD

log logD − log(ϑ− 1

)
= Ω

(
log(logD)/(ϑ−1)D

)
,

the claim follows in this case.

On the other hand, if the construction fails, there is an index i < imax for
which (3.1) does not hold — this is the only place where we make use of the fact
that logical clocks do not run faster than rate µ. Thus,

L(E(i))
w (ti+1)− L(E(i))

w (ti) > µ(ti+1 − ti)

34 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

for some i < imax. Recall that in the construction, d(v, w) = bimax−i ≥ b and

ti+1 − ti = d+

(
u

2(ϑ− 1)
− d
)
d(v, w)

b
>

u

2(ϑ− 1)
− d > u

4(ϑ− 1)
≥ u

4
.

Hence, there must be a time t ≥ ti so that

L(E(i))
w

(
t+

u

4

)
− L(E(i))

w (t) >
µu

4
.

Let x ∈ Nw be arbitrary. By Lemma 3.3, we can construct an execution Ew so
that

L(Ew)
w (t) = L(E(i))

w

(
t+

u

4

)
> L(E(i))

w (t) +
µu

4

and L
(Ew)
x (t) = L

(E(i))
x (t). Thus, in at least one of the executions, the local skew

exceeds
µu

8
=
u

8
log1/(ϑ−1)D .

We conclude this chapter with the promised intuition regarding the influence
of D on the base of the logarithm. Consider a path of length k with a skew of
exactly α per hop, for a total of αk between its endpoints. Now suppose that an
algorithm cleverly uses a large logical clock rate, perfectly reducing the skew at
the same rate between any pair of neighbors. Consider the point in time when
the skew has been reduced to, say, α − u/8 per hop. The node in the middle
of the path has increased its logical clock at half the rate of the endpoint that’s
catching up — and the nodes in between have been even faster! Denoting this
rate by r, slipping in hardware clock skew at rate ϑ − 1 means adding logical
clock skew at rate at least r(ϑ − 1)/2. So, even if it takes factor r less time to
reduce the skew to, say α − u/8 per hop than it would for µ = 1, it also takes
factor r/2 less time to build up additional skew. We would end up with the
same result!

Remarks:

• Unfortunately, molding this idea into a proof is challenging, and the result
is not pretty.

• The D in the base of the logarithm is of little importance unless clocks are
of poor quality. A standard quartz oscillator guarantees that ϑ−1 ≤ 10−5.
Even a gigantic diameter of 105 would not affect the bound by more than
a factor 2 for such clocks!

• The assumption that ϑ ≤ 2 in Theorem 3.4 is an artifact of the proof.
However, hardware clocks that are this inaccurate hardly deserve the name
“clock,” so this corner case is not of interest.

• Overall, the GCS algorithm from the previous lecture appears to be opti-
mal or very close to optimal for essentially all choices of parameters.

• Don’t fall into the trap of forgetting that relaxing the model enables better
solutions! For instance, if it is not important that clocks make progress
at all times (or most of the time), constant local skew can be achieved
(buzzword: α-synchronizer)!

BIBLIOGRAPHY 35

Bibliographic Notes

There is not much to add to the notes for the previous lecture. The semi-
nal paper by Fan and Lynch [FL06] introducing the problem provided Theo-
rem 3.4. Meier and Thiele show that essentially the same lower bound arises
from bounded communication rates, without uncertainty (i.e., u = 0) [?]. The-
orem 3.1 follows [LLW10], which also tightens the lower bound for unbounded
clock rates by removing the D from the base of the logarithm. In the dynamic
setting, one can show bounds on how quickly an edge can be incorporated into
the subgraph of edges that satisfy the skew bounds, and asymptotic optimality
can be achieved simultaneously with other guarantees [KLO11, KLLO10].

Bibliography

[FL06] Rui Fan and Nancy Lynch. Gradient Clock Synchronization. Dis-
tributed Computing, 18(4):255–266, 2006.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. CoRR, abs/1005.2894, 2010.

[KLO11] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient
Clock Synchronization in Dynamic Networks. Theory Comput. Syst.,
49(4):781–816, 2011.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. J. ACM, 57(2):8:1–8:42, 2010.

36 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

Lecture 4

Fault-Tolerant Clock
Synchronization

In the previous lectures, we assumed that the world is a happy place without
any kind of faults. This is not a realistic assumption in large-scale systems, and
it is an issue in high reliability systems as well. After all, if the system clock
fails, there may be no further computations at all!

As, in general, it is difficult to predict what kind of faults may happen, again
we assume a worst-case model: Failing nodes may behave in any conceivable
manner, including collusion, predicting the future, sending conflicting informa-
tion to different nodes, or even pretending to be correct nodes (for a while). In
other words, the system should still function no matter what kind of faults may
occur. This may be overly pessimistic in the sense that “real” faults might have
a very hard time to produce such behavior. However, if we can handle all of
these possibilities, we’re on the safe side in that we do not have to study what
kind of faults may actually happen and verify the resulting fault model(s) for
each and every system we build.

Definition 4.1 (Byzantine Faults). A Byzantine faulty node may behave arbi-
trarily, i.e., it does not follow any algorithm described by the system designer.
The set of faulty nodes is (initially) unknown to the other nodes. In other words,
the algorithm must be designed in such a way that it works correctly regardless
of which nodes are faulty. “Working correctly” here means that all requirements
and guarantees on clocks, skews, etc. need only be satisfied by the set Vg of nodes
that are not faulty.

Unsurprisingly, such a strong fault model results in limitations on what can
be achieved. For instance, if more than half of the nodes in the system are
faulty, there is no way to achieve any kind of synchronization. In fact, even if
half of the neighbors of some node are faulty, this is impossible. The intuition
is simple: Split the neighborhood of some node v in two sets A and B and
consider two executions, EA and EB , such that A is faulty in EA and B is faulty
in EB . Given that A is faulty in EA, B and v need to stay synchronized in EA,
regardless of what the nodes in A do. However, the same applies to EB with
the roles of A and B reversed. However, A and B can have different opinions
on the time, and v has no way of figuring out which set to trust.

37

38 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

In fact, it turns out that the number f of faulty nodes must satisfy 3f < n
or no solution is possible (without cryptographic assumptions); we show this
later. Motivated by the above considerations, we also confine ourselves to G
being a complete graph: each node is connected to each other node, i.e., each
pair of nodes can communicate directly.

4.1 The Pulse Synchronization Problem

Let’s study a simpler version of the clock synchronization problem, which we call
pulse synchronization. Instead of outputting a logical clock at all times, nodes
merely need to jointly generate roughly synchronized pulses whose frequency is
bounded from above and below.

Definition 4.2 (Pulse Synchronization). Each (non-faulty) node is to generate
each pulse i ∈ N exactly once. Denoting by pv,i the time when node v generates
pulse i, we require that there are S, Pmin, Pmax ∈ R+ so that

• maxi∈N,v,w∈Vg{|pv,i − pw,i|} ≤ S (skew)

• mini∈N{minv∈Vg
{pv,i+1} −maxv∈Vg

{pv,i}} ≥ Pmin (minimum period)

• maxi∈N{maxv∈Vg{pv,i+1} −minv∈Vg{pv,i}} ≤ Pmax (maximum period)

Remarks:

• The idea is to interpret the pulses as the “ticks” of a common clock.

• Ideally, S is as small as possible, while Pmin and Pmax are as close to each
other as possible and can be scaled freely.

• Due to the lower bound from Lecture 1, we have that S ≥ u/2.

• Clearly, we cannot expect better than Pmax ≥ ϑPmin, i.e., matching the
quality of the hardware clocks. Also, Pmax − Pmin ≥ S.

• Because D = 1, the problem would be trivial without faults. For instance,
the Max Algorithm would achieve skew u + (ϑ − 1)(d + T), and pulses
could be triggered every Θ(G) local time.

• The difficulty lies in preventing the faulty nodes from dividing the correctly
functioning nodes into unsynchronized subsets.

4.2 A Variant of the Srikanth-Toueg Algorithm

One of our design goals here is to keep the algorithm extremely simple. To this
end, we decide that

• Nodes will communicate by broadcast (i.e., sending the same information
to all other nodes, for simplicity including themselves) only. Note that
faulty nodes do not need to stick to this rule!

• Messages are going to be very short. In fact, there is only a single type
of message, carrying the information that a node transitioned to state
propose.

4.2. A VARIANT OF THE SRIKANTH-TOUEG ALGORITHM 39

• Nodes will store, for each node, whether they received such a message.
On some state transitions, they will reset these memory flags to 0 (i.e., no
message received yet).

• Not accounting for the memory flags, each node runs a state machine with
a constant number of states.

• Transitions in this state machine are triggered by expressions involving (i)
the own state, (ii) thresholds for the number of memory flags that are 1,
and (iii) timeouts. A timeout means that a node waits for a certain amount
of local time after entering a state before considering a timeout expired,
i.e., evaluating the respective expression to true. The only exception is
the starting state reset, from which nodes transition to start when the
local clock reaches H0, where we assume that maxv∈Vg

{Hv(0)} < H0.

The algorithm, from the perspective of a node, is depicted in Figure 4.1. The
idea is to repeat the following cycle:

• At the beginning of an iteration, all nodes transition to state ready (or,
initially, start) within a bounded time span. This resets the flags.

G1

G3

G2

Guard Condition

G4

G5 hT3i expires or > f PROPOSE flags set

hT1i expires or > f PROPOSE flags set

hT2i expires

� n� f PROPOSE flags set

Hv(t) = H0

RESET START PROPOSE READY

PULSE

Propose

Propose

G3

G2G1 G5

G4

Figure 4.1: State machine of a node in the pulse synchronisation algorithm.
State transitions occur when the condition of the guard in the respective edge
is satisfied (gray boxes). All transition guards involve checking whether a local
timer expires or a node has received propose messages from sufficiently many
different nodes. The only communication is that a node broadcasts to all nodes
(including itself) when it transitions to propose. The notation 〈T 〉 evaluates
to true when T time units have passed on the local clock since the transition to
the current state. The boxes labeled propose indicates that a node clears its
propose memory flags when transitioning from reset to start and pulse to
ready. That is, the node forgets who it has “seen” in propose at some point
in the previous iteration. All nodes initialize their state machine to state reset,
which they leave at the time t when Hv(t) = H0. Whenever a node transitions
to state pulse, it generates a pulse. The constraints imposed on the timeouts
are listed in Inequalities (4.1)–(4.4).

40 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

• Nodes wait in this state until they are sure that all correct nodes reached
it. Then, when a local timeout expires, they transition to propose.

• When it looks like all correct nodes (may) have arrived there, they transi-
tion to pulse. As the faulty nodes may never send a message, this means
to wait for n− f nodes having announced to be in propose.

• However, faulty nodes may also sent propose messages, meaning that
the threshold is reached despite some nodes still waiting in ready for
their timeouts to expire. To “pull” such stragglers along, nodes will also
transition to propose if more than f of their memory flags are set. This
is proof that at least one correct node transitioned to propose due to its
timeout expiring, so no “early” transitions are caused by this rule.

• Thus, if any node hits the n−f threshold, no more than d time later each
node will hit the f + 1 threshold. Another d time later all nodes hit the
n− f threshold, i.e., the algorithm has skew 2d.

• The nodes wait in pulse sufficiently long to ensure that no propose mes-
sages are in transit any more before transitioning to ready and starting
the next iteration.

For this reasoning to work out, a number of timing constraints need to be
satisfied:

H0 > max
v∈Vg

{Hv(0)} (4.1)

T1
ϑ
≥ H0 (4.2)

T2
ϑ
≥ 3d (4.3)

T3
ϑ
≥
(

1− 1

ϑ

)
T2 + 2d (4.4)

Lemma 4.3. Suppose 3f < n and the above constraints are satisfied. Moreover,
assume that each v ∈ Vg transitions to start (ready) at a time tv ∈ [t−∆, t],
no such node transitions to propose during (t − ∆ − d, tv), and T1 ≥ ϑ∆
(T3 ≥ ϑ∆). Then there is a time t′ ∈ (t−∆ + T1/ϑ, t+ T1 − d) (t′ ∈ (t−∆ +
T3/ϑ, t+T3−d)) such that each v ∈ Vg transitions to pulse during [t′, t′+ 2d).

Proof. We perform the proof for the case of start and T1; the other case is
analogous. Denote by tp the smallest time larger than t − ∆ − d when some
v ∈ Vg transitions to propose (such a time exists, as T1 will expire if a node
does not transition to propose before this happens). By assumption and the
definition of tp, no v ∈ Vg transitions to propose during (t−∆−d, tp), implying
that no node receives a message from any such node during [t−∆, tp]. As v ∈ Vg
clears its memory flags when transitioning to ready at time tv ≥ t − ∆, this
implies that the node(s) from Vg that transition to propose at time tp do so
because T1 expired. As hardware clocks run at most at rate ϑ and for each
v ∈ Vg it holds that tv ≥ t−∆, it follows that

tp ≥ t−∆ +
T1
ϑ
≥ t .

4.2. A VARIANT OF THE SRIKANTH-TOUEG ALGORITHM 41

Thus, at time tp ≥ t, each v ∈ Vg has reached state ready and will not reset
its memory flags again without transitioning to pulse first.

From this observation we can infer that each v ∈ Vg will transition to pulse:
Each v ∈ Vg transitions to propose during [tp, t+T1], as it does so at the latest
at time tv+T1 ≤ t+T1 due to T1 expiring. Thus, by time t+T1 +d each v ∈ Vg
received the respective messages and, as |Vg| ≥ n− f , transitioned to pulse.

It remains to show that all correct nodes transition to pulse within 2d time.
Let t′ be the minimum time after tp when some v ∈ Vg transitions to pulse. If
t′ ≥ t+T1− d, the claim is immediate from the above observations. Otherwise,
note that out of the n − f of v’s flags that are true, at least n − 2f > f
correspond to nodes in Vg. The messages causing them to be set have been sent
at or after time tp, as we already established that any flags that were raised
earlier have been cleared before time t ≤ tp. Their senders have broadcasted
their transition to propose to all nodes, so any w ∈ Vg has more than f flags
raised by time t′ + d, where d accounts for the potentially different travelling
times of the respective messages. Hence, each w ∈ Vg transitions to propose
before time t′+ d, the respective messages are received before time t′+ 2d, and,
as |Vg| ≥ n− f , each w ∈ Vg transitions to pulse during [t′, t′ + 2d).

Theorem 4.4. Suppose that 3f < n and the above constraints are satisfied.
Then the algorithm given in Figure 4.1 solves the pulse synchronization problem
with S = 2d, Pmin = (T2 + T3)/ϑ− 2d and Pmax = T2 + T3 + 3d.

Proof. We prove the claim by induction on the pulse number. For each pulse,
we invoke Lemma 4.3. The first time, we use that all nodes start with hardware
clock values in the range [0, H0) by (4.1). As hardware clocks run at least at rate
1, thus all nodes transition to state start by time H0. By (4.2), the lemma can
be applied with t = ∆ = H0, yielding times pv,1, v ∈ Vg, satisfying the claimed
skew bound of 2d.

For the induction step from i to i+ 1, (4.3) yields that v ∈ Vg transitions to
ready no earlier than time

pv,i +
T2
ϑ
≥ max
w∈Vg

{pw,i}+
T2
ϑ
− 2d ≥ max

w∈Vg

{pw,i}+ d

and no later than time

pv,i + T2 ≤ max
w∈Vg

{pw,i}+ T2 .

Thus, by (4.4) we can apply Lemma 4.3 with t = maxw∈Vg{pw,i} + T2 and
∆ = (1− 1/ϑ)T2 + 2d, yielding pulse times pv,i+1, v ∈ Vg, satisfying the stated
skew bound.

It remains to show that minv∈Vg
{pv,i+1}−maxv∈Vg

{pv,i} ≥ (T2+T3)/ϑ−2d
and maxv∈Vg{pv,i+1} −minv∈Vg{pv,i} ≤ T2 + T3 + 3d. By Lemma 4.3,

pv,i+1 ∈
(
t−∆ +

T3
ϑ
, t+ T3 + d

)
=

(
max
w∈Vg

{pw,i}+
T2 + T3

ϑ
− 2d, max

w∈Vg

{pw,i}+ T2 + T3 + d

)
.

Thus, the first bound is satisfied. The second follows as well, as we have already
shown that maxw∈Vg

{pw,i} ≤ minw∈Vg
{pw,i}+ 2d.

42 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

Remarks:

• The skew bound of 2d can be improved to d+u by a more careful analysis;
you’ll show this as an exercise.

• By making T2 + T3 large, the ratio Pmax/Pmin can be brought arbitrarily
close to ϑ.

• On the other hand, we can go for the minimal choice T2 = 3ϑd and
T3 = (3ϑ2 − ϑ)d, yielding Pmin = 3ϑd and Pmax = (3ϑ2 + 2ϑ+ 2)d.

4.3 Impossibility of Synchronization for 3f ≥ n

If 3f ≥ n, the faulty nodes can force correct nodes to lose synchronization in
some executions. We will use indistinguishability again, but this time there will
always be some correct nodes who can see a difference. The issue is that they
cannot prove to the other correct nodes that it’s not them who are faulty.

We partition the node set into three sets A,B,C ⊂ V so that |A|, |B|, |C| ≤
f . We will construct a sequence of executions showing that either synchroniza-
tion is lost in some execution (i.e., any finite skew bound S is violated) or the
algorithm cannot guarantee bounds on the period. In each execution, one of
the sets consists entirely of faulty nodes. In each of the other sets, the hardware
clocks of all nodes will be identical. The same holds for the faulty set, but the

HA(t) HB(t) HC(t)

E0 ρt ρ2t
← arbitrary

t→

E1 ρ2t
← ρ3t

ρt
t→

E2
← ρ3t

ρt ρ2t→ t

E3 ρt ρ2t
← ρ3t

t→

E4 ρ2t
← ρ3t

ρt
t→

E5
← ρ3t

ρt ρ2t→ t

E6 ρt ρ2t
← ρ3t

t→
.

Table 4.1: Hardware clock speeds in the different executions for the different
sets. The red entries indicate faulty sets, simulating a clock speed of ρ3t to
the set “to the left” and t to the set “to the right.” For k ∈ N0, execution
pairs (E3k, E3k+1) are indistinguishable to nodes in A, pairs (E3k+1, E3k+2) are
indistinguishable to nodes in C, and pairs (E3k+2, E3k+3) are indistinguishable
to nodes in B. That is, in Ei faulty nodes mimic the behavior they have in Ei−1
to the set left of them, and that from Ei+1 to the set to the right.

4.3. IMPOSSIBILITY OF SYNCHRONIZATION FOR 3F ≥ N 43

nodes there play both sides differently: to one set, they make their clocks ap-
pear to be very slow, to the other they make them appear fast. All clock rates
(actual or simulated) will lie between 1 and ρ3, where ρ > 1 is small enough so
that ρ3 ≤ ϑ and d ≤ ρ3(d − u); this way, message delays can be chosen such
that messages arrive at the same local times without violating message delay
bounds.

Note that for each pair of consecutive executions, the executions are indis-
tinguishable to the set that is correct in both of them and a factor of ρ > 1
lies between the speeds of hardware clocks. This means that the pulses are
generated at a by factor ρ higher speed. However, as the skew bounds are
to be satisfied, this means that also the set of correct nodes that knows that
something is different will have to generate pulses faster. This means that in
execution Ei, pulses are generated at an amortized rate of (at least) ρiPmin. For
i > logρ Pmax/Pmin, this is a contradiction.

Lemma 4.5. Suppose 3f ≥ n. Then, for any algorithm A, there exists ρ > 1
and a sequence of executions Ei, i ∈ N0, with the properties stated in Table 4.1.

Proof. Choose ρ := min
{
ϑ, d

d−u

}1/3

. We construct the entire sequence concur-

rently, where we advance real time in execution Ei at speed ρ−i. All correct
nodes run A, which specifies the local times at which these nodes send messages
as well as their content. We maintain the invariant that the constructed parts
of the executions satisfy the stated properties. In particular, this defines the
hardware clocks of correct nodes at all times. Any message a node v (faulty or
not) sends at time t to some node w is received at local time Hw(t) + d. By
the choice of ρ, this means that all hardware clock rates (of correct nodes) and
message delays are within the required bounds, i.e., all constructed executions
are feasible.

We need to specify the messages sent by faulty nodes in a way that achieves
the desired indistinguishability. To this end, consider the set of faulty nodes in
execution Ei, i ∈ N0. If in execution Ei+1 such a node v sends a message to
some w in the “right” set (i.e., B is right of A, C of B, and A of C) at time

t = H
(Ei)
v (t)/ρ, it sends the same message in Ei at time t. Thus, it is received

at local time

H(Ei)
w (t) + d = ρt+ d = HEi+1

w (t) + d .

Similarly, consider the set of faulty nodes in execution Ei, i ∈ N. If in execution
Ei−1 a node v from this set sends a message to some w in the “left” set (i.e., A

is left of B, B of C, and C or A) at time t = H
(Ei−1)
v (t)/ρ2, it sends the same

message in Ei at time t/ρ3. Thus, it is received at local time

H(Ei)
w

(
t

ρ3

)
+ d =

t

ρ
+ d = H(Ei−1)

w (t) + d .

Together, this implies that for k ∈ N0, execution pairs (E3k, E3k+1) are indis-
tinguishable to nodes in A, pairs (E3k+1, E3k+2) are indistinguishable to nodes
in C, and pairs (E3k+2, E3k+3) are indistinguishable to nodes in B, as claimed.
Note that it does not matter which messages are sent from the nodes in C to
nodes in B in execution E0; for example, we can rule that they send no messages
to nodes in B at all.

44 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

It might seem as if the proof were complete. However, each execution is
defined in terms of others, so it is not entirely clear that the above assignment
is possible. This is where we use the aforementioned approach of “constructing
execution Ei at speed ρ−i.” Think of each faulty node as simulating two virtual
nodes, one for messages sent “to the left,” which has local time ρ3t at time
t, and one for messages sent “to the right,” which has local time t at time t.
This way, there is a one-to-one correspondence between the virtual nodes of a
faulty node v in execution Ei and the corresponding nodes in executions Ei−1
and Ei+1, respectively (up to the case i = 0, where the “left” virtual nodes do
not send messages). If a faulty node v needs to send a message in execution
Ei, the respective virtual node sends the message at the same local time as
v sends the message in execution Ei−1 (left) or Ei+1 (right). In terms of real
time, there is exactly a factor of ρ: if v is faulty in Ei and wants to determine
the behavior of its virtual node corresponding to Ei−1 up to time t, it needs
to simulate Ei−1 up to time ρt; similarly, when doing the same for its virtual
node corresponding to Ei+1, it needs to simulate Ei+1 up to time t/ρ. Thus,
when simulating all executions concurrently, where Ei progresses at rate ρ−i,
at all times the behavior of faulty nodes according to the above scheme can be
determined. This completes the proof.

Theorem 4.6. Pulse synchronization is impossible if 3f ≥ n.

Proof. Assume for contradiction that there is an algorithm solving pulse syn-
chronization. We apply Lemma 4.5, yielding a sequence of executions Ei with
the properties stated in Table 4.1. We will show that pulses are generated ar-
bitrarily fast, contradicting the minimum period requirement. We show this
by induction on i, where the induction hypothesis is that there is some v ∈ Vg
satisfying that

p
(Ei)
v,j − p

(Ei)
v,1 ≤ (j − 1)ρ−iPmax + 2iS

for all j ∈ N0, where ρ > 1 is given by Lemma 4.5. This is trivial for the base
case i = 0 by the maximum period requirement.

For the induction step from i to i+1, let v ∈ Vg be a node with p
(Ei)
v,j −p

(Ei)
v,1 ≤

(j − 1)ρ−iPmax + 2iS for all j ∈ N0. Let w ∈ Vg be a node that is correct in
both Ei and Ei+1. By the skew bound,

p
(Ei)
w,j − p

(Ei)
w,1 ≤ p

(Ei)
v,j − p

(Ei)
v,1 + 2S ≤ (j − 1)ρ−iPmax + 2(i+ 1)S

for all j ∈ N0. By Lemma 4.5, w cannot distinguish between Ei and Ei+1.

Because H
(Ei+1)
w (t/ρ) = ρt = H

(Ei+1)
w (t), we conclude that p

(Ei+1)
w,j = ρ−1p(Ei)w,j for

all j ∈ N0. Hence,

p
(Ei+1)
w,j − p(Ei+1)

w,1 ≤ ρ−1
(
p
(Ei)
w,j − p

(Ei)
w,1

)
≤ (j − 1)ρ−(i+1)Pmax + 2(i+ 1)S

for all j ∈ N0, completing the induction step.
Now choose i ∈ N large enough so that ρ−iPmax < Pmin and let v ∈ Vg be a

node to which the claim applies in Ei. Choosing j − 1 > 2iS(Pmin − ρ−iPmax),
it follows that

p
(Ei)
v,j − p

(Ei)
v,1 ≤ (j − 1)ρ−iPmax + 2iS < (j − 1)Pmin .

Hence, the minimum period bound is violated, as there must be some index

j′ ∈ {1, . . . , j − 1} for which p
(Ei)
v,j′+1 − p

(Ei)
v,j′ < Pmin.

BIBLIOGRAPHY 45

Bibliographic Notes

The algorithm presented in this lecture is a variant of the Srikanth-Toueg algo-
rithm [ST87]. An actual implementation in hardware [FS12] (of another variant)
was performed in the DARTS project. In a form close to the one presented here,
it was first given in [DFL+15], a survey on fault-tolerant clocking methods for
hardware. In all of these cases, the main difference to the original is getting rid
of communicating the “tick” number explicitly. The impossibility of achieving
synchronization if f ≥ n/3 was first shown in [DHS86]. Conceptually, the un-
derlying argument is related to the impossibility of consensus in synchronous
systems with f ≥ n/3 Byzantine faults [PSL80].

Concerning the skew bound, we know that u/2 skew cannot be avoided from
the first lecture. Moreover, (1 − 1/ϑ)d/2 skew cannot be avoided either, as it
takes d time to communicate. Note that the upper bound of 2d shown here
only holds on the real time between corresponding ticks; if we derive continuous
logical clocks, we get at least an additional Ω((ϑ−1)d) contribution to the skew
from the hardware clock drift in between ticks, so there is no contradiction.
We’ll push the skew down to a matching O(u+ (ϑ− 1)d) in the next lecture.

Bibliography

[DFL+15] Danny Dolev, Matthias Függer, Christoph Lenzen, Ulrich Schmid,
and Andreas Steininger. Fault-tolerant Distributed Systems in Hard-
ware. Bulletin of the EATCS, 116, 2015.

[DHS86] Danny Dolev, Joseph Y. Halpern, and H.Raymond Strong. On the
Possibility and Impossibility of Achieving Clock Synchronization.
Journal of Computer and System Sciences, 32(2):230–250, 1986.

[FS12] Matthias Függer and Ulrich Schmid. Reconciling fault-tolerant dis-
tributed computing and systems-on-chip. Distributed Computing,
24(6):323–355, 2012.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the
Presence of Faults. J. ACM, 27(2):228–234, 1980.

[ST87] T. K. Srikanth and Sam Toueg. Optimal Clock Synchronization. J.
ACM, 34(3):626–645, 1987.

https://ti.tuwien.ac.at/ecs/research/projects/darts/

46 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

Lecture 5

Synchronizing by
Approximate Agreement

In the previous lecture, we’ve seen how to achieve a skew of O(d) in a system
of n fully connected nodes with f < n/3 Byzantine faults. We’ve also seen that
we can’t do any better in terms of the number of faults that can be tolerated.
So let’s ask our usual question: Is this skew bound (asymptotically) optimal or
can we do better? Already in a fault-free system, we know that we can’t beat
Ω(u+ (ϑ− 1)d). But can this bound be attained in the presence of faults?

5.1 Approximate Agreement

The answer is provided by leveraging techniques for the task of approximate
agreement. For this problem, we assume the (convenient) abstraction of a syn-
chronously operating system.

Definition 5.1 (Synchronous Execution). A synchronous execution proceeds in
synchronous rounds. At the start of the execution, each node receives an input
(whose type depends on the task at hand). In each round,

1. nodes perform local computations,

2. send messages to their neighbors in the network graph,

3. receive the messages of their neighbors, and (optionally)

4. may compute an output value and terminate (i.e., stop executing the other
steps in future rounds).

Note that a synchronous execution of a deterministic algorithm is fully
determined by the input values and the (arbitrary) messages sent by faulty
nodes. The key performance measures are the round complexity — the number
of rounds until all nodes terminated — and the maximum size of messages (sent
by correct nodes).

This model provides a very clean abstraction for describing the tool we would
like to use.

47

48 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

Definition 5.2 (Approximate Agreement). Each node v ∈ V is given an input
value rv ∈ R. Given a constant ε > 0, the task is to generate output values
ov ∈ R so that

agreement: maxv,w∈Vg
{ov − ow} ≤ ε,

validity: ∀v ∈ Vg : minw∈Vg
{rw} ≤ ow ≤ maxw∈Vg

{rw}, and

termination: each v ∈ Vg determines is output ov and terminates within a
finite number of rounds.

Remarks:

• The synchronous model is a highly useful abstraction in distributed com-
puting. With known upper bounds L on local skew, λ on logical clock
rates, and d on message delays, it is straightforward to simulate. Assum-
ing that maxv∈Vg

{Lv(0)} = L, nodes send their messages for round r ∈ N
at the time t when Lv(t) = L + (r − 1)λ(d + L). Thus, all messages for
round r are received before the ones for round r + 1 need to be sent.

• If the round number is not to be sent along with the message or for some
other reason it’s important that messages for round r+ 1 must not arrive
anywhere before round r is complete at all nodes, one may add an addi-
tional λS at the beginning of the round before messages are sent. We will
use this in our algorithm!

• Recall that d accounts for local computations, not only the time messages
are in transit. Thus, involved calculations affect the time the simulation
takes via d!

• Lower bounds on the progress of logical clocks are needed for guaranteeing
progress. The better the lower bound, the earlier the simulation completes
(i.e., all nodes terminate).

• Without faults, synchronizers provide elegant solutions that work even if
d is unknown. However, synchronizers wait for proof that all other nodes
finished their current round before proceeding. Even a single crash fault
(a node not sending any messages any more) would halt the entire system!

• Once we solved approximate agreement in this abstract model, we will
employ it to agree on when the nodes should generate clock pulses, i.e.,
solve the pulse synchronization problem with it.

• The simulation of the synchronous algorithm and maintaining a small skew
will go hand in hand!

Solving Approximate Agreement

Definition 5.3 (Diameters of Vectors). Denote by ~r the |Vg|-dimensional vec-
tor of correct nodes’ inputs, i.e., (~r)v = rv for v ∈ Vg. Denote by r(k),
k ∈ {1, . . . , |Vg|}, the kth entry when ordering the entries of ~r ascendingly.

5.1. APPROXIMATE AGREEMENT 49

Algorithm 5.1: Approximate agreement step at node v ∈ Vg (with
synchronous message exchange).

1 // node v is given input value rv;
2 broadcast rv to all nodes (including self);
3 receive r̂wv from each node w (r̂wv := rv if no message with correct type

of content from w received);
4 Sv ← {r̂wv |w ∈ V };

5 ov ←
S
(f+1)
v + S

(n−f)
v

2
;

6 return ov;

The diameter ‖~r ‖ of ~r is the difference between the maximum and minimum
components of ~r. Formally,

‖~r ‖ := r(|Vg|) − r(1) = max
r∈Vg

{rv} − min
v∈Vg

{rv}.

We will use the same notation for other values, e.g. ~o, o(k), ‖~o ‖, etc.

For simplicity, we assume that |Vg| = n− f in the following; all statements
can be adapted by replacing n − f with |Vg| where appropriate. As usual, we
require that 3f < n.

Intuitively, Algorithm 5.1 discards the smallest and largest f values each to
ensure that values from faulty nodes cannot cause outputs to lie outside the
range spanned by the correct nodes’ values. Afterwards, ov is determined as
the midpoint of the interval spanned by the remaining values. Since f < n/3,
i.e., n− f ≥ 2f + 1, the median of correct nodes’ values is part of all intervals
computed by correct nodes. From this, it is easy to see that ‖~o ‖ ≤ ‖~r ‖/2. We
now prove these properties.

Lemma 5.4.

∀v ∈ Vg : r(1) ≤ ov ≤ r(n−f) .

Proof. As there are at most f faulty nodes, for v ∈ Vg we have that

S(f+1)
v ≥ min

w∈Vg

{r̂wv} = r(1) .

Analogously, S
(n−f)
v ≤ r(n−f). We conclude that

r(1) ≤ S(f+1)
v ≤ S

(f+1)
v + S

(n−f)
v

2
= ov ≤ S(n−f)

v ≤ r(n−f) .

Lemma 5.5. ‖~o ‖ ≤ ‖~r ‖/2.

Proof. Since f < n/3, we have that n− f ≥ 2f + 1. Hence, for all v ∈ Vg,

r(1) ≤ S(f+1)
v ≤ r(f+1) ≤ S(2f+1)

v ≤ S(n−f)
v ≤ r(n−f) .

50 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

For any v, w ∈ Vg, it follows that

ov − ow =
S
(f+1)
v − S(f+1)

w + S
(n−f)
v − S(n−f)

w

2

≤ r(f+1) − r(1) + r(n−f) − r(f+1)

2
=
r(n−f) − r(1)

2

=
‖~r ‖

2
.

As v, w ∈ Vg were arbitrary, this yields ‖~o ‖ ≤ ‖~r ‖/2.

Applying this approach inductively yields a straightforward algorithm pro-
vided an upper bound R ≥ r(|Vg|) − r(1) is known.

Theorem 5.6 (Approximate Agreement). Applying Algorithm 5.1 iteratively
(using the output of one step as input to the next) for dlog(R/ε)e steps solves
approximate agreement.

Proof. Applying Lemma 5.5 inductively shows agreement. Applying Lemma 5.4
inductively shows validity. By construction, all nodes terminate after dlog(R/ε)e
synchronous rounds.

Modifications for the Pulse Synchronization Problem

In our setting, we will not be able to guarantee exact communication of clock
values. Accordingly, we slightly modify the communication model. More specif-
ically, at certain times, nodes will need estimates of each other’s logical clock
values. Node v will use its estimate of w’s clock value as approximation of the
“input” rw of w ∈ V . Thus, instead of receiving r̂wv = rw from w ∈ V , v will
receive

rw − δ < r̂wv ≤ rw .
As shifting the values r̂wv in Algorithm 5.1 by less than δ will affect the outputs
by less than δ, we obtain the following corollary to Lemmas 5.4 and 5.5. See
Figure 5.1 for a visualization.

Corollary 5.7. With the above modification to the communication model, Al-
gorithm 5.1 guarantees

(i) ∀v ∈ Vg : r(1) − δ < ov ≤ r(n−f) and

(ii) ‖~o ‖ ≤ ‖~r ‖/2 + δ.

Remarks:

• Now all we need to do is to gather estimates, use Algorithm 5.1 to deter-
mine adjustments to the logical clocks, and iterate.

• Trivia: When I suggested to Danny Dolev that one could make use of ap-
proximate agreement as the basis for a clock synchronization algorithm, he
told me that this was precisely the motivation for introducing the problem
and pointed me towards the paper implementing this approach. He and
his co-authors were merely about three decades and a brilliant abstraction
ahead of me!

5.2. A VARIANT OF THE LYNCH-WELCH ALGORITHM 51

Sf+1
v Sn�f

v

yv =
Sf+1

v + Sn�f
v

2

yw =
Sf+1

w + Sn�f
w

2

||~x|| + 2�

Sn�f
wSf+1

w

||~y||  ||~x||
2

+ �

median

w

v

Figure 5.1: An execution of Algorithm 5.1 at nodes v and w of a system con-
sisting of n = 4 nodes. There is a single faulty node and its values are indicated
in red. Note that the ranges spanned by the values received from non-faulty
nodes are almost identical; the difference originates in the perturbations of up
to δ.

5.2 A Variant of the Lynch-Welch Algorithm

The algorithm is now constructed as follows. Assuming some bound H ≥
maxv∈Vg

{Hv(0)} on the skew at initialization, nodes generate their first pulse
at local time H. This marks the (local) start of the first round. Then they wait
until they can be sure that all nodes have generated their pulse. At the respec-
tive hardware time, they transmit an empty message — no content is needed, as
the local time when the message is sent is hardwired into the algorithm. Then

Algorithm 5.2: Lynch-Welch pulse synchronization algorithm, code
for node v ∈ Vg. S denotes a (to-be-determined) upper bound on ‖~pr‖
for each r ∈ N and T is the nominal round duration.

1 // Hw(0) ∈ [0,S) for all w ∈ V
2 set Lv(0) := Hv(0)
3 increase Lv at rate hv at all times
4 generate pulse 1 at the time pv,1 with Lv(pv,1) = S;
5 foreach round r ∈ N do
6 wait until local time (r − 1)T + (ϑ+ 1)S;// all nodes are in round r
7 broadcast empty message to all nodes (including self);
8 wait until time τv,r when Lv(τv,r) = (r − 1)T + (ϑ2 + ϑ+ 1)S + ϑd;

// correct nodes’ messages arrived
9 for each node w ∈ V do

10 // abbreviate pr := maxw∈Vg
{pw,r} (unknown to the node!)

11 compute ∆v
w ∈ (Lv(pr)− Lw(pr)− δ, Lv(pr)− Lw(pr)]

12 Sv ← {∆v
w |w ∈ V } (as multiset, i.e., values may repeat)

13 Lv(τv,r)← Lv(τv,r) +
(
S
(f+1)
v + S

(n−f)
v

)
/2

14 generate pulse r + 1 at the time pv,r+1 with Lv(pv,r+1) = S + rT

52 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

nodes wait until the local time when all such messages from correct nodes are
certainly received and compute their estimates of the relative clock differences
to other nodes. Finally, they apply Algorithm 5.1 to compute an adjustment to
the (local) starting time of the next round. This ensures bounded skew for the
next pulse and thus also the starting times of the next round. From there, the
process is iterated.

Algorithm 5.1 is phrased in a parametrized fashion suitable for the analysis.
This means that we assume a skew bound of S to hold on initialization, an
error bound δ on the logical clock estimates nodes compute of each other, and
a nominal round duration of T . We then determine valid choices for these
parameters from the analysis, where we need to determine δ depending on how
the estimates are computed.

“Rounds” of the algorithm simulate the synchronous operation assumed in
the approximate agreement problem, where each iteration of the loop simulates
one synchronous round. For this to work as intended, two requirements need to
be met in each round:

(i) Messages sent by correct nodes are received at all correct nodes after
starting the round and before they compute their clock adjustment, i.e.,
during [pv,r, τv,r].

(ii) T is large enough to ensure that the clock adjustment makes no logical
clock “jump” past Lv(pv,r+1) = S + rT , skipping a pulse.

If these properties are satisfied in round r, we will say that round r is executed
correctly. We will show that this holds for all r ∈ N inductively, where the
induction hypothesis is that ‖~pr‖ ≤ S; this simulatenously shows that the algo-
rithm has a small skew! For r = 1, this is immediate from our assumption on
the initial hardware clock values.

Lemma 5.8. Suppose that T/ϑ ≥ (ϑ2+ϑ+1)S+ϑd and S ≥ 2(δ+(1−1/ϑ)T).
Moreover, assume that for r ∈ N it holds that all prior rounds have been executed
correctly, and that ‖~pr‖ ≤ S. Then

(i) round r is executed correctly,

(ii) ‖~pr+1‖ ≤ S, and

(iii) T/ϑ− S ≤ pr+1 − pr ≤ T + δ.

Proof. By assumption, no messages sent by correct nodes in rounds r′ < r are
received in round r. Consider the message v ∈ V sends after entering round
r. It is sent no earlier than time pv,r + S ≥ maxw∈Vg

{pw,r}, as ‖~pr‖ ≤ S by
assumption. It is received before time

pv,r + ϑS + d ≤ min
w∈Vg

{pw,r}+ (ϑ+ 1)S + d .

As τw,r ≥ pw,r + (ϑ + 1)S + d for all w ∈ Vg, this shows part (i) of correct
execution of round r.

5.2. A VARIANT OF THE LYNCH-WELCH ALGORITHM 53

Concerning part (ii), we apply statement (i) of Corollary 5.7, showing that
the logical clock of v ∈ Vg cannot be set to a larger value than

Lv(τv,r) ≤ Lv(pr) +

∫ τv,r

pr

hv(t) dt− min
w∈Vg

{∆v
w}

≤ Lv(pr) +

∫ τv,r

pr

hv(t) dt+ max
w∈Vg

{Lw(pr)} − Lv(pr)

≤ max
w∈Vg

{Lw(pr)}+ ϑ(τv,r − pr)

≤ max
w∈Vg

{Lw(pw,r) + ϑ(τv,r − pw,r)}

= (r − 1)T + S + ϑ

(
τv,r − min

w∈Vg

{pw,r}
)
.

It follows that no node can reach logical clock value rT + S earlier than time
minw∈Vg{pw,r}+T/ϑ. In particular, this is bounded from below by pr+T/ϑ−S,
showing the lower bound of the third claim of the lemma.

On the other hand, for all v ∈ Vg, we have that

τv,r ≤ pv,r + (ϑ2 + ϑ)S + ϑd ≤ min
w∈Vg

{pw,r) + (ϑ2 + ϑ+ 1)S + ϑd ,

where the second step uses that ‖pv,r‖ ≤ S. As T/ϑ ≥ (ϑ2 + ϑ + 1)S + ϑd,
this shows that round r is executed correctly. In particular, the times pv,r+1,
v ∈ Vg, are well-defined.

By statement (i) of Corollary 5.7, we have that, at time τv,r, v ∈ Vg cannot
set its logical clock to a smaller value than

Lv(τv,r) ≥ Lv(pr) +

∫ τv,r

pr

hv(t) dt+ min
w∈Vg

{Lw(pr)} − Lv(pr)− δ

≥
∫ τv,r

pr

hv(t) dt+ min
w∈Vg

{Lw(pr)} − δ

=

∫ τv,r

pr

hv(t) dt+ (r − 1)T + S − δ .

As hardware clock rates are at least 1, this shows that pr+1 ≤ pr + T + δ, i.e.,
the upper bound of the third claim of the lemma holds.

It remains to show the second claim, i.e., the bound on the skew. To simplify
our reasoning, pretend that the clock adjustments from round r would take place
at time pr. Denote by L′v(pr), v ∈ Vg, the respective modified logical clocks,
which increase at the rate of the hardware clocks during round r and satisfy
L′v(t) = Lv(t) at times t ≥ τv,r. By the above bound, we thus have that

L′v(pr) = Lv(τv,r)−
∫ τv,r

pr

hv(t) dt ≥ (r − 1)T + S − δ .

Next, note that ‖~L(pr)‖ ≤ ϑ‖~pr‖ ≤ ϑS by assumption. By statement (ii)

of Corollary 5.7, this implies that ‖~L′(pr)‖ ≤ ϑS/2 + δ. Now let v, w ∈ Vg
maximize pr+1,v − pr+1,w. We have that pr+1,v − pr ≤ rT + S − L′v(pr) and
pr+1,w − pr ≥ (rT + S − L′w(pr))/ϑ due to the bounds on the hardware clock

54 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

rates. Hence,

pr+1,v − pr+1,w ≤ L′w(pr)− L′v(pr) +

(
1− 1

ϑ

)
(rT + S − L′w(pr))

≤ ‖~L′(pr)‖+

(
1− 1

ϑ

)
(rT + S − (L′v(pr) + ‖~L′(pr)‖))

≤ ‖~L′(pr)‖+

(
1− 1

ϑ

)
(T + δ − ‖~L′(pr)‖)

≤ ϑS
2

+ δ +

(
1− 1

ϑ

)(
T − ϑS

2

)
=
S
2

+ δ +

(
1− 1

ϑ

)
T .

This being bounded by S is equivalent to S ≥ 2(δ + (1− 1/ϑ)T).

Before we can prove our main theorem, we need to get a hold on δ. This is
a straightforward calculation.

Lemma 5.9. Suppose round r is executed correctly and v ∈ Vg receives the
message from w ∈ Vg for this round at time t. Then setting

∆v
w := Lv(t)− (r − 1)T − (ϑ2 + 1)S − ϑd

yields an estimate satisfying δ ≤ u+ (ϑ− 1)d+ 2(ϑ2 − ϑ)S.

Proof. Denote by t the time when v receives the message from w and by ts the
time when it was sent. We have that

Lv(t)− Lw(ts) ∈ (Lv(ts)− Lw(ts) + d− u, Lv(ts)− Lw(ts) + ϑd) .

Moreover,

|Lv(ts)− Lv(pr)− (Lw(ts)− Lw(pr))| ≤ (ϑ− 1)(ts − pr) ≤
(
ϑ2 − ϑ

)
S .

We conclude that

Lv(t)− Lw(ts) ∈
(Lv(pr)− Lw(pr) + d− u− (ϑ2 − ϑ)S, Lv(pr)− Lw(pr) + ϑd+ (ϑ2 − ϑ)S) .

As Lw(ts) = (r − 1)T + (ϑ + 1)S by the design of the algorithm, the claim of
the lemma follows.

Theorem 5.10. Assume that 3 + 4ϑ − 4ϑ2 − 2ϑ3 > 0 and that estimates are
computed according to Lemma 5.9. For any choice of

T ≥ 6ϑ4(u+ d)

3 + 4ϑ− 4ϑ2 − 2ϑ3
∈ O(d) ,

set

S :=
2(u+ (ϑ− 1)d+ (1− 1/ϑ)T)

1 + 4ϑ− 4ϑ2
∈ O

(
u+

(
1− 1

ϑ

)
T

)
.

If maxv∈V {Hv(0)} ≤ S, then Algorithm 5 solves pulse synchronization with
skew S, Pmin ≥ T/ϑ− S, and Pmax ≤ T + 2S.

5.2. A VARIANT OF THE LYNCH-WELCH ALGORITHM 55

Proof. Set δ := u+ (ϑ− 1)d+ 2(ϑ2−ϑ)S in accordance with Lemma 5.9. Thus,

S = 2

(
u+ (ϑ− 1)d+ 2(ϑ2 − ϑ)S +

(
1− 1

ϑ

)
T

)
= 2

(
δ +

(
1− 1

ϑ

)
T

)
.

Moreover,

T ≥ 6ϑ4(u+ d) + 2(ϑ3 − 1)T

3 + 4ϑ− 4ϑ2 − 2ϑ3 + 2(ϑ3 − 1)
>

6ϑ3(u+ (ϑ− 1)d) + 2(ϑ3 − 1)T

1 + 4ϑ− 4ϑ2
+ ϑ2d ,

i.e.,

T

ϑ
> (ϑ2 + ϑ+ 1) · 2(u+ (ϑ− 1)d) + 2(1− 1/ϑ)T

1 + 4ϑ− 4ϑ2
+ ϑd = (ϑ2 + ϑ+ 1)S + ϑd .

The claim is now shown by a straightforward induction on the pulse num-
ber, where the hypothesis includes that all previous rounds have been executed
correctly. The induction is anchored at the first pulse, which satisfies the skew
bounds due to the assumed bound on the hardware clock values at time 0.
The induction step is performed by invoking Lemma 5.8, where Lemma 5.9
shows that δ is indeed a bound on the quality of estimates. We obtain that
S is a bound on the skew for all pulses and that T/ϑ − S ≤ pr+1 − pr ≤
T + δ for each r ∈ N. This implies that Pmin ≥ (T − S)/ϑ and, using that
maxv∈Vg

{pv,r} −minv∈Vg
{pv,r} ≤ S and δ < S, that Pmax ≤ T + 2S.

Remarks:

• The theorem requires that 3 + 4ϑ − 4ϑ2 − 2ϑ3 > 0, which is the case for
ϑ ≤ 1.09. As ϑ approaches this threshold, the skew goes to ∞.

• Sending (T, ϑ) → (∞, 1), the ratio Pmax/Pmin ∈ (1 + o(1))ϑ. However,
when sending T → ∞ while keeping ϑ fixed, the ratio converges to a
constant c ∈ 1 +O(ϑ− 1).

• If on initialization such a tight skew bound cannot be guaranteed, one can
choose T accordingly larger.

• Alternatively, one can only initially use the larger T and keep reducing
T alongside the decrease in (the worst-case bound on) the skew. You’ll
analyze this in the exercises.

• A known bound on the initial skew is necessary for executing the algo-
rithm. You’ll show this in the exercises as well.

• We haven’t clarified how nodes compute their estimates of faulty nodes’
clocks. What if these nodes send no or many messages during a round?
The answer is simple: It doesn’t matter. As the approximate agreement
algorithm works regardless of what values faulty nodes provide, choosing
any default value for nodes clearly not obeying the protocol will do.

56 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

Bibliographic Notes

Approximate agreement was introduced by Dolev et al. [DLP+86], actually
having the goal in mind to use it for clock synchronization. As shown by
Fekete [Fek86], the rate of convergence provided by their algorithm is close
to being asymptotically optimal, and it is asymptotically optimal if only one
round of communication per iteration is performed. He also shows that faster
convergence is possible if the (maximum) number of possible faults is smaller.

The clock synchronization protocol by Lynch and Welch [LL84] is able to ex-
ploit this, too, to achieve faster convergence and thus slightly smaller skews. The
respective modification is straightforward and can also be applied to the variant
presented in this lecture, which follows [?]. The main difference to [LL84]
is, just as for the Srikanth-Toueg algorithm from the previous lecture, that
no tick numbers are communicated by the algorithm. One can also adjust
clock rates (as opposed to just correcting clock offsets), but this requires the
additional assumption that hardware clock rates change slowly [KL16]. The
Lynch-Welch algorithm has already found its way into practice: it’s the syn-
chronization mechanism underlying industrial systems used, e.g., in cars and
planes [KB03, FAS09].

Bibliography

[DLP+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark,
and William E. Weihl. Reaching Approximate Agreement in the
Presence of Faults. J. ACM, 33(3):499–516, 1986.

[FAS09] Matthias Függer, Eric Armengaud, and Andreas Steininger. Safely
Stimulating the Clock Synchronization Algorithm in Time-Triggered
Systems - a Combined Formal & Experimental Approach. IEEE
Trans. Industrial Informatics, 5(2):132–146, 2009.

[Fek86] A. D. Fekete. Asymptotically Optimal Algorithms for Approximate
Agreement. In Proc. 5th Symposium on Principles of Distributed
Computing (PODC), pages 73–87, 1986.

[KB03] Hermann Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[KL16] Pankaj Khanchandani and Christoph Lenzen. Self-stabilizing Byzan-
tine Clock Synchronization with Optimal Precision. In Proc. 18th
Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems, pages 213–230, 2016.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 1984.

Lecture 6

Metastability

In the previous lecture, we’ve seen how to handle the maximum possible number
of worst-case faults (with asymptotically optimal skew bounds!). Or have we?
There are fault models that are worse than “just” Byzantine faults. One of the
issues that may arise when dealing with low-level hardware implementations of
synchronization algorithms is metastability. Metastability occurs when a storage
element — e.g. a flip-flop — is brought into an unstable equilibrium state. Not
binary 0 or binary 1 (low or high output voltage, respectively), but somewhere
in between! With the “right” bad input, this is always possible. Figure 6.1
shows how a flip-flop’s output responds to critical input signals.

Figure 6.1: Several input (blue) and corresponding output (green) signal traces
of a flip-flop. The dotted red line marks the threshold above which the output
signal is reliably interpreted as a logical 1. The center blue line is actually not
a single one, but many only slightly differing traces, which result in the various
green outputs that remain metastable for some time.

Metastability breaks our standard Boolean abstraction, resulting in “faulty”
behavior — or rather behavior that is unexpected if we neglect to account for the
potential for metastability in our model. Worse, when a metastable flip-flop’s
output is used in computations and the result is stored in another flip-flop, the
latter flip-flop may become metastable as well. So metastability can spread to

57

58 LECTURE 6. METASTABILITY

other parts of the computational logic and “infect” other storage elements.
The reason why we usually neglect metastability is because it’s dealt with

by the electrical engineers. As unstable equilibrium state, the probability for
sustained metastability decreases exponentially with time. Even the tiniest
deviation from the “perfect balance” (e.g. due to thermal noise) gets amplified
exponentially, resulting in quick stabilization of the storage element to one of its
stable states. Whereever the danger of metastability exists, synchronizers are
employed, i.e., storage elements specifically designed to resolve metastability as
fast as possible, to reduce the probability of metastability sufficiently far before
using the registers’ content in computations.

Unfortunately, we want to synchronize clocks as accurately as possible,
meaning that we cannot always afford to wait. Making things worse, our “worst-
case” fault model of Byzantine nodes does not take into account that Byzantine
nodes could try to “infect” correct nodes with metastability. Do we always
need to wait for synchronizers to do their job? Can we only guarantee correct
operation probabilistically?

Remarks:

• Don’t mistake the synchronizers here with Awerbuch-Sipster network syn-
chronizers. The former deal with metastability, the latter simulate a syn-
chronous network on top of an asynchronous (fault-free) one.

• Using synchronizers is perfectly fine in most applications. Only if we have
to respond very quickly (a few nanoseconds or less) to events, we need to
look for alternatives.

6.1 Kleene Logic and Circuits

In order to capture how circuits behave in face of metastability, we need to
understand how it propagates through logic gates. A very natural way of ex-
pressing worst-case behavior of standard logic is Kleene logic. We extend the
truth tables for Boolean logic by adding a third logic value M representing
metastability and, in fact, any signal behavior that is not conform with what
we consider a stable 0 or stable 1.

And 0 1

0 0 0

1 0 1

AndM 0 1 M

0 0 0 0

1 0 1 M

M 0 M M

Or 0 1

0 0 1

1 1 1

OrM 0 1 M

0 0 1 M

1 1 1 1

M M 1 M

Table 6.1: Gate behavior under metastability corresponds to Kleene’s 3-valued
logic. A NotM gate simply maps M to M.

Note carefully that if one stable input already determines the output of a
gate, then the other input being M does not matter. This is called logical
masking, and it is the best guarantee one can hope for: when changing inputs
affect the output, one can always “adjust” the input precisely to hitting the
spot where the output is neither a logical 0 nor a logical 1.

A definition that extends this desirable behavior to arbitrary Boolean func-
tions is the following.

6.1. KLEENE LOGIC AND CIRCUITS 59

Definition 6.1 (Metastable Closure). For x, y ∈ {0, 1,M}n, we say that x � y
if and only if xi 6= M ⇒ yi = xi for all i ∈ {1, . . . , n}, i.e., y is a stabilization
of x. For any Boolean f : {0, 1}n → {0, 1}m, define the metastable closure fM
of f by

(fM)i(x) :=


0 if f(y) = 0 for all x � y ∈ {0, 1}n
1 if f(y) = 1 for all x � y ∈ {0, 1}n
M else.

Example 6.2 (MUXM). A multiplexer (or short MUX) selects between two
input bits based on a select bit (it’s third input). Formally,

MUX : {0, 1}3 → {0, 1}

MUX(a, b, s) :=

{
a if s = 0

b if s = 1 .

In Figure 6.2, a standard circuit implementation of a MUX is shown — and
why it does not implement MUXM.

b = 1

a = 1

1

M
M

1

M
M

s = M

o = M

Figure 6.2: Standard MUX implementation. A black dot means that wires are
joined (while regular crossings imply no contact). An empty dot is a negation,
i.e., a Not gate. And gates are represented by the shapes that are approx-
imately half circles, while the crescent-shaped symbol stands for an Or gate.
The figure indicates in which gate inputs and outputs inputs a = 1, b = 1, and
s = M to the circuit result; note that MUXM(1, 1,M) = 1.

A metastability-containing multiplexer (or short CMUX) has MUXM as
output function, i.e.,

CMUX : {0, 1,M}3 → {0, 1,M}

CMUX(a, b, s) := MUXM(a, b, s) =


a if s = 0 or a = b = 0

b if s = 1 or a = b = 1

M else.

60 LECTURE 6. METASTABILITY

b = 1

a = 1

s = M
1

M
M

1

M
M

1

1 1

o = 1

Figure 6.3: CMUX implementation. The figure indicates in which gate inputs
and outputs inputs a = 1, b = 1, and s = M to the circuit result; the additional
And gate makes sure that the Or gate receives a stable 1 as third input if
a = b = 1, guaranteeing a stable 1 as output.

As we will see shortly, asking for implementing the metastable closure of
a Boolean function is the best we can hope for in a mathematically precise
sense. However, we first need to clarify what we mean by “implement.” It’s
exactly what one might expect (see the example above), but a somewhat wordy
formalization is necessary to correctly describe the process.

Definition 6.3 (Circuit Behavior). A combinational circuit C is described as a
directed acyclic graph (DAG), where n nodes are marked as inputs and m nodes
are marked as outputs. Input nodes have indegree 0, output nodes have inde-
gree 1, and all remaining nodes are gates. A gate implements fM : {0, 1,M}k →
{0, 1,M} for a Boolean function f : {0, 1}k → {0, 1}. The basic available gates
are OrM, AndM, NotM, and the constant gates (i.e., no-input gates that pro-
vide outputs 0 or 1, respectively). In the DAG, input nodes and gates may have
any number of outgoing edges, while output nodes have none. Gates have the
number of inputs prescribed by their gate function.

For a given input x ∈ {0, 1,M}n, the evaluation C(x) of C on x is deter-
mined by structural induction as follows. The ith input node evaluates to xi.
As the circuit is described as a DAG, there must be a node for which all in-
coming edges come from nodes whose evaluation is already determined. If the
node is a gate, we apply the gate function to determine its evaluation. If it is
an ouput node, it evaluates to the evaluation of the unique node at which its
incoming edge originates. This process is iterated until all nodes’ evaluation is
determined. The output of the circuit is then given by the output nodes’ evalu-
ation. We say that C implements g : {0, 1,M}n → {0, 1,M}m if g(x) � C(x)
for all x ∈ {0, 1,M}m, i.e., C(x) is a stabilization of g(x).

Remarks:

• The model does not allow for M to stabilize to 0 or 1. This is a worst-case
assumption — stable values are never worse than M.

• Accordingly, accepting stabilizations of the desired output from the circuit
is fine — the circuit then does better than we ask it to.

6.2. THE LIMITS OF METASTABILITY-CONTAINMENT 61

6.2 The Limits of Metastability-Containment

Theorem 6.4. Suppose for a circuit C and a Boolean function f it holds that
C(x) = f(x) for all x ∈ {0, 1}n. Then C(x) � fM(x) for all x ∈ {0, 1,M}n.

Proof. Assume w.l.o.g. that m = 1 (otherwise, simply repeat the reasoning for
each output bit). We need to show that C(x) = b ∈ {0, 1} implies that fM(x) =
b. Hence, assume for contradiction that C(x) = b ∈ {0, 1}, but fM(x) 6= b.
Thus, there is y ∈ {0, 1}n so that x � y and f(y) 6= b = C(x).

Consider the node connecting to the output node in C. If it is an input
node, say the ith input node, then f(y) 6= xi = C(x). However, as y ∈ {0, 1}n,
we also have that yi = C(y) = f(y), so yi 6= xi. As also x � y, this entails that
xi = M, yielding the contradiction that b = C(x) = xi = M.

Now consider the case that the node connecting to the output node in C is
a gate. Consider the subcircuits C1, . . . , Ck computing the inputs to the gate
and denote by g the gate function. We have that g(C1(y), . . . , Ck(y)) = C(y) =
f(y) 6= C(x) = gM(C1(x), . . . , Ck(x)), where again we used that C(y) = f(y)
because y ∈ {0, 1}n. As gM(x) 6= M would entail that g(C1(z), . . . , Ck(z)) =
gM(C1(x), . . . , Ck(x)) for all x � z ∈ {0, 1}n, we again arrive at the contradiction
that C(x) = M 6= b.

This theorem shows that we cannot do better than computing the metastable
closure. We now show that the closure can also be implemented, using a gener-
alized CMUX as key ingredient.

Lemma 6.5. Let MUX : {0, 1}2k ×{0, 1}k → {0, 1} be a the generalized MUX
function, i.e., MUX(x, s) = xs, where s ∈ {0, 1}k is interpreted as (the binary
encoding of) an index. It holds that

MUXM(x, s) = b ∈ {0, 1} ⇔ ∀s � s′ ∈ {0, 1}k : xs′ = b

and there is a circuit of size O(2k) implementing MUXM.

Proof. Exercise.

Theorem 6.6. For any f : {0, 1}n → {0, 1}m, a circuit implementing fM exists.

Proof. W.l.o.g., assume that m = 1 (otherwise, perform the construction for
each output bit of f separately). Let f : y 7→ f(y). By Lemma 6.5, we can
implement MUXM. Take such a circuit for k = n and feed it inputs xs = f(s)
and s = y, see Figure 6.4. If f(z) = b ∈ {0, 1} for all y � z ∈ {0, 1}n, then
by Lemma 6.5 the resulting circuit C outputs b. Thus, fM(y) � C(y) for all
y ∈ {0, 1,M}n, i.e., C implements fM.

Remarks:

• By Theorem 6.4, the circuit C from Theorem 6.6 satisfies that C = fM.

• The construction has, unfortunately, exponential size in n. Can we do
better?

62 LECTURE 6. METASTABILITY

f(1)

f(2)

y1

yn

f(0)

f(2n � 1)

f(2n � 2)

bMUXM

Figure 6.4: We first implement the circuit MUXM : {0, 1}2n × {0, 1,M}n →
{0, 1,M} according to the Lemma 6.5. Then we set the input domain to be
{f(0), . . . , f(2n − 1)} × {0, 1,M}n as depicted in the figure.

6.3 Hardness of Containment

Recall that for any language in NP and word x, if x is in the language, there
is a polynomially checkable proof w that this is the case. On the other hand,
if x is not in the language, no proof w will work. If we had a small circuit
implementing the metastable closure of the checker, we could exploit this to
determine membership in the language efficiently.

Theorem 6.7. Let Vn(x,w), n ∈ N, denote the family of verifier functions for
3SAT with n clauses, i.e., x encodes a 3SAT instance with n clauses, w ∈ {0, 1}n
is an assignment of these variables, and Vn(x,w) = 1 if and only if the instance
is satisfied with the assignment given by w. If there is a family of circuits Cn,
n ∈ N, of size nO(1) such that Cn implements (Vn)M, then there is a family of
circuits of size nO(1) deciding 3SAT instances on n clauses.

Proof. We construct a circuit simulating (Vn)M. That is, we encode 0, 1, and M
using two bits, e.g., 00 for 0, 11 for 1, and 01 for M. Then we construct (constant-
size) circuits implementing the closure of basic gates (i.e., OrM, AndM, and
NotM) in this encoding and replace all gates in the circuit implementing (Vn)M
accordingly.

Now we use the simulating circuit as follows. For any instance x, com-
pute (Vn)M(x,M3n) (3n is the maximum number of variables in n clauses). If
(Vn)M(x,M3n) = 0, output 0, otherwise output 1. We claim that this circuit,
which is of size nO(1), decides 3SAT with n clauses. To see this, assume that x
is a “no” instance first. Then for any assignment w, it holds that Vn(x,w) = 0,
implying that (Vn)M(x,w) = 0 and the output is correct. On the other hand, if
x is a “yes” instance, there must be at least one witness w so that Vn(x,w) = 1.
As M3n � w′ for any w′ ∈ {0, 1}3n, in particular M3n � w. Accordingly,
(Vn)M(x,w) 6= 0 and the output of the circuit is also correct.

6.4. CONTAINING A BOUNDED NUMBER OF METASTABLE INPUTS63

Remarks:

• The same argument applies to any problem in NP, implying that any
verifier function of an NP-complete problem is unlikely to admit a small
metastability-containing implementation.

• In the simulation, it is straightforward to properly “compute” with M.
We’re not actually providing bad inputs, we’re only simulating the behav-
ior of the containing circuits in our worst-case model, which is determin-
istic!

• One can even show unconditional exponential separations between the
minimum size of non-containing and containing circuits for some explicit
functions!

• So, should we accept our fate and give up? No, we still got some tricks up
our sleeves! In many settings it’s way to pessimistic that arbitrarily many
metastable inputs can appear. We’ll find small circuits that have output
fM(x) for inputs x with few Ms.

6.4 Containing a Bounded Number of Metastable
Inputs

As the base case of our construction, we construct circuits handling only fixed
positions for the (up to) k unstable bits. We take 2k copies of a circuit computing
f . For the ith copy, we fix the k considered bits to the binary representation of
i. Now we use a CMUX to select one of these 2k outputs, where the original k
input bits that we replaced are used as the select bits.

Lemma 6.8. Let C be a circuit implementing f : {0, 1}n → {0, 1} and S ⊆ [n]
with |S| = k. Denote by |C| the size (i.e., number of gates) of |C|. Then
there is a circuit of size at most 2k(|C| + O(1)) that computes fM(x) for any
x ∈ {0, 1,M} satisfying that xi = M⇒ i ∈ S.

Proof. For every assignment a ∈ {0, 1}|S| of stable values to the indices of x
that are in S, compute ga = f(x|S←a), where x|S←a is the bit string obtained
by replacing in x the bits at the positions S by the bits of vector a. We feed the
results and the actual input bits from indices in S into the the k-bit MUXM given
by Lemma 6.5, such that for stable values the correct output is determined. The
correctness of the construction is now immediate from the properties of MUXM.
Concerning the size bound, for each a ∈ {0, 1}|S| we can use C with some fixed
inputs to compute ga. Using the size bound for the MUX from Lemma 6.5, the
construction thus has size 2k(|C|+O(1)).

Using this construction as the base case, we increase the number of sets (i.e.,
possible positions of the k unstable bits) our circuits can handle.

Theorem 6.9. Let C be a circuit implementing f : {0, 1}n → {0, 1}. There
is a circuit of size at most (ne/k)2k(|C| + O(1)) that computes fM(x) for any
x ∈ {0, 1,M} satisfying that |S| ≤ k for S := {i ∈ {1, . . . , n} |xi = M}.

64 LECTURE 6. METASTABILITY

Proof. Put an ordering on all k-bit subsets of {1, . . . , n} and let Si, i ∈ {1, . . . , I}
be the ith element. Denote by Cij , 1 ≤ i, j ≤ I, a circuit whose outputs
coincide with fM whenever all unstable bits are from Si ∪ Sj . Set ai :=
AndM(Ci1, . . . , CiI) (AndM with fan-in I is implemented by a binary tree of
fan-in 2 AndM gates of minimum depth). We claim that o := OrM(a1, . . . , aI)
(implemented by a tree of fan-in 2 OrM gates) coincides with fM whenever there
are at most k unstable bits.

To show the claim, assume that x ∈ {0, 1,M}n is stable except at indices

from some Si ∈
(
[n]
k

)
. Assume first that fM(x) = 1. Thus, we get that ai =

AndM(1, . . . , 1) = 1. This implies o = 1, because the I-bit OrM has a stable 1
at one of its inputs. Next, suppose that fM(x) = 0. Then, for each 1 ≤ i′ ≤ I,
Ci′i(x) = 0. Hence ai′ = 0, because the I-bit AndM has a stable 0 at one of
its inputs. It follows that o = OrM(0, . . . , 0) = 0. The case that fM(x) = M is
trivial; hence the claim holds.

The above circuit contains the circuits Cij and additionally I2 − 1 many
gates (a binary tree of AndM and OrM gates). By Lemma 6.8, each Cij can
be implemented with size 22k(|C| + O(1)), as |Si ∪ Sj | ≤ 2k. Moreover, using
exactly all subsets of size 2k, we use at most

(
n
2k

)
≤ (en/2k)2k different such

circuits. This results in at most(en
k

)2k
(|C|+O(1)) +

(
n

k

)2

− 1 =
(en
k

)2k
(|C|+O(1))

gates.

Bibliographic Notes

In the context of switching networks, hazards — changing inputs to circuits
changing the output, even though the stable values are the same regardless of
the changing bits — were studied even before modern computers existed [Got49],
in the context of relay networks. This early Japanese work remained unnoticed
in the western world, and Huffman studied the same issue, also developing a
CMUX [Huf57]. Huffman noted that his design principle is sufficiently general
to construct hazard-free circuits for any Boolean function. Yoeli and Rinon
formalized the connection to Kleene logic [YR64] (which Goto also had done
before!) or, more precisely, Kleene’s strong logic of indeterminancy K3 [Kle52,
§64]. Our worst-case model for metastability (propagation) presented here re-
sults in the same logic, i.e., hazard-free circuits are the same as metastability-
containing circuits. In [FFL18], a more general model for clocked circuits is
presented. However, so long as only standard registers are used, the computa-
tional power is the same as that of the combinational circuits introduced in this
lecture. This changes when employing masking registers, which “mask” inter-
nal metastability to the outside world by outputting a stable value; the result
is that metastability may result in late transitions only, which in the worst case
may result in M being read from the register in a single round.

The fact that metastability cannot be avoided in general is, in essence, a
topological statement: As the output of a bistable element like a flip-flop is,
due to physics, a continuous function of its input, the fact that there are two
distinct stable states necessitates at least one unstable third equilibrium state.
This was shown by Marino ??. This impossibility holds also in the abstract

BIBLIOGRAPHY 65

model given here — no circuit can reliably detect or resolve metastability of its
inputs [FFL18].

All of these works leave aside the complexity question, namely how large
containing circuits must be. The lower bound given here is very simple, but to
the best of our knowledge was first formalized by Ikenmeyer et al. [IKL+18],
who also show unconditional exponential separations between containing and
standard circuits based on monotone circuit complexity. The same work also
gives a construction for circuits containing k bits, which is slightly weaker than
the one given here. A number of works provides small circuits whose output
coincides with fM for specific f and certain inputs. Most notably, this is the
case for sorting [BLM18], which we will study in the next lecture.

Bibliography

[BLM18] Johannes Bund, Christoph Lenzen, and Moti Medina. Optimal
Metastability-Containing Sorting Networks. In Design, Automation
and Test in Europe (DATE), 2018. To appear. Preliminary version
available at https://arxiv.org/abs/1801.07549.

[FFL18] Stephan Friedrichs, Matthias Függer, and Christoph Lenzen.
Metastability-Containing Circuits. IEEE Transactions on Comput-
ers, 2018. To appear, online first.

[Got49] M. Goto. Application of Logical Mathematics to the Theory of Relay
Networks (in Japanese). J. Inst. Elec. Eng. of Japan, 64(726):125–
130, 1949.

[Huf57] David A. Huffman. The Design and Use of Hazard-Free Switching
Networks. J. ACM, 4(1):47–62, 1957.

[IKL+18] Christian Ikenmeyer, Balagopal Komarath, Christoph Lenzen,
Vladimir Lysikov, Andrey Mokhov, and Karteek Sreenivasaiah. On
the complexity of hazard-free circuits. In Symposium on the Theory
of Computing (STOC), 2018. To appear. Preprint available on arxiv:
https://arxiv.org/abs/1711.01904.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North Hol-
land, 1952.

[YR64] Michael Yoeli and Shlomo Rinon. Application of Ternary Algebra to
the Study of Static Hazards. J. ACM, 11(1):84–97, 1964.

66 LECTURE 6. METASTABILITY

Lecture 7

Metastability-Containing
Control Loops

Like any clock synchronization algorithm (and many other distributed algo-
rithms), one may view the Lynch-Welch algorithm as a (distributed) control
loop. Basically, a control loop is seeking to adjust some (measurable) variable.
To this end, it repeatedly or continually takes measurements and applies accord-
ing adjustments, which naturally implies a mechanism to influence the variable
of interest (see Figure 7.1). As measurements and corrections may be inaccu-
rate, and the variable is also subject to influence by some external factors, the
control loop must react sufficiently quickly and accurately to maintain a desired
state against such unwanted “disturbances.”

More concretely, for clock synchronization, the variable is the vector of cor-
rect nodes’ clock values, the regulation is performed by adjusting the clocks,
the external influence is given by drifting clocks, and clock drifts and uncer-
tainty in message delays makes measurements of clock differences inaccurate.
Two important aspects of control loops is whether they are operating on a con-
tinuous or discrete variable and whether the control is applied continuously or
in time-discrete steps. An example for the answer being continuous in both
cases is the gradient clock synchronization algorithm: logical clocks are contin-
uous functions, and the GCS algorithm adjusts their rates. In contrast, pulse
synchronization algorithms are an example for continuous variables (pulses can
occur at any real time), but discrete time steps (for each i ∈ N, each correct
node generates exactly one pulse event).

Remarks:

• Note that the discretization is, of course, an abstraction in itself. It is
implemented in a physical — and thus, neglecting quantum mechanics,
continuous — world.

• If algorithms perform complicated message exchanges and computations,
seeing them as control loops is usually not useful. However, the Srikanth-
Toueg and Lynch-Welch algorithms can be readily interpreted as dis-
tributed control loops.

• The corrections are not applied instantaneously. It takes time to take
measurements, compute a correction, and apply it. This contributes to

67

68 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

computation

take measurementadjustment for each v 2 V

Sf+1
v + Sn�f

v

2

environmental inputs
(new pulses, affected by HW rates)

disturbance

Figure 7.1: The whole network as a control loop.

the quality of control; in extreme cases, the control loop fails to produce
anything close to the ideal behavior of the system.

• A lot of theory on control loops assumes very simple feedback mechanisms,
like adjustments that are linear in the measured difference to the desired
state of the system. This is not the case for our algorithms: the necessity
to limit the influence of Byzantine nodes results in non-linear responses
to the measurements in both algorithms.

• So why are we talking about control loops if we can’t use the existing
theory? In part to explain the lecture’s title, and in part to clarify where
metastability-containing circuits come into play.

7.1 Metastability in Control Loops

In the Lynch-Welch algorithm, we adjust continuous variables (when to generate
pulses) for each round of the algorithm. The abstraction of rounds simplifies
matters for us. Even better, each node in the system does this independently
from the others, in the sense that we can interpret the algorithm at node v ∈ Vg
as a control loop in which all the other nodes are simply part of the environment,
see Figure 7.2. But how do we actually decide how to adjust he clocks? After
all, computers cannot actually use real values in computations. There are,
essentially, two solutions:

1. Use an analog computation, in which all (including intermediate) values
are represented by continuously-valued physical variables, like the charge
of a capacitor or the amount of water in a bucket, and operate on them
using continuous (physical) operations.

2. Take discrete measurements, which is done by time-to-digital converters
(TDCs). Considering the rounding error as additional contribution to δ,
one then can compute a corresponding adjustment to when the next pulse
occurs, just as in the analog case.

Both approaches have their pros and cons. Analog solutions typically require
specialized components, can be bulky, and require more work for adapting them
to different technologies. However, they can avoid metastability altogether,
as they never try to map values from a continuous to a discrete range. On

7.2. FIRST TRY: BINARY COUNTERS 69

the other hand, using synchronizers (i.e., time), it is straightforward to resolve
metastability sufficiently reliably.

So, why not always go for the simpler, second option? The problem is that
time is critical in many control loops. Recall that the Lynch-Welch algorithm
guarantees a skew of O(u+ (1− 1/ϑ)T), where T is the (nominal) duration of a
round. We can choose T ∈ O(d), but d includes not only communication delays,
but also computation. Thus, if we spend Ts time on synchronization, this adds
(ϑ− 1)Ts to the skew. On a chip, it may very well be the case that Ts becomes
the larger part of T , resulting in (ϑ− 1)Ts being the dominant contribution to
the skew (unless local clocks are good enough). Hence, our goal for today is to
remove the synchronization delay, despite sticking with the second approach!

receive messages
Sf+1

v + Sn�f
v

2

own pulse

adjust the logical clock by

sort and select S(n�f)
v , S(f+1)

v

and compute
S

(n�f)
v + S

(f+1)
v

2
�

TDCs

Figure 7.2: The system from the point of view of a single node — also a control
loop.

7.2 First Try: Binary Counters

We need to break down the measurements and computations performed by a
node executing the Lynch-Welch algorithm and implement each steps in a way
that keeps (potential) metastability in check (see Figure 7.3). At each v ∈ Vg,
in each round we need to

1. Send a message to each other node ϑS time after the (local) start of the
round.

2. Receive the other nodes’ messages and derive measurements of the differ-
ence in local time, resulting in the (unordered multi)set Sv.

3. Determine S
(f+1)
v and S

(n−f)
v .

4. Adjust v’s local clock by (S
(f+1)
v + S

(n−f)
v)/2.

The first task is a no-brainer; we simply send the respective message ϑS local
time after the time t when Lv(t) mod T = S. The analysis shows that this time
is unique (so the messages are indeed sent only once) and this does not require
to keep track of unbounded clock values, which would be an annoying problem
due to our machines having only finite memory.

The second task requires some more thought. Again, we do not want to keep
track of unbounded values. Recall that Lemma 5.9 asks us to set

∆v
w := Lv(t)− (r − 1)T − (ϑ2 − 1)S − ϑd ,

70 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

select S(n�f)
v , S(f+1)

v and

compute
S

(n�f)
v + S

(f+1)
v

2

inputs:
disturbance

messages, etc

digital
metastability-containing

controlTDCs

Figure 7.3: Control flow of a single node. The gray area uses digital logic and
needs to contain metastability.

where t is the time when v ∈ Vg receives the message for round r from w ∈ Vg.
We also saw that all rounds are executed correctly (assuming we can implement
the correct behavior of the nodes!), i.e., t ∈ [pv,r, τv,r]. This is good news, as we
know that Lv(pv,r) = (r−1)T +S and Lv(τv,r) = (r−1)T +(ϑ2 +ϑ+1)S+ϑd.
Thus, we can simply start a counter at time pv,r and stop it at time t (when the
message is received), where we know that the maximum (local) time difference
which we the counter must be able to represent is (ϑ2 + ϑ)S + ϑd. Here, the
counter is driven by the local clock and stopped by the arriving message. Thus,
if the counter value at time t is c and the local time between consecutive up-
counts of the counter is g, we have that

Lv(t) ∈ [Lv(pv,r) + cg, Lv(pv,r) + (c+ 1)g]

= [(r − 1)T + S + cg, (r − 1)T + S + (c+ 1)g] .

Corollary 7.1. Let v ∈ Vg start a counter driven by its local clock at time
pv,r that is stopped when receiving a message from node w ∈ Vg. If round r
of the Lynch-Welch algorithm is executed correctly and the local time between
up-counts of the counter is g, setting

∆w
v := cg − ϑ2S − ϑd

yields an estimate satisfying δ ≤ u + (ϑ − 1)d + 2(ϑ2 − ϑ)S + g. Moreover,
c ≤ ((ϑ2 + ϑ)S + ϑd)/g.

Pretty straightforward, so all we need now is a fast counter, i.e., one for
which g is sufficiently small to not matter much, right? The answer to that is
an emphatic no! We have neglected that there is no guaranteed timing relation
between the counter’s up-counts and when the arrival of the message from w
stops the counter. Here is a simple argument why this must potentially argue
in metastability.

Lemma 7.2. Assume that a counter is driven by a free-running clock source,
started at time 0, and stopped at an arbitrary time τ ∈ (0, tmax] (where tmax ≥ g
and the counter increments every g time). Let s(τ, t) be the k ∈ N bits stored
in the counter’s registers at an time t > tmax for a given τ . If this state is a
continuous function of τ (w.r.t. to the standard topologies on R and {0, 1}k),
then we cannot have that s(τ, t) ∈ {0, 1}k for all τ .

Proof. Assume for contradiction that for any τ , s(τ, t) ∈ {0, 1}k. As tmax ≥ g,
this implies that there are choices 0 ≤ `0 6= r0 ≤ tmax so that s(`0, t) 6= s(r0, t).

7.2. FIRST TRY: BINARY COUNTERS 71

Now we apply the technique of nested intervals. For i ∈ N, set τ := (`i−1 +
ri−1)/2. Clearly, s(τ, t) 6= s(`i−1, t) or s(τ, t) 6= s(ri−1, t). In the former case,
set `i := `i−1 and ri := τ , otherwise `i := τ and ri := ri−1. We have that

• The sequence (`i)i∈N is increasing and upper bounded by ri for any i ∈ N,
hence it converges to some value `∗ ≤ infi∈N{ri}.

• The sequence (ri)i∈N is decreasing and lower bounded by `i for any i ∈ N,
hence it converges to some value r∗ ≥ supi∈N{`i}.

• We have that `∗ = r∗, as limi→∞(ri − `i) = 0.

• By continuity of s(·, t), we have that s(`∗, t) = limi→∞ s(`i, t). As {0, 1}k
is a discrete space, this means that there is some i` ∈ N so that s(`i, t) =
s(`∗, t) for all i ≥ i`.

• Likewise, there is some ir so that s(ri, t) = s(r∗, t) for all i ≥ ir.

• We have that s(`i, t) 6= s(ri, t) for all i ∈ N0 by construction.

Altogether, we arrive at the contradiction that, for any i ≥ max{i`, ir}, it holds
that s(`i, t) 6= s(ri, t) = s(r∗, t) = s(`∗, t) = s(`i, t).

Remarks:

• If you are puzzled by the lemma requiring the “standard topologies,” don’t
worry about it. On R, this simply means the open and closed sets you
know. On {0, 1}k, just intersect the open and closed sets in Rk with {0, 1}k
to get the open and closed sets, respectively. As a ball of radius smaller
than 1 around a point in {0, 1}k just contains the point, this means that
any convergent series becomes constant at some point. This is what we
used in the proof.

• These choices of topologies actually make sense. Any physical circuit will
respond to continuous changes of its input with continuous changes of
the output. However, we want stable and clearly distinguishable values
in our registers. This means to consider clearly separated regions of the
state space: The “0-region” of a register’s (physical) state space should be
clearly separated from its “1-region.” This separation means that a small
change cannot make the register “jump” from the 0- to the 1-region —
which is reflected by the discrete topology on {0, 1}.

• By inserting M as a third value covering the “gap” between 0 and 1, we
can properly reflect that circuits cannot do this job. In the topology, this
is reflected by the fact that no matter how small a ball becomes, it doesn’t
separate the 0- and the M-region of the register’s state space. We defined
that M stands for any state that is not in the 0- or the 1-region!

Does this mean we’re in trouble? In the previous lecture we saw that we can
deal with metastability to some extent. Unfortunately, following conventional
wisdom won’t work here.

72 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

Corollary 7.3. Consider the same setting as in Lemma 7.2. If the counter
uses standard binary encoding and tmax is large enough for it to count up to 2b,
b ∈ N0, then we can force the counter register holding the (b+1)-least significant
bit to be M at any time t > tmax.

Proof. We use essentially the same argument, but we start from more specific
times `0 and r0. As the counter can count up to 2b, we can choose `0 and r0
such that s(`0, t) = 0 . . . 01 . . . 1 and s(r0, t) = 0 . . . 010 . . . 0, where we wrote
the least significant bits to the right and in each case the identical bits to the
right are k many. This follows from the fact that the counter increment from
2b−1 to 2b must change the register states between these two (stable) states.
Now we can construct our nested intervals by performing our case distinction
according to the (k + 1)th bit (counting from the least significant one). By the
same arguments as before, we obtain a time at which the bit cannot be stable
and therefore must be M.

Remarks:

• Unless one is very careful when implementing the counter, things actually
get worse: we may end up with state 0 . . . 0M . . .M. In case the full range
of the counter is utilized, we may face a memory state of M . . .M!

• Think about this for a second. We started with being uncertain whether
an up-count of the counter took place or not, because the counter was
stopped in the middle of an increment. But we lost all information about
the relative timing of the start of the counter and the stop signal!

• Even if the counter was particularly cleverly implemented, Corollary 7.3
shows that we might end up with very wrong encoded values.

• The problem here lies with the encoding. When containing metastability,
the encoding matters!

7.3 Second Try: Unary “Counters”

We need to look for an encoding without such flaws. A very simple solution
is to use a unary encoding. In a B-bit unary code, k ∈ [B + 1] is represented
by 1k0B−k. A unary code “counter” is implemented by a delay line, which
consists of a sequence of B buffers of uniform delay g, where we connect to
each stage the set input of a register (which is initialized to 0). The counter is
stopped by latching all registers on occurence of the stop signal. When g is large
enough to guarantee that only a single register is unstable (transitioning) at any
given point, at most one register ends up in a metastable state when stopping
the counter. This is a sensible measure in most cases, as otherwise even after
stabilization we may end up with a stored string like 11101000. Basically, we
can’t make the measurement more accurate than imposed by the speed at which
registers can be set.

Alright, we measured time differences in terms of unary encodings, v ∈ Vg
has for each w ∈ Vg stored a time difference in unary, i.e., a B-bit string of the
form 1 . . . 10 . . . 0 or, possibly, 1 . . . 1M0 . . . 0. We refer to these strings as swv ,
and can easily translate them to the measured time difference by multiplication

7.3. SECOND TRY: UNARY “COUNTERS” 73

with g (up to an error of up to roughly g), where M can be interpreted either
way.

Our next step is to determine which of these strings represent S
(f+1)
v and

S
(n−f)
v , respectively. One way of doing this is to sort the strings. For this to be

meaningful, we need to give a total order on the potential input strings. The
only sensible order is in accordance with the time measured.

Definition 7.4 (Total Order of Inputs for Unary Encoding). Consider the set
of strings

UB := {1k0B−k | k ∈ [B + 1]} ∪ {1kM0B−k−1 | k ∈ [B]} .

For x, y ∈ UB,

x ≤U y ⇔


k ≤ k′ for x = 1k0B−k and y = 1k

′
0B−k

′

k ≤ k′ for x = 1k0B−k and y = 1k
′
M0B−k

′−1

k ≤ k′ for x = 1kM0B−k−1 and y = 1k
′
M0B−k

′−1

k < k′ for x = 1kM0B−k−1 and y = 1k
′
0B−k

′−1.

A crucial observation is that this order is also sensible in another regard:
When resolving metastability, a string does not “pass” any stable strings in the
order. We can apply the results from the previous lecture to see that sorting
according to this order is indeed possible with a circuit.

Lemma 7.5. Given n strings from UB, there is a circuit sorting them according
to the order from Definition 7.4.

Proof. We claim that the metastable closure of the function sorting the stable
inputs sorts according to the order from Definition 7.4. The statement of the
lemma then follows from Theorem 6.6.

To see this, sort a fixed set of input strings in accordance with the order
and consider the ith output string. If it is stable, observe that picking arbitrary
stabilizations for the other strings and sorting accordingly will not change the
string in position i, as stabilizing a string 1kM0B−k−1 does not move it “past”
any stable string in the order. On the other hand, if the string is not stable,
i.e., 1kM0B−k−1 for some k ∈ [B], observe that stabilizing all input strings by
replacing M with 0 results in the sorted sequence having 1k0B−k on position i
in the sorted list (as nothing moves past stable strings). Likewise, stabilizing
all input strings by replacing M with 1 results in the sorted sequence having
1k+10B−k−1 in position i, so bit k + 1 of the ith output must be M. Any other
stabilization will result in either 1k0B−k or 1k+10B−k−1 on position i. The claim
follows, completing the proof.

However, using the construction from Theorem 6.6 would result in a circuit
of exponential size, so let’s be more clever. In absence of metastability, sorting
networks are simple and fast solutions to compute what we need.

Definition 7.6 (Sorting Network). An n-input sorting network consists of n
parallel wires oriented from left to right and a number of comparators (cf. Fig-
ure 7.4). Each comparator connects two of the wires, by a straight connection
orthogonal to the wires. Moreover, no two of the comparators connect to the
same point on a wire.

74 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

4

2

3

1

1

2

3

4

4

2

2

3

1

1

4

3

3

2

Figure 7.4: A sorting network with four inputs. Each comparator performs a
compare and (if necessary) swap operation of its two inputs. The outputs are
shown for the input sequence (4, 2, 3, 1).

A sorting network is fed an input from a totally ordered set to the start of
each wire. Each comparator takes the two inputs provided by to it, outputting
the larger input to the top wire and the smaller input to the bottom wire. A
correct sorting network guarantees that for any choice of inputs, the outputs are
the sequence resulting from ordering the inputs descendingly from top to bottom.

Sorting networks are understood very well. Constructions that are simulta-
neously (asymptotically) optimal both with respect to size — the total number
of comparators — and depth — the maximum number of comparators “through”
which a value passes — are known. Conveniently, sorting networks are correct if
and only if the correctly sort 0s and 1s, so it suffices if we can figure out how to
implement a comparator that correctly sorts two values according to our chosen
order.

Lemma 7.7. A correct comparator implementation for unary encoding is given
by the bit-wise Or for the upper and the bit-wise And for the lower output.

Proof. Follows from the behavior of the basic gates and a case distinction.

With sorting in place, we can determine S
(f+1)
v and S

(n−f)
v ; refer to the en-

codings of these values as s
(f+1)
v and s

(n−f)
v , respectively. It remains to perform

the last step, the phase correction. One solution would be an analog control
of the oscillator that serves as the local clock of v. Unfortunately, such an ap-
proach is too slow or too inaccurate in practice; either would defeat the purpose
of our approach. A fast “digital” solution is to have the local clock drive a
counter that basically counts modulo T (where T is represented as a multiple of
the time for a counter increment) and adjust this counter. Unfortunately, this
is unsafe when the adjustment values suffer from potential metastability: The
counter registers could become metastable, causing all kinds of problems.

Of course, we could wait for stabilization first and then apply the correc-
tions to such a counter. But in that case we wouldn’t have to jump through all
these hoops in the first place — if we’re not able to apply the computed phase
correction right away, we could have waited for stabilization before computing
it, without losing time and saving us a lot of trouble. There is something else
we can do, however. We can use the unary encoded values in a delay line to
shift the clock in a safe way despite metastability. Of course, we cannot have a

7.3. SECOND TRY: UNARY “COUNTERS” 75

delay line for each round of the Lynch-Welch algorithm (that would be infinite
memory again!), but we can use a few in a round-robin fashion. The one which
was written the longest time ago then has stabilized with sufficiently large prob-
ability to risk transferring the respective phase shift into our counter — while
being used to shift the clock, the registers of the delay line have simultaneously
operated as a synchronizer! See Figure 7.5 for an overview of the circuit.

delay line
r mod 3 = 0

delay line
r mod 3 = 1

delay line
r mod 3 = 2

phase shifter

clkin

Counter mod 3

select and addTDCs

Counter mod 3

~

clock

MUX

DEMUX

Figure 7.5: Rough overview of a circuit using a (non-containing) phase shifter
and several delay lines to perform the phase shifts required by the Lynch-Welch
algorithm. The delay lines are used in a round-robin fashion. In between two
consecutive clock pulses, the current value held by the delay line which is to
be rewritten yet is provided to the phase shifter as input, it adjusts its internal
counter accordingly (making the phase shift permanent), and the registers of the
delay element are latched to the current output of the computational logic. All
this needs to be performed in the right order and be complete before the next
pulse propragates through the phase shifter and the delay lines; the complete
design requires additional circuitry ensuring this and a corresponding timing
analysis.

There’s still a catch: As we may have a metastable register in the delay line,
the respective And gate will output a bad signal when the clock flank arrives.
This would be remedied shortly after, when the delayed clock signal reaches the
next stage (with a stable 0 in the register), as then the Or will have a stable
input. The solution is a high-threshold inverter, which switches from output
1 to output 0 at a higher voltage threshold, thus “masking” the bad medium
voltage. Figure 7.6 shows how the resulting delay lines look like.

Remarks:

• This works, but is still inefficient. Unary encodings are exponentially
larger than binary encodings!

• Let’s do better, using an encoding without redundancy that also changes
only a single bit on each up-count!

76 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

011 M

unshifted clock

high threshold inverter

Figure 7.6: Straightforward delay line implementation. The high-threshold in-
verter at the output ensures that metastability is “masked,” effectively trans-
forming it into a (potentially) late, but clean transition. As a metastable register
may stabilize at any time (and to either value), this may result in any delay
between what we would get for a stable 0 or 1 in the register, respectively.

7.4 Third Try: Gray Codes

Unary encoding worked, but results in large circuits. A B-bit unary encod-
ing can represent only B + 1 different values, while a binary encoding has 2B

codewords. Binary encoding causes trouble, because a bit that may become
metastable due to an interrupted up-count makes a huge difference with respect
to the encoded value. We need a code where each up-count changes exactly one
bit.

Definition 7.8 (Gray Code). A B-bit Gray code G : [2B] → {0, 1}B maps its
range [2B] one-to-one to {0, 1}B, with the property that for x, x+ 1 ∈ [2B], the
resulting codewords differ in a single bit.

Transforming unary encoding to Gray code is easy, even in face of metasta-
bility. However, we need some notation.

Definition 7.9. For x, y ∈ {0, 1,M}k, k ∈ N, set

(x ∗ y)i :=


1 if xi = yi = 1

0 if xi = yi = 0

M else.

It is easy to see that x ∗ y is the largest common predecessor of x and y with
respect to �, i.e., x ∗ y � x, x ∗ y � y, and if z ∈ {0, 1,M}k satisfies z � x and
z � y, then z � x ∗ y. In other words, x ∗ y is the “most stable” string so that
both x and y are stabilizations of it.

Lemma 7.10. Let s ∈ U2B−1 for some B ∈ N. If s ∈ U2B−1∩{0, 1}2
B−1, denote

the encoded number by x ∈ [2B]. For s ∈ U2B−1 \ {0, 1}2
B−1, let x, x+ 1 ∈ [2B]

7.4. THIRD TRY: GRAY CODES 77

denote the numbers encoded by the stabilizations of s. For any fixed Gray code
G, there is a circuit of size O(2B) and depth at most O(B) that computes

G(x) if s ∈ U2B−1 ∩ {0, 1}2
B−1

G(x) ∗G(x+ 1) if s ∈ U2B−1 \ {0, 1}2
B−1.

from input s.

Proof. For bit i of the code, consider the subset of [2B + 1] \ {0}, for which an
up-count to the respective value changes bit i. We connect all corresponding
registers by a tree of (2-input) Xor gates. Such a Xor tree implements an
Xor with more inputs, i.e., it keeps track of the number of times the ith bit
changed. Accordingly, depending on whether the ith bit is 0 or 1 in the first bit,
this circuit generates the correct output or its conjugate for stable values; in
the latter case, we simply add a Not gate. The ith output bit can only become
M if some input to the respective Xor tree is M. However, in this case, the
respective output bit transitions on the up-count corresponding to the register
holding the respective bit of the unary encoding, so the output bit ought to be
M.

Concerning the complexity, the total number of Xor gates needed is 2B −
1 − B (the number of input bits minus the number of output bits), plus up
to B Not gates. By balancing the Xor trees, their depth becomes bounded
by the logarithm of their size (rounded up). If no Xor gates are available,
we can implement them by constant-sized subcircuits composed of basic gates,
increasing size and depth of the circuit by constant factors only.

Remarks:

• This is promising: G(x) ∗ G(x + 1) has only a single metastable bit, as
G(x) and G(x+ 1) differ only in a single bit.

• This means that there are exactly two stabilizations of G(x) ∗ G(x + 1),
namely G(x) and G(x + 1). We did not lose information, and Theo-
rem 6.6 shows that we can convert the Gray code back to unary, even
with metastability!

• The circuit for this provided by the Theorem 6.6 will have exponential
size, but this time this doesn’t matter as much, as the output already has
exponential size by itself! One can still do better (you will do so in one of
the exercises).

• For this to pay of, we now need very efficient circuits for sorting Gray
codes, including strings of the form G(x) ∗ G(x + 1). Ordering G(x) ≤
G(x)∗G(x+1) ≤ G(x+1) and arguing analogously to Lemma 7.5, we know
that we can design suitable comparators in principle, which then can be
used in sorting networks. In the next lecture, we will find asymptotically
optimal comparator circuits for a simple, convenient Gray code.

Bibliographic Notes

The concept of implementing Lynch-Welch using metastability-containing logic
was proposed in [FFL18], where it was shown to be feasible. However, the un-
derlying construction was generic (as in Theorem 6.6), resulting in large circuits.

78 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

Such circuits would incur computational delays negating the advantage of not
requiring synchronizers. In [FKLP17], TDCs are given that can directly output
Binary Reflected Gray Code (BRGC) with the same guarantees as provided by
Lemma 7.10. This further reduces the depth and size of circuits for follow-up
computations, as the conversion circuit can be skipped. Various comparators
for such BRGC values have been proposed in [BLM18, BLM17, LM16]; we will
discuss the currently best one next lecture. The idea for using the computed
phase shifts in delay lines until they have stabilized with sufficient probability
is, essentially, applied to a different problem in [FKLW18].

Asymptotically optimal sorting networks were given in [AKS83]. For a proof
that sorting networks are correct if and only if they correctly sort 0-1 inputs,
see [Knu98].

Bibliography

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n)
Sorting Network. In 15th Symposium on Theory of Computing
(STOC), 1983.

[BLM17] Johannes Bund, Christoph Lenzen, and Moti Medina. Near-Optimal
Metastability-Containing Sorting Networks. In Design, Automation,
and Test in Europe (DATE), 2017.

[BLM18] Johannes Bund, Christoph Lenzen, and Moti Medina. Optimal
Metastability-Containing Sorting Networks. In Design, Automation
and Test in Europe (DATE), 2018. To appear. Preliminary version
available at https://arxiv.org/abs/1801.07549.

[FFL18] Stephan Friedrichs, Matthias Függer, and Christoph Lenzen.
Metastability-Containing Circuits. IEEE Transactions on Comput-
ers, 2018. To appear, online first.

[FKLP17] Matthias Függer, Attila Kinali, Christoph Lenzen, and Thomas
Polzer. Metastability-Aware Memory-Efficient Time-to-Digital Con-
verters. In Symposium on Asynchronous Circuits and Systems
(ASYNC), 2017.

[FKLW18] Matthias Függer, Attila Kinali, Christoph Lenzen, and Ben Wieder-
hake. Fast All-Digital Clock Frequency Adaptation Circuit for Volt-
age Droop Tolerance. In Symposium on Asynchronous Circuits
and Systems (ASYNC), 2018. To appear. Preprint available at
https://people.mpi-inf.mpg.de/∼clenzen/pubs/FKLW18droop.pdf.

[Knu98] Donald E. Knuth. The Art of Computer Programming Vol. 3: Sort-
ing and Searching. Addison-Wesley, 1998.

[LM16] Christoph Lenzen and Moti Medina. Efficient Metastability-
Containing Gray Code 2-Sort. In Symposium on Asynchronous Cir-
cuits and Systems (ASYNC), 2016.

Lecture 8

Metastability-Containing
Sorting

Last week we saw how to obtain an MC implementation of a node’s logic for the
Lynch-Welch algorithm. However, for this to matter, we need low-depth circuits
performing the computations. Otherwise, we would lose the speed advantage
gained from forgoing synchronizers, meaning that all that work is for nothing!
Hence, our task today is to construct low-depth sorting networks — which, as
we have seen, means to construct low-depth comparators.

Before constructing the circuits, we need to fix an encoding. We already
decided that we (need) to use a Gray code, but not which one. One of the
simplest, if not most natural, Gray codes turns out to be well-suited for our
purposes.

Definition 8.1 (Binary Reflected Gray Code). B-bit Binary Reflected Gray
Code (BCRG) GB : [2B]→ {0, 1}B is defined recursively by

G1(0) = 0

G1(1) = 1

∀B > 1 ∀x ∈ [2B−1] : GB(x) = 0GB−1(x)

∀B > 1∀x ∈ [2B] \ [2B−1] : GB(x) = 1GB−1(2B − 1− x) .

GB is one-to-one, so we denote by DB its inverse, the decoding function. In the
following, we will write D(g) instead of DB(g), as B can be inferred from the
length of the decoded string g.

We know that we won’t have to handle arbitrary metastable strings, as
metastability is only introduced by a TDC up-count being interrupted.

Definition 8.2 (Valid Strings). The set valid B-bit strings is defined as

VB := {GB(x) |x ∈ [2B]} ∪ {GB(x) ∗GB(x+ 1) |x ∈ [2B − 1]} .
We define a total order ≤G on VB according to the encoded values. The total
order is given by the transitive closure of the partial order

∀g, h ∈ VB ∩ {0, 1}B : g < h⇔ D(g) < D(h)

∀x ∈ [2B − 1] : G(x) < G(x) ∗G(x+ 1) < G(x+ 1) .

79

80 LECTURE 8. METASTABILITY-CONTAINING SORTING

0 0000 4 0110 8 1100 12 1010

0-1 000M 4-5 011M 8-9 110M 12-13 101M

1 0001 5 0111 9 1101 13 1011

1-2 00M1 5-6 01M1 9-10 11M1 13-14 10M1

2 0011 6 0101 10 1111 14 1001

2-3 001M 6-7 010M 10-11 111M 14-15 100M

3 0010 7 0100 11 1110 15 1000

3-4 0M10 7-8 M100 11-12 1M10 --- ---

Table 8.1: Valid 4-bit strings.

Denote by maxG and minG the maximum and minimum w.r.t. to ≤G.

Table 8.1 list VB according to ≤B . Our goal is to compute maxG and minG
for given valid strings g, h ∈ VB . As you have shown in an exercise, for inputs
that are valid strings the above definitions of maxG and minG coincides with
the metastable closure of their restrictions to stable values, i.e.,

maxG{g, h} = ∗
g�g′∈{0,1}B
h�h′∈{0,1}B

maxG(g′, h′) .

Thus, we need to figure out how to implement the closure of these (restricted)
operators, at least for inputs that are valid strings.

8.1 4-valued Comparison of BRGC Strings

Our first step is to break down the task of determining maxG into smaller pieces.
One way of doing this is to see how a (simple) state machine can perform the

g0,i−1 = h0,i−1
par(g0,i−1) = 0

[00]

Init

g0,i−1 = h0,i−1
par(g0,i−1) = 1

[11]

g <G h

[01]

g >G h

[10]

11

00

10

01

true true

11

10

01

00

Figure 8.1: Finite state automaton determining which of two Gray code inputs
g, h ∈ {0, 1}B is larger. In each step, the machine receives gihi as input. State
encoding is given in square brackets.

8.1. 4-VALUED COMPARISON OF BRGC STRINGS 81

required computation. Our state machine is fed the input bits one pair at a time,
see Figure 8.1, to determine which of the strings (if any) is larger; one then needs
to determine the output accordingly. As we are dealing with Gray code, we do
not have a 3-valued comparison to make (larger, smaller, or equal, non-trivially
recursing only on state equal), but rather a 4-valued one: the possible states
are larger, smaller, equal with even parity (standard recursion), and equal with
odd parity (recurse with flipped meanings of larger and smaller).

It is straightforward to see that the state machine operates correctly on
stable inputs. But what happens for unstable inputs? This is the reason why
the state machine also specifies how to encode its states. We want that if at
some point the state machine is not yet decided and one of the inputs is M (but
the other not), the metastable closure of the state transition function yields a
new “state” whose stabilizations correspond to the results of the comparisons
if we had stabilized the inputs first. To formalize this, let us first fix some
notation.

Definition 8.3 (Transition Operator). Given state s ∈ {0, 1}2 of the state
machine in Figure 8.1 and inputs b ∈ {0, 1}2, denote by s � b the resulting state
of the state machine, i.e.:

meaning of state � 00 01 11 10

equal, par = 0 00 00 01 11 10

<G 01 01 01 01 01

equal, par = 1 11 11 10 00 01

>G 10 10 10 10 10

Note that � is associative and 00 � b = b, so the state of the machine after
processing the input completely is �(g, h) := �Bi=1 gihi := g1h1 � g2h2 � . . . �
gBhB, where the order in which the � operations are executed is arbitrary.

Lemma 8.4. For g, h ∈ {0, 1}B,

�(g, h) =


00 if g = h and par(g) = 0

11 if g = h and par g = 1

01 if g <G h

10 if g >B h .

Proof. We proof this by induction on B. For B = 1, we readily see that the
state machine transitions to the correct state. For B > 1, observe that if the
machine is in state 01 or 10 before processing the last pair of bits, by induction
hypothesis g1...B−1 6= h1...B−1 and the machine has already decided correctly.
If g1...B−1 = h1...B−1, the parity of g1...B−1 correctly kept track of whether the
remaining (trivial, 1-bit) code is listed in default order (parity 0, current state
00) or reversed (parity 1, current state 11). Checking the state transitions of the
machine, we see that the machine correctly which string is larger if gB 6= hB ,
and correctly adjusts the parity if gB = hB .

The state machine will have to be implemented by some circuit. From The-
orem 6.6, we know that we can implement �M, the metastable closure of �.
Conveniently, this operator turns out to be associative as well.

82 LECTURE 8. METASTABILITY-CONTAINING SORTING

Lemma 8.5. �M is associative.

Proof. While an elegant proof would be desirable, all we know is how to do this
by a case distinction. This is not very practical by hand (38 cases!), so it has
been checked by machine only.

This means that we can apply the same notation as for � to �M with impunity,
i.e.,

�M
(g, h) :=

(�M

)B
i=1

gihi := g1h1 �M g2h2 �M . . . �M gBhB .

In order to show that we can decompose (�)M into repeatedly applying �M (by
Lemma 8.5 in arbitrary order!), we need the following helper lemma.

Lemma 8.6. For g, h ∈ VB and any (�)M (g, h) � s′ ∈ {0, 1}2, there are
g � g′ ∈ {0, 1}B and h � h′ ∈ {0, 1}B such that s′ =�(g′, h′).

Proof. If g, h ∈ {0, 1}B , the statement is trivially true. W.l.o.g., assume that
g ∈ VB \ {0, 1}B (if this holds only for h, reason symmetrically). Denote by d
the distance of g and h in the total order on VB (i.e., their distance in the list
given in Table 8.1). If d > 2, Lemma 8.4 shows that for all stabilizations of g
and h, the state machine outputs the same stable value; in this case, again the
statement is trivially true.

If d = 2 or d = 1, checking all possibilities (again, this is easiest using the
table) and using Lemma 8.4 we see that the different stabilizations result in
outpus (i) 00 and 01, (ii) 01 or 11, (iii) 11 or 10, or (iv) 10 or 00. Either way,
the claim of the lemma holds: we have exactly one metastable state bit in the
end, and both respective outputs can be also generated by stabilizing the inputs
first.

The final case is d = 0, i.e., g = h. In this case, any output can be gen-
erated depending on how we choose to stabilize the unstable bits in g and h,
respectively, and (�)M (g, h) = MM.

We can now prove the key result that implementing the metastable closure
of the statemachine’s transition function is sufficient to implement the closure
of the comparison.

Theorem 8.7. Let g, h ∈ VB. Then, for any j ∈ {1, . . . , B},

(�)M (g1...j , h1...j) =�M
(g1...j , h1...j) .

Proof. The recursive definition of BRGC and valid strings (see Definitions 8.1
and 8.2) ensure that prefixes of valid strings are valid strings, hence it is sufficient
to consider the special case that j = B. We prove the claim by induction on B,
where the base case of B = 1 is trivial. For the step from B − 1 ∈ N to B, the
induction hypothesis yields that

s := (�)M (g1...B−1, h1...B−1) =�M
(g1...B−1, h1...B−1) .

By Lemma 8.6, for any s � s′ ∈ {0, 1}2, there are g1...B−1 � g′1...B−1 ∈ {0, 1}B−1

8.2. DETERMINING THE OUTPUT BITS 83

and h1...B−1 � h′1...B−1 ∈ {0, 1}B−1 so that s′ =�(g1...B−1h1...B−1). Thus,

(�)M (g, h) = ∗
g�g′∈{0,1}B
h�h′∈{0,1}B

�(g′h′)

= ∗
g1...B−1�g′1...B−1∈{0,1}B−1

h1...B−1�h′1...B−1∈{0,1}B−1

gB�g′B∈{0,1}
hB�h′B∈{0,1}

(�(g1...B−1h1...B−1) � gBhB)

= ∗
s�s′∈{0,1}2
gB�g′B∈{0,1}
hB�h′B∈{0,1}

(s′ � g′Bh′B)

= s �M gBhB

=�M
(g, h) .

Remarks:

• Lemma 8.6 can be generalized to arbitrary operators so long as only a
single bit becomes metastable: In this case, we have two stabilizations of
the output, meaning there must be two stabilizations of the input yielding
different values.

• However, as soon as two output bits become metastable, this simple rela-
tion may break down. For instance, already making two copies of the Xor
of two bits showcases this issue. Stabilizations of the inputs always result
in identical output bits, but e.g. input 1M yields output MM, which may
also stabilize to 01 and 10.

• We cannot always reliably decide which of the inputs to our comparator is
larger, even if they are not equal. This means that computing the output
is not as easy as in the binary world.

8.2 Determining the Output Bits

For stable strings, determining the output would now be straightforward. Com-
pute s = �(g, h), and then, e.g., pick g if s1 = 1 (implying g ≥G h) and h
otherwise (implying g ≤G h). By now, you already guess that we cannot simply
use a standard MUX for this task, but need to use a MUXM. Alas, we still run
into trouble with this approach.

Example 8.8. Consider 1-bit inputs g = M and h = 1, i.e., s = M1. Then
CMUX(g, h, s1) = CMUX(M, 1,M) = M, yet maxG{g, h} = h = 1.

One can try around, but the problem persists. The issue is that we cannot
reliably decide which value is larger, so the inputs need to “help” with masking
metastability. For a single bit, of course all we need to do is to feed the inputs
to an Or gate. However, when looking at longer codes, the parity comes into
play. So let us see what we get if we combine the state

s(i−1) :=�M
(g1...i−1, h1...i−1)

84 LECTURE 8. METASTABILITY-CONTAINING SORTING

of the state machine before processing the ith bits (where s(0) := 00) with the ith

bits themselves to determine the ith bit of the output. Taking into account the
meaning of the state bits, for stable inputs this results in the following mapping
out : (s, gihi) 7→ maxG{g, h}i minG{g, h}i.

meaning of state s(i−1) maxG{g, h}i minG{g, h}i
equal, par = 0 00 max{gi, hi} min{gi, hi}

<G 10 gi hi
equal, par = 1 11 min{gi, hi} max{gi, hi}

>G 01 hi gi

meaning of state out 00 01 11 10

equal, par = 0 00 00 10 11 10

<G 01 00 10 11 01

equal, par = 1 11 00 01 11 01

>G 10 00 01 11 10

Note that out has 4 input bits, so the circuit implementing outM guaran-
teed by Theorem 6.6 has constant size. However, this is useful only if indeed
outM(s(i−1), gihi) = maxG{g, h}i minG{g, h}i all g, h ∈ VB and i ∈ {1, . . . , B}.
Proving this is simplified by the following observation on the structure of valid
strings.

Observation 8.9. If for a valid string g ∈ {0, 1}B it holds that gi = M for
some i < B, then gi+1...B = 10B−i−1, i.e., gi+1...B is the codeword for the largest
value that (B − i)-bit Gray code can encode.

Theorem 8.10. Given valid inputs g, h ∈ VB, for all i ∈ {1, . . . , B} it holds
that outM(s(i−1), gihi) = maxG{g, h}i minG{g, h}i.
Proof. Observe that outM(s(i−1), gihi) does not depend on bits i + 1, . . . , B.
As g1...i, h1...i are valid i-bit strings, we may thus w.l.o.g. assume that B = i.
For symmetry reasons, it suffices to show the claim for the first output bit

outM(s
(B−1)
M , gBhB)1 only; the other cases are analogous.

Using Lemma 8.4, Definition 8.1, and the definition of out, it is straight-
forward to verify that the claim holds for stable g, h ∈ {0, 1}B . Our task is to
prove this equality also for the case where g or h contain a metastable bit. By
Theorem 8.7, we have that s(B−1) = (�)M(g1...B−1, h1...B−1).

Let j be the minimum index such that gj = M or hj = M. Again, for
symmetry reasons, we may assume w.l.o.g. that gj = M; the case hj = M is
symmetric. If g1...j−1 6= h1...j−1, applying Lemma 8.4 shows that either (i)
s(i−1) = 01 (g <G h) or (ii) s(i−1) = 10 (g >G h). Assume (i); (ii) is treated
analogously. As the state 01 is absorbing, it follows that s(B−1) = 01, regardless
of the further bits of g and h. As out(01, gBhB)1 = hB for all gBhB ∈ {0, 1}2,
we conclude that outM(s(B−1), gBhB)1 = hB , as desired.

Hence, suppose that g1...j−1 = h1...j−1 for the remainder of the proof. We
consider the case that par(g1...j−1) = 0 first, i.e., s(j−1) = 00 = s(0). By
Definitions 8.1 and 8.2, gj...B , hj...B ∈ VB−j+1, so we may w.l.o.g. assume j = 1
in the following. If B = 1,

outM(s
(B−1)
M , gBhB)1 = outM(00,MhB)1 =

{
1 if h1 = 1

M otherwise,

8.2. DETERMINING THE OUTPUT BITS 85

which equals maxG{g, h}B (we simply have a 1-bit code). If B > 1, Observa-
tion 8.9 yields that g2...B = 10 . . . 0. We distinguish several cases.
h1 = M: Then also h2...B = 10 . . . 0. Therefore gB = hB , out(s, gBhB)1 = gB =

hB for any s ∈ {0, 1}2, and

outM(s
(B−1)
M , gBhB)1 = gB = hB = maxG{g, h}B .

h1 = 1 and B = 2: Thus, g <G h, i.e., we need to output hB = maxG{g, h}B .
Consider the two stabilizations of g, i.e., 01 and 11. If the first bit of g
is resolved to 0, we would end up with s(B−1) = s(1) = 01, regardless of
further bits. If it is resolved to 1, then s(1) = 11. Thus,

outM(s(B−1), gBhB)1 = outM(01, 1hB)1 ∗ outM(11, 1hB)1

= ∗
hB�h′B∈{0,1}

{h′B ,min{1, h′B}}

= ∗
hB�h′B∈{0,1}

{h′B} = hB .

h1 = 1 and B > 2: Again, hB = maxG{g, h}B . Consider the two stabilizations
of g, i.e., 010 . . . 0 and 110 . . . 0. If the first bit of g is stabilized to 0,
we end up with s(B−1) = s(1) = 01, as 01 is an absorbing state. If it
is stabilized to 1, then s(1) = 11. As g2...B = 10 . . . 0, for any h � h′ ∈
{0, 1}B , the state machine will end up in either state 00 (if h′2...B = 10 . . . 0)
or state 01. Overall, we get that (i) s(B−1) = 01, (ii) s(B−1) = 00 ∗
01 = 0M and h2...B = 1 . . . 0, or (iii) s(B−1) = 0M and h2...B = 1 . . . 0M

(cf. Table 8.1). If (i) applies, out(s
(B−1)
M , gBhB)1 = hB . If (ii) applies,

outM(s(B−1), gBhB)1 = gB = hB . If (iii) applies, then

outM(s(B−1), gBhB)1 = outM(00, 0M)1 ∗ outM(01, 0M)1

= 0 ∗ 1 ∗ 0 ∗ 1 = M = hB .

h1 = 0: This case is symmetric to the previous two: depending on how g is
resolved, we end up with s(1) = 10 or s(1) = 00, and need to output gB .
Reasoning analogously, we see that indeed outM(s(B−1), gBhB)1 = gB .

It remains to consider par(g1,...,j−1) = 1. Then s(j−1) = 11. Noting that
this reverses the roles of max and min, we reason analogously to the case of
par(g1,...,j−1) = 0.

Remarks:

• We have decomposed the task of computing the output into computing
s(i), i ∈ [B], and applying outM.

• We have decomposed computing s(i) into applying �M i− 1 times.

• As outM and �M can be implemented by constant-sized circuits, we get
a circuit of asymptotically optimal size O(B) computing maxG{g, h} and
minG{g, h}.

• However, our main goal was to find a circuit of low depth performing this
computation. Applying �M would yield a circuit of depth Ω(B)!

• This is where we shamelessly exploit the associativity of �M.

86 LECTURE 8. METASTABILITY-CONTAINING SORTING

8.3 Parallel Prefix Computation

As �M is associative, s(B−1) is computed by any binary tree for which the
leaves are the inputs gihi, i ∈ {1, . . . , B − 1}, and whose inner nodes are �M
(sub)circuits. Using a balanced tree then results in depth dlog(B−1)e. However,
we need to compute all s(i), i ∈ [B]. We could simply use B trees, whose total
number of inner nodes would be

B−1∑
i=0

i =
(B − 1)B

2
∈ Θ(B2) ,

still resulting in a circuit of the same depth. We can do much better!

Theorem 8.11. Given a circuit C implementing an associative operator � : D×
D → D and inputs gi ∈ D, i ∈ [2b] for some b ∈ N, there is a circuit of size

O(2b|C|) and depth O(bd(C)) outputting for each i ∈ [2b]\{0} the value
⊙i

j=0 gi

(where
⊙0

0 gi = g0).

Proof. Our circuit will have two stages. The first stage (see Figure 8.2) is a
balanced binary tree whose leaves are the 2b inputs and whose non-leaf nodes
are copies of C. Each node receives as input the outputs of its two children.
Enumerating the leaves in DFS order, leaf i ∈ [2b] “outputs” its assigned input
value gi. By induction on decreasing depth in the tree, we get that each node
outputs (

⊙
)
imax

j=imin
gi, where imin and imax are the smallest and largest leaf in

the subtree of the node, respectively.
The second stage (see Figure 8.3) of the circuit receives all the computed

values as input and computes all
⊙i

j=0 gi, i ∈ [2b], using a recursive scheme.
We can describe the recursion again as a binary tree, with a one-to-one cor-
respondence of nodes to the ones from the first stage. However, now outputs
flow from non-leaf nodes to their children as inputs. For notational convenience,
introduce the special symbol ε /∈ D with the semantics ε�s = s for all s ∈ D∪ε,
i.e., ε means “do nothing” (clearly, the extended operator remains associative).
Moreover, denote for each non-leaf node by its left child the one traversed first
in the DFS tour and refer to the other as right child. Provide to each node two
inputs: the output o of the “left” (see figure) child node in the first stage and
the output p of its parent, where the root receives ε as second input. With this
notation, each non-leaf node now outputs p to its left child and p�o to its right
child. Finally, the leaf i outputs p� gi.

We claim that i outputs
⊙i

j=0 gi. We prove the claim by induction on
the depth of the tree. It is trivial for a tree of depth 0, hence assume it is
correct for depth d ∈ N0 and consider a tree of depth d + 1. Applying the
induction hypothesis to the left child of the root, we see that leaf i ∈ [2b−1]

outputs ε �⊙i
j=0 gi =

⊙i
j=0 gi; note that we exploited that (the extended) �

is associative here. Applying the induction hypothesis to the right child, we see

that leaf i ∈ [2b] \ [2b−1] outputs (
⊙2b−1−1

j=0 gi)� (
⊙i

j=2b−1 gi) =
⊙i

j=0 gi.
Apart from wires, our construction has at each non-leaf node of each of the

two trees one copy of C, plus a copy of C at each leaf in the second tree, for a
total of 3 ·2b−2 ∈ O(2b) copies of |C|. The depth of both trees is b. The claims
on size and depth of the circuit follow.

8.3. PARALLEL PREFIX COMPUTATION 87

g8g1 g2 g3 g4 g5 g6 g7

�2
1gi �4

3gi �6
5gi

�4
1gi

Figure 8.2: First stage of the construction in Theorem 8.11. Each tree node
outputs the result of applying the operator to all leaves in its subtree. The
output of the root and nodes reached from it by only “going to the right” are
not needed; the nodes are there to show the tree structure.

�8
1gi�5

1gi

✏

✏

✏

�6
1gi �7

1gi�4
1gi�3

1gi�2
1gi�1

1gi

�4
1gi �5

1gi �6
1gi �7

1gi�3
1gi�2

1gi

�2
1gi

�4
1gi �6

1gi g7g5

�6
5gi�4

1gi

�4
1gi

g3g1

g1

�2
1gi

Figure 8.3: Second stage of the construction in Theorem 8.11. Using the outputs
of the first stage, the nodes forward their input to left and the operator applied
to the input from their parent and the one from the previous stage.

88 LECTURE 8. METASTABILITY-CONTAINING SORTING

Corollary 8.12. There is a comparator circuit of size O(B) and depth O(logB)
for valid strings (see Figure 8.4).

Proof. By Theorem 6.6, there are circuits of constant size and depth that im-
plement �M and outM. We apply Theorem 8.11 to the circuit for �M and inputs
gihi, i ∈ {1, . . . , B − 1} (for b = dlogBe, simply ignoring the unneeded inputs
and outputs to the circuit), yielding a circuit of size O(B) and depth O(logB)
computing outputs s(i−1), i ∈ [B] \ {0}. As s(0) = 00 is a constant, we do
not need a circuit to compute it. We then feed for i ∈ {1, . . . , B} the inputs
s(i−1) and gihi to a copy of the circuit implementing outM, yielding the correct
outputs. This adds O(B) to the size and increases the depth by a constant.

Bibliographic Notes

There’s almost nothing to add to the references given for the previous lecture.
For the Parallel Prefix Computation (PPC) framework, see [LF80].

g h

s(0) s(1)

outM

max0 min0 minBmaxB

s(B�1)

h0

g0

outM outM
g1

h1 hB�1

gB�1

max1 min1

Figure 8.4: The Gray code comparator.

Bibliography

[LF80] Richard E Ladner and Michael J Fischer. Parallel Prefix Computation.
Journal of the ACM (JACM), 27(4):831–838, 1980.

Lecture 9

Self-Stabilization

So far we have considered permanently damaged (Byzantine) nodes. What
if faults are transient? There are plenty of causes for such transient faults:
radiation, power fluctuations, etc. One way of dealing with transient faults
is to just consider the nodes undergoing faults becoming Byzantine, but then
this may be to pessimistic: after the transient faults cease, they can recover a
correct state and be good citizens again. Also, we may be able to recover from
n/3 or more nodes undergoing transient faults. In fact, we want that the system
recovers even if all nodes fail and f < n/3 of them remain faulty!

But what does “recover” from transient faults mean? We need to capture this
in a way enabling us to prove (or disprove) this property for a given algorithm.

Definition 9.1 (Self-Stabilization). Given a system, denote by S its state space,
i.e., the possible values that transient memory of nodes, message buffers, and
any other state-holding device in the system can hold. An execution trace is a
path in S consistent with the obeying the restrictions the system model imposes
on how the state may evolve over time. A good trace is one satisfying desired
properties (depending on the task at hand). An algorithm is self-stabilizing, if
it guarantees that any trace has a good suffix, i.e., any trace satisfies that there
is a time such that its subtrace starting at this time is good. If this time until
this subtrace starts is bounded, the stabilization time is a (possibly parametrized)
worst-case upper bound on this time difference.

Example 9.2 (Approximate Agreement (Flawed)). Consider a synchronous
system in which the nodes perform approximate agreement (Definition 5.2) us-
ing some algorithm A. The state of the system is described by the subset of
correct nodes Vg ⊆ V , their current values rv ∈ R, and whether they termi-
nated, i.e., S =

⋃n
g=n−f ({0, 1} × R)g (plus any additional state the algorithm

may maintain). A trace is an execution of the algorithm starting from any round
r and state, which is completely defined by the messages faulty nodes send in
rounds i, i+ 1, . . . A good trace is one in which all correct nodes eventually are
terminated with values within ε of each other. No matter what A we choose, it
will not be self-stabilizing: We choose as initial state one where all correct nodes
are terminated, but their values are not within ε of each other. No correct node
will change state anymore, so there is no good subtrace.

Example 9.3 (Approximate Agreement (Fixed)). Consider a synchronous sys-
tem in which the nodes keep executing approximate agreement steps (i.e., per-

89

90 LECTURE 9. SELF-STABILIZATION

form Algorithm 5.1) in each round. The state of the system is fully described
by the subset of correct nodes Vg ⊆ V and their current values rv ∈ R, i.e.,
S =

⋃n
g=n−f Rg. A trace is an execution of the algorithm starting from any

round i and state, which is completely defined by the messages faulty nodes send
in rounds i, i+1, . . . We decide that a good trace satisfies that the diameter of all
state vectors is smaller than ε and, in each round, values are within the range
spanned by the correct nodes’ values in the previous round. From Lemmas 5.4
and 5.5, we get that this holds for any round j ≥ i+ log(‖~ri‖/ε).
Example 9.4 (GCS). Consider the task of gradient clock synchronization. The
state space at time t is given by the nodes’ hardware and logical clock values,
their estimates of neighbors’ clocks, the content of messages that are in transit
and their sending times t − d < ts ≤ t, and any other state a node may hold
according to the algorithm (none in case of our GCS algorithm — at least in
the abstract model we considered!). A trace starting at time t is given by an
arbitrary such state (even if it can’t be reached in an execution faithful to the
model!), from which we run the system in accordance with the model. A good
trace starting at time t′ is a trace satisfying a bound L on the local skew at all
times t′′ ≥ t′. A self-stabilizing algorithm now guarantees that for any trace
starting at time t, there is some time t′ ≥ t so that the subtrace starting at
time t′ satisfies the local skew bound. The stabilization time of an algorithm is
the maximum difference t′− t over all traces (possibly parametrized by, e.g., the
number of nodes n, etc.).

Remarks:

• As the examples illustrate, the definition is quite flexible and can be ap-
plied to discrete and continuous systems, as well as those with and without
permanent faults.

• “Time” is not clearly defined, as it depends on the system what this
means. For example, in synchronous systems, time progresses discre(e)tely
in rounds, while in GCS we have a continuous reference time.

• Even in the fixed approximate agreement example, the stabilization time is
unbounded (i.e.,∞): the bound from Lemma 5.5 is tight in the worst case,
and transient faults could bring the stored values arbitrarily far apart. We
will show a stabilization time of O(G/µ) for the GCS algorithm. This is
good in case there is a self-stabilizing mechanism ensuring a small global
skew without interfering with the GCS algorithm (after stabilizing itself).
If not, this is no better than the situation for approximate agreement:
transient faults may bring the logical clocks arbitrarily far apart.

• It is important to carefully contemplate what “recovering correct opera-
tion” after transient faults actually means. This strongly affects whether
a solution is possible and how efficient it can be. For instance, the ap-
proximate agreement example begs the question whether after transient
faults, the (now arbitrarily corrupted) values nodes store hold any relevant
information.

• The first example was bad because we asked for nodes to terminate. As
we show below, self-stabilizing algorithms must never terminate, simply
because a transient fault then could result in wrong output.

91

• The algorithm’s code and the model assumptions are untouchable to tran-
sient faults. In the former case, that’s obviously necessary: If transient
faults can corrupt the algorithm itself, the algorithm designer has no
chance to ensure recovery. It is thus advisable to hardwire the algorithm
and/or store code in non-volatile memory. The model assumptions should
be examined carefully, however. One will actually have to implement all
this reliably, or the system might end up experiencing “transient” faults
in perpetuity!

• For instance, this is relevant to the synchronous model. If the synchronous
abstraction is implemented using an unreliable clocking method, a single
“transient” fault may permanently disrupt the clocking scheme. Yes, the
synchronous self-stabilizing algorithm will recover right after the clocking
scheme — but the clocking scheme will never do so.

Lemma 9.5. A self-stabilizing algorithm can never terminate, unless for each
node there is a single output that is always correct.

Proof. Suppose there are two possible conflicting outputs for a node v. More
precisely, there is a terminal state (of the system as a whole) in which some
possible differing terminal state of v is incorrect. We simply set the system to
this state, but v to the incorrect one. As all nodes are in a terminal state, no
further changes of node states is possible, implying that this combination of
terminal states is preserved forever. Thus, the trace has no good suffix, showing
that the algorithm is not self-stabilizing.

Corollary 9.6. Suppose σ = µ/(ϑ−1) ∈ 1+Ω(1). Then Algorithm 2.1 stabilizes
in O(G/µ) time.

Proof. W.l.o.g., consider traces that start at time 0. We claim that, for all s ∈ N
and times t ≥ Ts :=

∑s
s′=1 G/(µσs−1),

Ψs(t) ≤ G
σs

.

The statement of the corollary then follows as in Theorem 2.9 for any time

t ≥ sup
s∈N
{Ts} =

∞∑
s′=1

G
µσs′−1

=
σG

µ(σ − 1)
∈ O

(G
µ

)
due to the assumption on σ.

The claim is shown as for Theorem 2.16, with the modification that the
time of violation now must be at least Ts, where s is the minimal level on
which the bound is violated. This is only relevant in a single step of the proof,
when invoking Lemma 2.15: here, the proof exploits that Ψs−1(t0) ≤ t1 − t0 =
G/(µ(σs−1)). As Ts − Ts−1 = G/(µ(σs−1)), t1 ≥ Ts implies that t0 ≥ Ts−1, i.e.,
this condition is satisfied.

92 LECTURE 9. SELF-STABILIZATION

Remarks:

• You might think “this was almost too easy.” The response to this has two
parts. The first is that the algorithmic approach just happens to be that
the algorithm continuously struggles on each level to distribute the skew
in a way keeping Ψs small. The property of being self-stabilizing then
emerges naturally. The second is that the model is hiding a lot of things.
In order to make the algorithm self-stabilizing, one needs self-stabilizing
solutions for maintaining a small global skew, computing estimates, and
providing all the other convenient abstractions the model assumes.

• Fortunately, the algorithm really is doing a great job (which is rather co-
incidental, given that it was not designed with the goal of self-stabilization
in mind). You’ll show in the exercises that the necessary adaptions are
minimal.

9.1 Making Lynch-Welch Self-Stabilizing

Why the Lynch-Welch algorithm again? Well, it achieves asymptotically op-
timal skew, tolerates the maximum possible number of dn/3e − 1 Byzantine
faults, and it’s simple to implement. As we showed in the previous lectures, we
can even handle metastability, which is a concern if we perform the iterations
so quickly that it matters. Combining all of this with self-stabilization would
result in an extremely robust algorithm!

Alas, we won’t get self-stabilization “for free” as with the GCS algorithm.
The Lynch-Welch algorithm relies on some initial degree of synchronization to
maintain the abstraction of rounds it uses. It is simulating synchronous execu-
tion, but self-stabilization requires that we can deal with a complete (initial)
lack of synchrony! It turns out that this is an incredibly hard problem, and we
will only take a first step today. This step is reducing the task to finding an
(efficient) self-stabilizing solution to pulse synchronization with a much weaker
bound on the skew.

Good traces are easily defined: There should be a time t from which on the
algorithm behaves just like expected, i.e., as if it was initialized at this time and
thus exhibits the skew and period bounds from Theorem 5.10.

9.2 First Attempt: Reset on Heartbeats

In the following, we assume that we already have a self-stabilizing pulse syn-
chronization algorithm with skew σh in place. Thus, there is some time t when
it stabilized from which on it generates pulses hv,i, v ∈ Vg, i ∈ N, satisfying
that maxi∈N maxv,w∈Vg

{|hv,i−hw,i|} ≤ σh. Moreover, we have lower and upper
bounds on the time between pulses. We will refer to these pulses as heartbeats,
or simply beats. They are supposed to be fairly slow in comparison to the pulses
of the (modified) Lynch-Welch algorithm; from now on, when we talk of pulses,
these will be those of the Lynch-Welch algorithm only.

There’s a single hurdle keeping the LW algorithm from being self-stabilizing:
the need for a (known) bound on the initial deviation between the nodes’ local
times. The heartbeats provide exactly that — they are at most σh apart from

9.3. SECOND ATTEMPT: ADDING FEEDBACK 93

each other. So we could simply reset the LW algorithm on every heartbeat,
setting S := σh for the initialization of the algorithm. That’s going to work
splendidly, as we won’t even have to change the analysis — until the next beat
comes along and messes things up. As the beats are not as well-synchronized
as the LW pulses (otherwise we wouldn’t go through this trouble), the reset
will destroy the better synchronization guarantee again. Even worse, it may
interrupt the LW algorithm generating a pulse!

Remarks:

• Actually, one needs to be slightly more careful when resetting, in that any
messages sent by a node just before it is reset by its beat should not be
confused with his “round 1”-message following the reset. This is easily
addressed by offsetting the first round by ϑd local time compared to hv,i,
or by using the last message received during the time window in which
receivers listen for messages from other nodes.

• It’s important not to overlook such “details” when designing self-stabili-
zing algorithms. Another example is to make sure that variables that are
stored in a way admitting infeasible values need to be regularly tested for
having a valid value and reset to some default if not.

• It’s also important to not lose sight of the big picture due to such details,
though. A good way of designing self-stabilizing algorithms is to eliminate
obstacles one by one, starting with establishing very basic properties and
increasing the amount of “control” one has over the system state step by
step. The more restricted the state beomes, the easier it typically becomes
to reason about it and establish more complicated constraints.

• One could see what we’re doing now as doing this process in reverse: We
want to solve self-stabilizing pulse synchronization with asymptotically
optimal skew, and reduce this task to solving self-stabilizing pulse syn-
chronization with (fairly) large skew.

9.3 Second Attempt: Adding Feedback

The naive solution does not work, because heartbeats may arrive at inconvenient
times. However, the “first” beat (in our analysis) establishes a timing relation
between the LW instance and the instance of the self-stabilizing pulse synchro-
nization algorithm generating the beats. If we add the additional requirement
that the pulse synchronization algorithm accepts some external input that can
shift the time when the next beat occurs (within certain bounds), we could align
them with the pulses generated by the LW instance.

More specifically, after a (suitably chosen) fixed number of LW pulses, nodes
will issue a NEXT signal to the part of them running the algorithm generat-
ing the heartbeats. Thus, the beat generation mechanism needs only be “re-
sponsive” to the NEXT signal within a specific time window in relation to the
previous beat. Under some mild conditions on ϑ, this will turn out to be a
fairly harmless constraint. We use this to trigger the next beat, aligned up
to O(σh + S) time with when the nodes issue the NEXT signals (where S is
the skew of the LW algorithm). This can be kept within a single round of the

94 LECTURE 9. SELF-STABILIZATION

LW algorithm (without affecting more than constants), as both σh ∈ O(d) and
S ∈ O(d), and the round duration of the LW algorithm T ∈ Ω(d) anyway.

Is this good enough? Not yet, as reset approach will cause large skew ev-
ery time — unless, in addition, we require that well-synchronized NEXT signals
result in an equally well-synchronized heartbeat. Instead of adding even more
constraints on the self-stabilizing algorithm (not knowing whether they can be
satisfied), we use a different solution.

9.4 Third Attempt: Reset on Unexpected Heart-
beats Only

The final adjustment is to not perform a reset when a beat arrives on schedule,
i.e., within a time window of size O(σh + S) around the point when it would
occur in a world of perfect synchrony. The size of this window is chosen such that
once the heartbeat generation has stabilized, after the first “proper” heartbeat
it never happens again that a node is reset. Yet, the reset mechanism still
guarantees that a heartbeat will enforce synchronization up to a skew of O(σh+
S): either a node is not reset (defining a O(σh + S)-sized window of possible
local times) or it is (forcing the local time into the window).

It remains to formalize this approach and prove it correct. W.l.o.g., we
assume in the following that the heartbeats stabilized by time 0, and start to
reason from there. (Note, however, that this means that arbitrary messages may
be in transit at time 0!). Let us first specify our expecations on the feedback
mechanism.

Definition 9.7 (Feedback Mechanism). Nodes v ∈ Vg generate beats at times
hv,i ∈ R, i ∈ N, such that for parameters 0 < B1 < B2 < B3 ∈ R the following
properties hold for all i ∈ N.

1. For all v, w ∈ Vg, we have that |hv,i − hw,i| ≤ σh.

2. If no v ∈ Vg triggers its NEXT signal during [minw∈Vg
{hw,i}+ B1, t] for

some t < minw∈C{hw,i}+B3, then minw∈Vg
{hw,i+1} > t.

3. If all v ∈ Vg trigger their NEXT signals during [minw∈Vg{hw,i} + B2, t]
for some t ≤ minw∈Vg

{hw,i}+B3, then maxw∈Vg
{hw,i+1} ≤ t+ σh.

B1, B2, and B3 cannot be chosen arbitrarily for our approach to work. We
will determine sufficient constraints from the analysis.

In order to describe the algorithm, we assume that each node is running an
instance of Algorithm 5, the beat generation algorithm, and some additional
high-level control we give now. The high-level control may (re-)initialize the
instance of Algorithm 5, which is described in the subroutine reset(τ) it may
call. It has a few parameters:

M : The pulses of Algorithm 5 are counted modulo M . Every M pulses, a
heartbeat is expected.

R−: If a beat arrives at time t and the pulse number is 0 mod M , it should take
at least R− local time before the node generates the next pulse. Instead
of trying to compute upfront when Algorithm 5 would generate a pulse,

9.4. THIRD ATTEMPT: RESET ONUNEXPECTEDHEARTBEATS ONLY95

we simply “catch” the event and perform a reset if the pulse would be
generated too early.

R+: This is the matching upper bound, i.e., under the same conditions, it
should take at most R+ local time before the node generates the next
pulse.

S(r): This denotes the skew bound guaranteed by Algorithm 5 for pulse 1 <
r ∈ N, provided the algorithm is initialized with skew S(1), i.e., in the
code of Algorithm 5, S is replaced by S(1). Algorithm 6 needs to make
use of S(1) and S(M) only.

Algorithm 9.1: Interface algorithm, actions for node v ∈ Vg in re-
sponse to a local event at time t. Runs in parallel to local instances of
the beat generation algorithm and Algorithm 5.

1 // algorithm maintains local variable i ∈ [M]
2 if v generates a pulse at time t then
3 i := i+ 1 mod M ;
4 if i = 0 then
5 wait until local time Hv(t) + ϑS(M);
6 trigger NEXT signal;

7 if v generates a beat at time t then
8 if i 6= 0 then
9 // beats should align with every M th pulse, hence reset

10 reset(R+);

11 else if Algorithm 5 would require v to generate a pulse before local
time Hv(t) +R− then

12 // reset to avoid early pulse or message
13 reset(R+ − (Hv(t

′)−Hv(t))), where t′ is the current time;

14 else if next pulse is not generated by local time Hv(t) +R+ then
15 // reset to avoid late pulse and start listening for other nodes’

pulses on time
16 reset(0);

17 Function reset(τ)
18 halt local instance of Algorithm 5;
19 wait for τ local time;
20 i := 0;
21 Lv(t

′) := S(1), where t′ is current time;
22 generate pulse and restart loop of Algorithm 5 (in round r = 1);

Figure 9.1 illustrates how the control algorithm ensures stabilization. In
words, Algorithm 6 triggers the NEXT signal ϑS(M) local time after generating
a beat (i.e., at the earliest time when certainly all nodes have generated the
beat), and checks whether pulse 1 modulo M occurs between R− and R+ local
time after the beat (which necessitates that the beat occurs after pulse 0 modulo
M). If this is not the case, the algorithm generates a pulse and restarts the loop
of Algorithm 5 exactly R+ local time after the beat was generated. Moverover,
it ensures that no other pulse is generated between the beat and then.

96 LECTURE 9. SELF-STABILIZATION

[]

[] [] [] [] []

[]
unstable

~p1 ~p2 ~pM−1 ~pM ~pM+1

h+B1 h+B2 h+B3

‖~pM‖+ P

unstable

valid time range for ~pM

beat
could be
triggered
w/o NEXT
signals

spurious
NEXT
signals

~h1

~h2

Figure 9.1: Interaction of the beat generation and Algorithm 5 in the stabiliza-
tion process, controlled by Algorithm 6. Beat ~h1 forces pulse ~p1 to be roughly
synchronized. The approximate agreement steps then result in tightly synchro-
nized pulses. By the time the nodes trigger beat ~h2 by providing NEXT signals
based on ~pM , synchronization is tight enough to guarantee that the beat results
in no resets.

This properly “initializes” Algorithm 5 with skew S(1) := R+ + σh−R−/ϑ,
which then ensures that the skew has been reduced to S(M) by the time the
next beat is due. By choosing all parameters right, we ensure that the M th

pulse (after stabilization) falls in the time window provided by Definition 9.7
for making use of the NEXT signals, which then trigger the next beat such that
no v ∈ Vg performs another reset. From there, inductive reasoning shows that
no v ∈ Vg ever performs a reset again (so as long as there are no more transient
faults), and the analyis of Algorithm 5 from Chapter 5 yields a bound on the
skew achieved. Figure 9.2 illustrates how the nodes locally check whether they
should perform a reset or not.

NEXT

#S(M)

pulse 0 mod M

R�

R+

beat

Figure 9.2: After M pulses a node v waits for S(M) local time and then gen-
erates the NEXT signal. After stabilization, the next heartbeat occurs shortly
after. If the next pulse (which is going to be generated by the Lynch-Welch
algorithm), with number i = 1, is not generated at least R− and at most R+

local time after the heartbeat (the green box), the node resets the Lynch-Welch
algorithm, restarting its loop R+ local time after the beat.

9.5. ANALYSIS 97

9.5 Analysis

In the following, we assume that in Algorithm 5, S is replaced by S(1) in the
code, estimates are computed according to Lemma 5.9 (yielding δ = u + (ϑ −
1)d + 2(ϑ2 − ϑ)S(1)), and T := ϑ((ϑ2 + ϑ + 1)S(1) + ϑd) (in accordance with
Lemma 5.8); as we require that S(1) ≥ S(r) for all r ∈ N (which is implied
by (9.8)), this means that T is large enough for all rounds. For the outlined
approach to work in addition the following constraints need to be satisfied.

S(1) ≥ 2

(
δ +

(
1− 1

ϑ

)
T

)
(9.1)

R−

ϑ
≥ σh + ϑS(1) + d (9.2)

B2

ϑ
> σh +R+ + T + 2S(1) (9.3)

B1 > σh +R+ (9.4)

B3 > R+ + (M − 1)(T + S(1)) + (ϑ+ 1)S(M) + σh (9.5)

B2 ≤
R−

ϑ
+ (M − 1)

(
T

ϑ
− S(1)

)
+ S(M) (9.6)

R+

ϑ
≥ (ϑ+ 1)S(M) + σh (9.7)

2(S(1)− S(M)) ≥ σh (9.8)

We will worry later about satisfying all of these constraints. For now, we assume
that they hold; what follows is conditional on this assumption.

We first establish that the first beat guarantees to “initialize” the synchro-
nization algorithm such that it will run correctly from this point on (neglecting
for the moment the possible intervention by further beats). We use this do
define the “first” pulse times pv,1, v ∈ Vg, as well; we enumerate consecutive
pulses accordingly.

Lemma 9.8. Let h := minv∈Vg{hv,1} and S(1) := R+ + σh −R−/ϑ. We have
that

1. Each v ∈ Vg generates a pulse at a unique time pv,1 ∈ [h+R−/ϑ, h+σh+
R+].

2. ‖~p(1)‖ ≤ S(1).

3. At time pv,1, v ∈ Vg sets i := 1.

4. At the time minv∈Vg
{pv,1}, no message (of Algorithm 5) sent by node

v ∈ Vg before time pv,1 is in transit any more.

Proof. Assume for the moment that minv∈Vg
{hv,2} is sufficiently large, i.e., no

second beat will occur at any correct node for the times relevant to the proof
of the lemma; we will verify this at the end of the proof.

From the pseudocode given in Algorithm 6, it is straightforward to verify
that v ∈ Vg generates a pulse at a local time from [Hv(hv,1)+R−, Hv(hv,1)+R+],
and does not generate a pulse at a local time from [Hv(hv,1), Hv(hv,1)+R−). By
Algorithm 5 and the choice of S(1), no v ∈ Vg will send a message or generate

98 LECTURE 9. SELF-STABILIZATION

another pulse during [pv,1, pv,1 + S(1)], where pv,1 ≥ hv,1 + R−/ϑ + S(1) ≥
h+ σh +R+. Since hv,1 ∈ [h, h+ σh] for all v ∈ Vg by Definition 9.7, hence the
times pv,1 ∈ [h + R−/ϑ, h + σh + R+], v ∈ Vg, are indeed unique. The second
claim is now immediate from the choice of S(1).

Concerning the third claim, observe that if at time hv,1 it held that the i-
variable of v ∈ Vg was not 0, it was set to 0. Thus, when v generates its next
pulse at time pv,1, it is increased to 1. Concerning the final claim, we have
established that v ∈ V generates no pulse during [h + σh, h + R−/ϑ); thus, it
sends no message during [h + σh + ϑS(1), h + R−/ϑ) (cf. Algorithm 5), and
Inequality (9.2) ensures that no message of v ∈ Vg sent before time hv,1 is in
transit any more at time pw,1 for any w ∈ Vg.

It remains to show that indeed minv∈Vg
{hv,2} is sufficiently large to not

interfere with the above reasoning. Clearly, this is the case if round 1 ends
at all nodes before this time. Let H be infimal with the property that any
v ∈ Vg executes reset at a time larger that pv,1. Clearly, H ≥ minv∈Vg

{hv,2}.
By Definition 9.7 and Inequality (9.3), we can conclude that H ≥ h + B2 ≥
h+σh+R+ +T +2S(1). All parts of the statements of this lemma that refer to
times smaller than H hold. As H > h+σh +R+, this implies that Algorithm 5
behaves exactly as if it was initialized with skew S(1) at time h + R−/ϑ. We
can thus apply all results from Chapter 5 (for times t < H) accordingly. In
particular, we get the same results as in Theorem 5.10 (as Inequality (9.1) and
our choice of T and δ make sure that we can apply all lemmas), yielding that

max
v∈Vg

{pv,2} ≤ min
v∈Vg

{pv,1}+ Pmax ≤ h+ σh +R+ + T + 2S(1) < H .

Lemma 9.8 serves as induction anchor for the argument showing that all
rounds of the algorithm are executed correctly. Let H be defined as in the
previous proof. From the results in Chapter 5, we can bound S(r) for rounds
r ∈ N that are complete before time H.

Corollary 9.9. Suppose for r ∈ N that maxv∈Vg
{pv,r} < H. Then

‖~pr‖ ≤ S(r)

:=
S(1)

2r−1
+

(
2− 1

2r−2

)(
δ +

(
1− 1

ϑ

)
T

)
<
S(1)

2r−1
+ 2(u+ (ϑ2 − 1)d+ (ϑ− 1)(ϑ2 + 3ϑ+ 1)S(1)) ,

which for sufficiently large r ∈ N is in O (u+ (ϑ− 1)(d+ S(1))). Moreover, the
generated pulses satisfy Pmin ≥ T/ϑ− 2S(1) and Pmax ≤ T + 2S(1).

Proof. We inductively apply Lemmas 5.8, and 5.5, yielding

‖~pr‖ ≤
S(1)

2r−1
+

r∑
r′=2

1

2r−r′

(
δ +

(
1− 1

ϑ

)
T

)
=
S(1)

2r−1
+

(
2− 1

2r−2

)(
δ +

(
1− 1

ϑ

)
T

)
.

Plugging in δ and our choice of T and bounding 2−2−(r−2) < 2 yields the stated
upper bound on this term. By Inequality (9.8), we have that S(1) ≥ S(r) for all
r ∈ N. Thus, the inductive use of the lemmas (cf. Statement (iii) of Lemma 5.8)
also shows the bounds on the period.

9.5. ANALYSIS 99

In other words, all we need to show is that H = ∞, i.e., no further resets
occur after the first beat. In fact, it suffices to show this for the second beat,
as this constitutes the necessary induction step. To this end, we first show
that the NEXT signals occur within the “window of opportunity” provided by
Definition 9.7.

Lemma 9.10. For all v ∈ Vg, it holds that hv,2 ∈ (pv,M + S(M), pv,M + (ϑ +
1)S(M) + σh]. In particular, no node calls the reset subroutine due to its
second beat.

Proof. Checking Algorithm 6 (and noting that by Lemma 9.8 we have that i is
set to 1 at time pv,1), we see that after time pv,1, v ∈ Vg will not locally trigger a
NEXT signal before either time pv,M+S(M) or H. Denote p := minv∈Vg

{pv,M}.
As Lemma 9.8 and Inequality (9.4) show that maxv∈Vg

{pv,1} ≤ h+ σh +R+ ≤
h+B1, no NEXT signal is triggered during [h+B1,min{p+S(M), H}]. However,
by Definition 9.7, in absence of any NEXT signal, h′ := minv∈Vg{hv,2} satisfies
h′ ≥ h+B3, implying that no NEXT signal is triggered during [h+B1,min{p+
S(M), h+B3}]. By Definition 9.7, this entails that H ≥ h′ ≥ min{p+S(M), h+
B3}, where equality can hold only if h′ = h+B3.

Next, we show that h′ < h + B3. Assuming the contrary, we have that
H ≥ h′ ≥ h+B3, and get from Lemma 9.8 and Corollary 9.9 that

p+ (ϑ+ 1)S(M) + σh

≤min

{
max
v∈Vg

{pv,1}+ (M − 1)(T + S(1)) + (ϑ+ 1)S(M) + σh, H

}
≤min

{
h+ σh +R+ + (M − 1)(T + S(1)) + (ϑ+ 1)S(M) + σh, h+B3

}
<h+B3 ,

where the last step uses Inequality (9.5). Thus, as H is larger than this time,
each v ∈ Vg triggers its NEXT signal before time h + B3 − σh, because the
corollary also shows that maxv∈Vg{pv,M} ≤ p + S(M), and nodes wait for
ϑS(M) local time before triggering the signal. On the other hand, Lemma 9.8,
Corollary 9.9, and Inequality (9.6) show that

p+ S(M) ≥ min
v∈Vg

{pv,1}+ (M − 1)

(
T

ϑ
− S(1)

)
+ S(M)

≥ h+
R−

ϑ
+ (M − 1)

(
T

ϑ
− S(1)

)
+ S(M)

≥ h+B2 ,

i.e., all of these NEXT signals are triggered no earlier than time h + B2. By
Definition 9.7, this entails that h′ ≤ p+(ϑ+1)S(M)+σh < h+B3, contradicting
the assumption that h′ ≥ h+B3.

Knowing that h′ < h + B3, we can conclude that maxv∈Vg
{pv,M} ≤ p +

S(M) < h′ ≤ H. As we can derive the same bounds as above, we also get that
maxv∈Vg{hv,2} ≤ p+ (ϑ+ 1)S(M) + σh = minv∈Vg{pv,M}+ (ϑ+ 1)S(M) + σh,
provided that no node performs a reset before triggering its NEXT signal, i.e.,
H > p + (ϑ + 1)S(M) + σh. Recalling that we already established that H ≥
h′ > maxv∈Vg

{pv,M}, the local i variables have been set to 0 mod M again, and
will not change before the next pulse. Checking Algorithm 6, we see that such a

100 LECTURE 9. SELF-STABILIZATION

reset thus would either occur R+ local time after the (local) beat or due to the
next pulse occuring before local time hv,2 +R−. As R+/ϑ ≥ (ϑ+ 1)S(M) + σh
by Inequality (9.7), the former cannot happen.

Observe that if the latter does not take place either, it would indeed follow
that no node performs a reset on its second beat. Therefore, we conclude that
H ≥ minv∈Vg

{pv,M+1, p+ (ϑ+ 1)S(M) +σh} (where we slightly abuse notation
in that if v would generate pulse M + 1, but Algorithm 6 prevents this and
performs a reset instead, we still denote this time by pv,M+1). Finally, assume
for contradiction that H < p + (ϑ + 1)S(M) + σh. Thus, there is some v ∈ Vg
so that H = pv,M+1 < p + (ϑ + 1)S(M) + σh. However, as v is the first node
performing a reset, the period bound applies, i.e.,

pv,M+1 ≥ p+
T

ϑ
− S(1)

= p+ (ϑ2 + ϑ)S(1) + ϑd

> p+ (ϑ+ 1)S(M) + 2(S(1)− S(M))

≥ p+ (ϑ+ 1)S(M) + σh ,

where the last step uses Inequality (9.8). Thus all possible cases lead to the
desired bounds on hv,2 for all v ∈ Vg.

We summarize today’s findings in the following theorem.

Theorem 9.11. Assume that 3+4ϑ−4ϑ2−2ϑ3 > 0 and Inequalities (9.1)-(9.8)
hold. Set T := ϑ((ϑ2 +ϑ+ 1)S(1) +ϑd), where S(1) := R+ +σh−R−/ϑ. If the
beats behave as required by Definition 9.7, Algorithm 6 running in conjunction
with Algorithm 5 (where estimates are computed according to Lemma 5.9) is
a self-stabilizing solution to the pulse synchronization problem. Its skew is in
O (u+ (ϑ− 1)(d+ S(1))) and the generated pulses satisfy Pmin ≥ T/ϑ− 2S(1)
and Pmax ≤ T + 2S(1). The stabilization time (not accounting for the beats) is
O(MT).

Proof. We apply Lemma 9.10 to each beat but the first, showing that H =∞.
Corollary 9.9 then yields the claims.

Bibliographic Notes

The concept of self-stabilization was introduced by Dijkstra [Dij74]. The defi-
nition here is more general, but in turn also somewhat informal — notions like
“time” need to be assigned meaning according to the specific system model.
There are some generic constructions for self-stabilizing algorithms. For in-
stance, Awerbuch et al. showed that any synchronous message-passing algorithm
can be modified into a self-stabilizing asynchronous message-passing algorithm
that stabilizes in the same time as needed to compute the solution from scratch
[APSV91]. The approach for making the Lynch-Welch algorithm self-stabilizing
discussed in this lecture is taken from [KL18].

Bibliography

[APSV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
Stabilization By Local Checking and Correction. In In Proceedings

BIBLIOGRAPHY 101

of IEEE Symposium on Foundations of Computer Science (FOCS),
1991.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):943–644, November
1974.

[KL18] Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing Byzan-
tine Clock Synchronization with Optimal Precision. Theory of Com-
puting Systems, 2018.

102 LECTURE 9. SELF-STABILIZATION

Lecture 10

Consensus

One of the key components in the self-stabilizing pulse synchronization algo-
rithm we will see two lectures from now is consensus. Consensus is a funda-
mental and extremely well-studied fault-tolerance primitive. There are a large
number of variants of the problem, varying in terms of the model and the re-
quirements on the solution. The common theme is the following question: In
a system with faults, how can the non-faulty nodes agree on a decision that is
consistent with given inputs?

Today, we study a very basic formulation of the consensus problem. We
assume a synchronous system (like in Chapter 5 for approximate agreement)
with n nodes and f < n/3 Byzantine faults, where nodes have unique identifiers
1, . . . , n known to all nodes. Each node is given a binary input bi ∈ {0, 1}. To
solve (binary) consensus, an algorithm must compute output values oi ∈ {0, 1}
at all correct nodes i ∈ Vg meeting the following conditions:

Agreement: There is o ∈ {0, 1} so that oi = o for all i ∈ Vg. We refer to o as
the output of the consensus algorithm.

Validity: If there is b ∈ {0, 1} so that for all i ∈ Vg it holds that bi = b, then
o = b.

Termination: There is r ∈ N satisfying that each i ∈ Vg terminates and outputs
oi by the end of round r.

In general, the round r when all correct nodes have terminated may depend
on the execution. However, we are interested in algorithms which guarantee
termination within R(f) ∈ N rounds, regardless of the inputs and the behavior
of faulty nodes. We refer to R(f) as the running time or round complexity of
the algorithm.

Remarks:

• For f ≥ n/3, no algorithm solves consensus deterministically. The reasons
are very similar to what we saw in Chapter 4.

• Even randomized algorithms fail with a large probability. One could say
that the n/3 barrier is “hard.” However, under cryptographic assumptions
one can “force” faulty nodes to communicate consistently (either not send-
ing a message or sending the same to everyone), so long as f < n/2. Then,

103

104 LECTURE 10. CONSENSUS

in the synchronous model, the task is trivial: All nodes broadcast their
input, and choose the output as a function of the received values ensuring
validity.

• Beside the round complexity, we care about the amount of communication.
Relevant criteria here are the maximum message size (i.e., the number of
bits in the largest message an algorithm uses) and the number of bits
nodes send in total.

10.1 The Phase King Algorithm

Algorithm 10.1: Phase King Algorithm at node i ∈ Vg. Each broad-
cast takes one round. Note that faulty nodes are not required to broad-
cast, i.e., they can send conflicting messages to different nodes.

1 opi := bi
2 for j = 1 . . . f + 1 do
3 // first broadcast
4 strong := 0
5 broadcast opi (also to self)
6 if received at least n− f times b ∈ {0, 1} then
7 opi := b
8 strong := 1

9 // second broadcast
10 if strong = 1 then
11 broadcast opi
12 if received fewer than n− f times opi then
13 strong := 0
14 // king’s broadcast part I
15 if i = j and received at least f + 1 times b ∈ {0, 1} then
16 broadcast b
17 // king’s broadcast part II
18 if i = j and received at most f times b ∈ {0, 1} then
19 broadcast opi
20 // if not sure, obey the king
21 if strong = 0 and received b ∈ {0, 1} from node j then
22 opi := b

23 return opi

In the above algorithm, we refer to one iteration of the loop as a phase.

Lemma 10.1. If, for some b ∈ {0, 1} and all i ∈ Vg, opi = b at the beginning
of the phase, then the same holds at the end of the phase.

Proof. As |Vg| ≥ n − f , each i ∈ Vg will not change opi and set strong to 1
after the first broadcast. Thus, in the second broadcast, |Vg| ≥ n− f nodes will
broadcast b, and all correct nodes will maintain strong = 1. Thus, opi is not
changed by the king’s broadcast.

Corollary 10.2. Algorithm 10.1 satisfies validity.

10.1. THE PHASE KING ALGORITHM 105

Proof. Suppose bi = b for some b ∈ {0, 1} and all i ∈ Vg. Then each i ∈ Vg
initializes opi := b, which by inductive use of Lemma 10.1 never changes. Thus
each i ∈ Vg outputs b.

Lemma 10.3. Suppose node j ∈ Vg. Then there is some b ∈ {0, 1} so that
opi = b for all i ∈ Vg at the end of phase j.

Proof. Fix the phase to be j. We claim that there is b ∈ {0, 1} satisfying that
each i ∈ Vg with strong = 1 after the first broadcast satisfies opi = b. Otherwise,
as correct nodes broadcast, it would hold that

2n− 2f = 2(n− f) ≤ |Vg|+ 2(n− |Vg|) = 2n− |Vg| ,

i.e., |Vg| ≤ 2f < n− f , as f < n/3 — which implied that there are n− |Vg| > f
faulty nodes.

Thus, only faulty nodes may send a value different from b in the second
broadcast. We distinguish two cases. The first is that there is no i ∈ Vg
with strong = 1 after the second broadcast. In this case, each i ∈ Vg sets
opi := b′ ∈ {0, 1}, where b′ is the value broadcasted by the king, i.e., node j.

The other case is that some node received n − f times b in the second
broadcast, the king (i.e., node j) received at least n − 2f ≥ f + 1 times b. On
the other hand, there are at most f faulty nodes, so the king did not receive
more than f times 1 − b. It follows that the king broadcasts b in the king’s
broadcast. As f < n− f , any i ∈ Vg with opi = 1− b satisfies that strong = 0
when receiving this message and sets opi := b.

Corollary 10.4. Algorithm 10.1 satisfies agreement.

Proof. As there are at most f faults, [f + 2] ∩ Vg 6= ∅. Let j ∈ [f + 2] ∩ Vg.
By Lemma 10.3, at the end of phase j, we have that there is some b ∈ {0, 1} so
that opi = b for all i ∈ Vg. By inductive use of Lemma 10.1, these variables do
not change any more. Hence all i ∈ Vg output b.

Theorem 10.5. Algorithm 10.1 solves binary consensus in the synchronous
model. It runs for R(f) = 3(f+1) ∈ O(f) rounds and broadcasts 1-bit messages.

Proof. Agreement and validity hold by Corollary 10.4 and Corollary 10.2, re-
spectively. The running time bound follows from the facts that each phase
takes three rounds, one for each broadcast, and that there are f + 1 phases.
The message size bound is immediate from the pseudocode.

Remarks:

• Depending on the precise model of communication, message size may also
be 2 bits; the bound above exploits the option of sending no message,
which may not always be possible.

• The message size is trivially optimal — but that does not mean the overall
number of communicated bits is.

• Deterministic algorithms need to send Ω(nf) bits, which follows from the
simple observation that each correct node needs to receive more than f
bits to even know that anyone else would pick a certain output value.

106 LECTURE 10. CONSENSUS

• The running time is asymptotically optimal: no algorithm can be faster
than f+1 rounds in the worst case. We will show this later in this lecture.

• Both the bit complexity and running time lower bound can be beaten by
randomized algorithms; this is beyond the scope of this lecture, though.

10.2 Recursive Phase King

The Phase King protocol is doing well in terms of running time and resilience,
i.e., f . However, it uses much more communication than the (trivial) lower
bound of Ω(nf) requires. We can overcome this by avoiding to have all nodes
communicate to each other for f times. The key to achieving this is to make sure
that the “king” is more likely to be reliable. We do this by calling the protocol
on roughly half of the participating nodes. There are not enough faulty nodes to
make both instances fail, and in the recursive calls, fewer nodes need to send and
receive messages. In the following recursive variant of the protocol, “broadcast”
means to sent a message to all nodes participating in the instance.

Lemma 10.6. Algorithm 10.2 satisfies agreement and validity.

Proof. We reason similarly to our analysis of Algorithm 10.1, with the difference
that the role of the “king” is now filled by V ′. We show the claim by induction
on |V |; it is trivial for |V | = 1. For |V | > 1, observe that the statement of
Lemma 10.1 can be shown analogously for Algorithm 10.2.

Next, note that f is the number of faults we expect Algorithm 10.2 to with-
stand. If |V | > 1, define that a recursive call is successful if |V ′| > 3|V ′ \ Vg|,
i.e., there are few enough faults such that validity and agreement hold for the
recursive call by the induction hypothesis. We show that at least one of the two
recursive calls is successful. To this end, recall that for j = 1 V ′ is chosen such
that the recursive call is successful, if |V ′ \Vg| ≤ d(f−1)/2e. Concerning f = 2,
note that

3

⌈
f − 1

2

⌉
+ 1 + 3

⌊
f − 1

2

⌋
+ 1 = 3(f − 1) + 2 < 3f < n .

Hence, the second recursive call is successful, if |V ′ \Vg| ≤ b(f −1)/2c. Overall,
as there are at most

f < f + 1 =

⌈
f − 1

2

⌉
+ 1 +

⌊
f − 1

2

⌋
+ 1

faults, at least one of the recursive calls is successful.
Now recall Lemma 10.3. Instead of requiring that j ∈ Vg, we instead demand

that the jth recursive call succeeds. We proceed as in the proof of Lemma 10.3
until the case distinction. If there is no correct node with strong = 1, then
by the agreement property, all correct nodes in V ′ broadcast the same value
b ∈ {0, 1}, and because |V ′| > 3|V ′ \ Vg|, this is for each node the majority
value received from nodes in V ′. Thus, each node sets opi = b, as desired. On
the other hand, if there is a correct node i with strong = 1, then the same
reasoning as in Lemma 10.3 shows that each node in V ′ ∩ Vg uses input opi
for the recursive call. By validity, this means that this is the output of the
recursive call, which is broadcasted to all nodes by the majority of nodes in

10.2. RECURSIVE PHASE KING 107

Algorithm 10.2: Recursive Phase King Algorithm at node i ∈ Vg.
For simplicity, recursive calls on k nodes assume the identifiers to be
{1, . . . , k}.
1 if |V | = 1 then
2 return bi
3 opi := bi
4 for j = 1, 2 do
5 strong := 0
6 broadcast opi (also to self)
7 if received at least n− f times b ∈ {0, 1} then
8 opi := b
9 strong := 1

10 if strong = 1 then
11 broadcast opi
12 if received fewer than n− f times opi then
13 strong := 0
14 // recursive call
15 f := dn/3e − 1
16 if j = 1 then
17 V ′ := {1, . . . , 3d(f − 1)/2e+ 1}
18 else
19 V ′ := {3d(f − 1)/2e+ 2, . . . , |V |}
20 if i ∈ V ′ then
21 b′i := 0
22 if received at least f + 1 times 1 then
23 b′i := 1
24 denote by o′i the output of recursive call on node set V ′ with

inputs b′i
25 broadcast o′i
26 if strong = 0 then
27 set opi to majority value received from nodes in V ′ (breaking a

tie arbitrarily)
28 return opi

V ′. We conclude that Lemma 10.3 applies to Algorithm 10.2 with the above
modification to the statement.

As we have also shown that at least one of the recursive calls succeeds,
agreement and validity follow as in Corollaries 10.2 and 10.4, respectively.

Lemma 10.7. Algorithm 10.2 terminates in O(n) rounds.

Proof. We claim that the total number of (recursive) calls of Algorithm 10.2 is
2n− 1. This follows from the fact that the resulting binary recursion tree has n
leafs (the instances with a single node) and each inner node except for the root
has degree 3, i.e., the number of leaves equals the number of inner nodes plus 2.

As, apart from the recursive calls, each instance requires 6 rounds, the claim
follows.

108 LECTURE 10. CONSENSUS

Lemma 10.8. The total number of bits communicated by the nodes in Vg when
executing Algorithm 10.2 is O(n2).

Proof. Denote by B(n) the number of bits communicated in an instance with
n nodes. Clearly, in six rounds of communication, at most 6n2 bits are sent.
Hence, B(n) ≤ 6n2 +B(n1) +B(n2), where n1 +n2 = n. Note that in the algo-
rithm f ∈ n/3+Θ(1) and, in each of the two recursive calls, |V ′| ∈ 3f/2+Θ(1).
Hence, if n is at least a sufficiently large constant, we have that max{n1, n2} ≤
2n/3. Otherwise, the remaining number of recursive calls is constant, and we
can bound B(n) ∈ O(n2). Therefore, B(n) ∈ 2B(2n/3) +O(n2) for all n ∈ N.
By the master theorem, this implies that B(n) ∈ O(n2).

Theorem 10.9. Binary consensus in systems with f < n/3 faults can be solved
in O(f) rounds with 1-bit messages, where the total number of communicated
bits is O(nf).

Proof. For f ∈ Ω(n), this is shown for Algorithm 10.2 by Lemmas 10.6, 10.7,
and Lemma 10.8. For smaller values of f , run the algorithm on 3f + 1 nodes,
have them broadcast their output, and let each node output the majority value.
This adds one round and O(fn) bits to the previously spent O(f) rounds and
O(f2) bits.

10.3 Running Time Lower Bound

As promised earlier, we prove now that any (deterministic) consensus algorithm
must run for at least f + 1 rounds in the worst case. In fact, we will show this
for a much weaker fault model: crash faults.

Definition 10.10 (Crash Faults). If node v ∈ V crashes in round r ∈ N, it
operates like a non-faulty node in rounds 1, . . . , r − 1, does nothing at all in
rounds r+1, r+2, . . ., and in round r sends an arbitrary subset of the messages
it would send according to the algorithm.

Crashing nodes fail in a well-organized fashion. They do not lie, we do not
have to care about getting them up to speed again later, and by requiring that
nodes always send messages to each other in each round, nodes will learn that
a node failed from not receiving a message from the node. None of this affects
the worst-case running time lower bound in any way — regardless of whether we
consider Byzantine or crash faults, the bound of f + 1 rounds turns out to be
tight.

We will show this lower bound now by a straightforward inductive argument.
The key ingredient is the following definition.

Definition 10.11 (Pivotal Nodes). Observe that an execution in the synchronous
model with crash faults is fully determined by specifying the node inputs and,
for each node, whether it crashes and, if so, in which round and which of its
messages of this round get sent. Given an execution E of a consensus algorithm
with at most n − 2 crash faults and a node v ∈ V that does not crash in E,
we call v pivotal in round r (of E) if changing E by crashing v in round r of
E without v sending any messages results in an execution with different output
(the execution does have an output, because at least one node does not crash).

10.3. RUNNING TIME LOWER BOUND 109

In order to anchor the induction, we need to show that such nodes exist.

Lemma 10.12. There is a fault-free execution with a node that is pivotal in
round 1.

Proof. Consider executions Ei, i ∈ [n+ 1], which are fault-free with node j ∈ V
having input 0 if j > i and input 1 otherwise. By validity, E0 has output 0 and
E1 has output 1. Thus, there must be some i ∈ [n] with the property that Ei
has output 0 and Ei+1 has output 1. Consider the execution E ′ obtained by
crashing node i + 1 in round 1, without i + 1 getting any messages out. If E ′
has output 0, i + 1 is pivotal in round 1 of execution Ei+1; if E ′ has output 1,
i+ 1 is pivotal in round 1 of execution Ei.

The induction step works the same way, except that the inputs are replaced
by, for each node, the decision whether the pivotal node crashing in round r
sends a message to the node or not.

Lemma 10.13. Suppose 0 ≤ f ≤ n − 3 and E is an execution with f failing
nodes, one in each round 1, . . . , f , that has a pivotal node in round f + 1. Then
there is an execution E ′ which differs from E only in that this pivotal node
crashes in round f + 1 and satisfies that there is a pivotal node in round f + 2.

Proof. For i ∈ [n+ 1], define Ei by having the pivotal node of E crash in round
f + 1 and succeed in sending its message for that round to node j ∈ {1, . . . , n}
if and only if j > i. As we crashed a pivotal node, we know that E0 and En
have different outputs. Thus, there must be some i for which Ei and Ei+1 have
different outputs. Now consider the executions E ′i and E ′i+1 obtained from Ei and
Ei+1, respectively, in which node i + 1 crashes in round f + 2 without sending
any messages. The only difference between these executions is whether i + 1
received the message from the crashing node in round f + 1 or not; as i+ 1 does
not get a message out telling anyone of this difference, the outputs of E ′i and
E ′i+1 are the same. Thus, either Ei and E ′i have different outputs or Ei+1 and
E ′i+1 have different outputs, i.e., either i+ 1 is pivotal in round f + 2 of Ei or it
is pivotal in round i+ 1 or Ei+1.

Corollary 10.14. Any consensus algorithm has an execution with a pivotal
node in round min{f, n− 2}.

Theorem 10.15. Any consensus algorithm has worst-case running time at least
min{f + 1, n− 1}.

Proof. Consider the execution E with a pivotal node in round min{f, n − 2}
guaranteed to exist by Corollary 10.14, as well as the execution E ′ obtained
by crashing the pivotal node in round min{f, n− 2}. The two executions have
different output, but at all nodes but the pivotal one, the only difference to be
observed before round min{f + 1, n−1} is whether the respective message from
the pivotal node in round min{f, n− 2} was received or not.

Assume for contradiction that, in both executions, the (at least two) non-
crashed nodes terminate by the end of round min{f, n− 2}. Let i, j ∈ V be two
such nodes crashing in neither E nor E ′. These nodes must also terminate in
the execution E ′′ in which the pivotal node sends its message to i, but does not
send its message to j: To i, this execution is indistinguishable from E before
round min{f + 1, n− 1}, and for j it is indistinguishable from E . However, this

110 LECTURE 10. CONSENSUS

indistinguishability implies that they also output the same values as in E and
E ′, respectively. As these values differ, this violates agreement and hence is a
contradiction. We conclude that our assumption must be wrong and there is
some execution of the algorithm in which not all nodes terminate before round
min{f + 1, n− 1}.

Remarks:

• The above proof was for binary consensus, but it also works if more than
two output values are possible. The salient point is that there are different
outputs!

• The same arguments apply even if we restrict the fault model further.
We could require that, in each round, nodes send their outgoing messages
in some specific order; the algorithm could even choose. Thus, a crash
would not result in an arbitrary subset of nodes receiving their messages,
but rather a prefix of the message sequence being received. Still, the same
lower bound applies, with the same proof, where the only difference is that
the order in which we list the nodes when defining executions is given by
the pivotal nodes’ sending sequence for the respective round.

• As mentioned before, randomization can result in faster algorithms.

Bibliographic Notes

Consensus and its variants is a central problem in distributed computing. Thus,
any list of references would be no more than a scratch in the tip of the iceberg.
Some books addressing the topic are [Lyn96, Ray10]. The Phase King protocol
by Berman, Garay, and Perry was introduce in [BGP89]. The recursive version
is provided in [BGP92]. The time lower bound was shown by Fischer and
Lynch [FL82].

A lower bound of Ω(nf) on the message complexity is shown in [DR85].
Arguably, this bound is trivial, but the interesting part is that the paper shows
a tight bound of Θ(n + f2) on the number of messages required with crypto-
graphic signatures. In this case, the total number of bits is still Ω(nf), but the
signatures permit to prove that an output is valid with a single message. As a
remark on connectivity requirements, both with and without cryptography node
degrees must be larger than f . However, without cryptography, it’s not hard to
see that the majority of neighbors of each non-faulty nodes must be non-faulty,
while with cryptographic signatures, it is sufficient, if the network is still con-
nected when removing faulty nodes. With cryptographic assumptions, it is also
sufficient if f < n/2. Naturally, all of this requires the ability to perform de-
coding and encoding operations, cryptographic hardness assumptions (i.e., the
adversary can’t break protocols by brute force), and that the adversary can’t
directly obtain information about internal states of correct nodes.

BIBLIOGRAPHY 111

Bibliography

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards Op-
timal Distributed Consensus (Extended Abstract). In Symposium on
Foundations of Computer Science (FOCS), pages 410–415, 1989.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit Optimal
Distributed Consensus, pages 313–321. Springer US, 1992.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on Information Exchange
for Byzantine Agreement. J. ACM, 32(1):191–204, 1985.

[FL82] Michael J. Fischer and Nancy A. Lynch. A Lower Bound for the Time
to Assure Interactive Consistency. Inf. Process. Lett., 14(4):183–186,
1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publish-
ers Inc., 1996.

[Ray10] Michel Raynal. Fault-tolerant Agreement in Synchronous Message-
passing Systems. Morgan & Claypool Publishers, 2010.

112 LECTURE 10. CONSENSUS

Lecture 11

Synchronous Counting

Before getting to self-stabilizing pulse synchronization in the next lecture, we
consider the related task of synchronous counting. In synchronous counting, the
goal is to establish a self-stabilizing joint counter (modulo some 2 ≤ C ∈ N),
despite f < n/3 Byzantine faults. This means the good traces are those in
which for each round r, it holds for all v, w ∈ Vg that c(v, r) = c(w, r) and
c(v, r + 1) = c(v, r) + 1 mod C.

stabilisation

Clock

Node 1 1 1 2 1 0 1 2 0 1 2

Node 2 0 1 2 1 0 1 2 0 1 2

Node 3 (faulty) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
Node 4 2 0 1 0 0 1 2 0 1 2

counting

Despite being instructive for the approach we’ll take to pulse synchronization in
the next lecture, this is in itself a very useful subroutine. Once the synchronous
abstraction is established by a pulse synchronization algorithm, it makes sense
to ask for a common numbering of the pulses, allowing for implicit coordination.
For instance, this way the nodes can call a subroutine every C rounds without
further communication overhead.

11.1 Synchronous Counting vs. Consensus

The first observation is that counting is no easier than (synchronous) consensus.

Lemma 11.1. A synchronous C-counting algorithm with stabilization time S
implies a synchronous C-valued consensus algorithm terminating in S rounds,
which satisfies the same bounds on message and bit complexity as the original
counting algorithm.

Proof. Once stabilized, the counting algorithm guarantees a good trace, i.e., the
correct nodes will jointly count modulo C. For each c ∈ [C], denote by ~x(c)
the state vector of the correct nodes in some round r ≥ S in which the count is

113

114 LECTURE 11. SYNCHRONOUS COUNTING

c. Our consensus algorithm now operates as follows. Each v ∈ Vg runs a local
instance of the counting algorithm for S rounds, where given input c ∈ [C] it
initializes its state to xv(c). At the end of round S, it outputs c(v, S)−S mod C.

The claims about running time and communication complexity are trivially
satisfied, so it remains to show agreement and validity. Agreement is immediate
from the fact that the counting algorithm stabilized no later than round S,
i.e., c(v, S) = c(w, S) for all v, w ∈ Vg. Concerning validity, observe that the
initialization ensures that if each v ∈ Vg has input c ∈ [C], then the initial state
of the counting algorithm is ~x(c). As this is a system state after stabilization,
regardless of the behavior of faulty nodes, the correct nodes must increment their
counters by exactly 1 modulo C in the following rounds. Thus, in round S, it
holds that c(v, S) = c+ S mod C, and each v ∈ Vg outputs c+ S − S mod C =
c.

The other direction is not as straightforward. However, it is not hard to
come up with a reduction that translates running time to stabilization time if
we neglect communication.

Lemma 11.2. Any synchronous C-valued consensus algorithm terminating in
R rounds implies a synchrounous C-counting algorithm with stabilization time
O(R).

Proof. Given the consensus algorithm, we solve C-counting as follows. In each
synchronous round, we start a new consensus instance that will generate an
output value c(v, r + R) at each node v ∈ Vg exactly R rounds later (which
will double as node v’s counter value); if the consensus instance terminates
earlier at v, it will simply store the output value until it is needed. Note that,
while we have no guarantees about the outputs in the first R rounds (as initial
states are arbitrary), in all rounds r ≥ R all correct nodes will output the
same value c(r) = c(v, r) (by the agreement property of consensus). Hence,
if we define the input value f(v, r) of node v ∈ Vg as a function of the most
recent O(R) output values at node v, after 2R rounds all nodes will start using
identical inputs f(r) = f(v, r) and, by validity of the consensus algorithm,
reproduce these inputs as output R rounds later (cf. Figure 11.1). In light of
these considerations, it is sufficient to determine an input function f from the
previous O(R) outputs to values [C] so that counting starts within O(R) rounds,
assuming that the output of the consensus algorithm in round r+R equals the
input determined at the end of round r.

We define the following input function, where all values are taken modulo
C:

input(r) :=



c+R if (o(r −R+ 1), . . . , o(r)) = (c−R+ 1, . . . , c)

x+R if
(o(r − 2R+ 1− x), . . . , o(r)) = (0, . . . , 0, 1, . . . , x)

for some x ∈ [R]

x if
(o(r −R+ 1− x), . . . , o(r)) = (0, . . . , 0)

for maximal x ∈ [R]

0 else.

In the setting discussed above, it is straightforward to verify the following prop-
erties of input:

• Always exactly one of the rules applies, i.e., input is well-defined.

11.1. SYNCHRONOUS COUNTING VS. CONSENSUS 115

node 2

node 1

3

0

r4

1

0

r4

0

0

r4

0

0

r4

0

0

r2

0

1

r2

0

2

r2

0

3

r3

0

3

r3

0

3

r3

0

3

r3

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input

rule

1

4

r1

2

5

r1

3

6

r1

0

0

r4

0

0

r4

0

0

r2

0

1

r2

0

2

r2

0

3

r3

0

3

r3

0

3

r3

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input

rule

agreement on o

agreement on input and applied rule

o(r) = input(r −R)

Figure 11.1: Part of an execution of two nodes running the C-counting algorithm
given in the proof of Lemma 11.2, for C = 8 and R = 3. The execution
progresses from left to right, each box representing a round. On top of the input
field the applied rule (1 to 4) to compute the input is displayed. Displayed are
the initial phases of stabilization: (i) after R rounds agreement on the output
is guaranteed by consensus, (ii) then agreement on the input and the applied
rule is reached, and (iii) another R rounds later the agreed upon outputs are
the agreed upon inputs shifted by 3 rounds.

• If the outputs counted modulo C for 2R consecutive rounds, they will do
so forever (by induction, using the first rule); cf. Figure 11.2.

• If this does not happen within O(R) rounds, there will be R consecutive
rounds where input 0 will be used (by the third and the last rule), cf.
Figure 11.2.

• Once R consecutive rounds with input 0 occurred, inputs 1, . . . , 2R will
be used in the following 2R rounds (by the second and third rule).

• Finally, the algorithm will commence counting correctly (by the first rule).

nodes 1 & 2

0

0

r4

0

0

r2

0

1

r2

0

2

r2

0

3

r3

1

4

r3

2

5

r3

3

6

r1

4

7

r1

5

0

r1

6

1

r1

7

2

r1

0

3

r1

1

4

r1

2

5

r1

o

input

rule

counting correctly modulo 8

Figure 11.2: Extension of the execution shown in Figure 11.1. Nodes have
already agreed upon inputs and outputs so that the latter just reproduce the
inputs from R rounds ago. The rules now make sure that the nodes start
counting modulo 8 in synchrony, always executing rule 1.

116 LECTURE 11. SYNCHRONOUS COUNTING

Overall, if each node i computes its input Fi(r) from its local view of the previous
outputs using input, the algorithm will start counting correctly within S ∈ O(R)
rounds.

Remarks:

• The second reduction shows that the time complexities of both tasks are,
up to a constant factor, identical.

• However, reduction from counting to consensus is inefficient in terms of
communication and computation, as there are always R consensus in-
stances running concurrently.

• Resolving this issue will be more challenging, as we can’t simply circum-
vent the issue that the correct nodes don’t agree on round numbers any
more when using consensus as a subroutine any more by just starting an
instance each round.

11.2 Pulsers

As useful tools, we introduce two tasks that are closely related to counting, but
not exactly the same. The first one is, essentially, just slightly rephrasing the
counting task.

Definition 11.3 (Strong pulser). An algorithm P is an f -resilient strong Ψ-
pulser that stabilizes in S(P) rounds if it satisfies the following conditions in
the presence of at most f faulty nodes. Each node v ∈ Vg produces an output bit
p(v, r) ∈ {0, 1} on each round r ∈ N. We say that v generates a pulse in round
r if p(v, r) = 1 holds. We require that there is a round r0 ≤ S(P) such that:

1. For any v ∈ Vg and round r = r0 + kΨ, where k ∈ N0, it holds that
p(v, r) = 1.

2. For any v ∈ Vg and round r ≥ r0 satisfying r 6= r0 + kΨ for k ∈ N0, we
have p(v, r) = 0.

stabilisation

Clock

Node 1 1 1 0 1 1 0 0 1 0 0

Node 2 0 1 0 1 1 0 0 1 0 0

Node 3 (faulty) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
Node 4 0 0 1 0 1 0 0 1 0 0

strong pulser

Figure 11.3: An example execution of a strong 3-pulser on n = 4 nodes with
f = 1 faulty node.

11.2. PULSERS 117

Lemma 11.4. Let C ∈ N and Ψ ∈ N. If C divides Ψ, then a strong Ψ-pulser
that stabilizes in S rounds implies a synchronous C-counter that stabilizes in at
most S rounds. If Ψ divides C, then a synchronous C-counter that stabilizes in
S rounds implies a strong Ψ-pulser that stabilizes in at most S + Ψ− 1 rounds.

Proof. For the first claim, set c(v, r) = 0 in any round r for which p(v, r) = 1
and c(v, r) = c(v, r − 1) + 1 mod C in all other rounds. For the second claim,
set p(v, r) = 1 in all rounds r in which c(v, r) mod Ψ = 0 and p(v, r) = 0 in all
other rounds.

Remarks:

• Another way of interpreting this relation is to view a strong Ψ-pulser as a
different encoding of the output of a Ψ-counter: since the system is syn-
chronous, it suffices to communicate when the counter overflows to value
0 and otherwise count locally. This saves bandwidth when communicating
the state of the counter.

• The additive overhead of Ψ will not matter to us, as we will recursively
construct strong pulsers, deriving a counter only in the very end.

A weak Φ-pulser is similar to a strong pulser, but does not guarantee a
fixed frequency of pulses. However, it guarantees to eventually generate a pulse
followed by Φ− 1 rounds of silence.

Definition 11.5 (Weak pulsers). An algorithm W is an f -resilient weak Φ-
pulser that stabilizes in S(W) rounds if the following holds. In each round
r ∈ N, each node v ∈ Vg produces an output a(v, r). Moreover, there exists a
round r0 ≤ S(W) such that

1. for all v, w ∈ Vg and all rounds r ≥ r0, a(v, r) = a(w, r),

2. a(v, r0) = 1 for all v ∈ Vg, and

3. a(v, r) = 0 for all v ∈ Vg and r ∈ {r0 + 1, . . . , r0 + Φ− 1}.
We say that on round r0 a good pulse is generated by W .

Figure 11.4 illustrates a weak 4-pulser.

Remarks:

• While the definition formally only asks for one good pulse, the fact that
the algorithm guarantees this property for any starting state implies that
there is a good pulse at least every S(W) rounds.

• Weak pulsers are (surprise!) easier to construct than strong pulsers. Yet,
they are good enough to eventually get a consensus instance to be executed
correctly, using the good pulse as starting shot for the execution of the
consensus algorithm. This we can use to stabilize a strong pulser.

Constructing Strong Pulsers from Weak Pulsers

For constructing a strong Ψ-pulser, we assume that we have the following f -
resilient algorithms available:

• an R(C)-round Ψ-valued consensus algorithm C and

• a weak Φ-pulser W for some Φ ≥ R(C).

118 LECTURE 11. SYNCHRONOUS COUNTING

Clock

Node 1 0 1 1 0 1 0 0 0 0 1

Node 2 0 1 1 0 1 0 0 0 0 1

Node 3 (faulty) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
Node 4 0 0 1 0 1 0 0 0 0 1

good pulse

stabilisation

Figure 11.4: An example execution of a weak 4-pulser on n = 4 nodes with
f = 1 faulty node. Eventually, a good pulse is generated, which is highlighted.
A good pulse is followed by three rounds in which no correct node generates a
pulse. In contrast, the pulse two rounds earlier is not good, as it is followed by
only one round of silence.

Variables. Beside the variables of the weak pulser W and (a single copy of)
C, our construction of a strong Ψ-pulser uses the following local variables:

• a(v, r) ∈ {0, 1} is the output variable of the weak Φ-pulser W ,

• b(v, r) ∈ {0, 1} is the output variable of the strong Ψ-pulser we are con-
structing,

• c(v, r) ∈ [Ψ] is the local counter keeping track on when the next pulse
occurs, and

• d(v, r) ∈ {1, . . . , R(C)}∪{⊥} keeps track of how many rounds an instance
of C has been executed since the last pulse from the weak pulser W . The
value ⊥ denotes that the consensus routine has stopped.

Strong pulser algorithm. The algorithm is as follows. Each node v executes
the weak Φ-pulser algorithm W in addition to the following instructions on each
round r ∈ N:

1. If c(v, r) = 0, then set b(v, r) = 1 and otherwise b(v, r) = 0.

2. Set c′(v, r) = c(v, r).

3. If d(v, r) 6= ⊥, then

(a) Execute the instructions of C for round d(v, r).

(b) If d(v, r) 6= R(C), set d(v, r + 1) = d(v, r) + 1.

(c) If d(v, r) = R(C), then

i. Set c′(v, r) = y(v, r) + R(C) mod Ψ, where y(v, r) is the output
value of C.

ii. Set d(v, r + 1) = ⊥.

4. Update c(v, r + 1) = c′(v, r) + 1 mod Ψ.

11.2. PULSERS 119

5. If a(v, r) = 1, then

(a) Start a new instance of C using c′(v, r) as input (resetting all state
variables of C).

(b) Set d(v, r + 1) = 1.

In the above algorithm, the first step simply translates the counter value to
the output of the strong pulser. We then use a temporary variable c′(v, r) to
hold the counter value, which is overwritten by the output of C (increased by
R(C) mod Ψ) if it completes a run in this round. In either case, the counter
value needs to be increased by 1 mod Ψ for the next round. The remaining code
does the bookkeeping for an ongoing run of C and starting a new run if the weak
pulser generates a pulse.

Observe that in the above algorithm, each node only sends messages re-
lated to the weak pulser W and the consensus algorithm C. Thus, there is
no additional overhead in communication and the message size is bounded by
M(W) + M(C), where M(·) denotes the maximum message size of an algo-
rithm. Hence, it remains to show that the local counters c(v, r) implement a
strong Ψ-counter.

Theorem 11.6. The variables c(v, r) in the above algorithm implement a syn-
chronous Ψ-counter that stabilizes in S(W)+R(C)+1 rounds and uses messages
of at most M(W) +M(C) bits.

Proof. Suppose round r0 ≤ S(W) is as in Definition 11.5, that is, a(v, r) =
a(w, r) for all r ≥ r0, and a good pulse is generated in round r0. Thus, all correct
nodes participate in simulating an instance of C during rounds r0 + 1, . . . , r0 +
R(C), since no pulse is generated during rounds r0 + 1, . . . , r0 +R(C)− 1, and
thus, also no new instance is started in the last step of the code during these
rounds.

By the agreement property of the consensus routine, it follows that c′(v, r0+
R(C)) = c′(w, r0 +R(C)) for all v, w ∈ Vg after Step 3ci. By Steps 2 and 4, the
same will hold for both c(·, r′) and c′(·, r′), r′ > r0+R(C), provided that we can
show that in rounds r′ > r, Step 3ci never sets c′(v, r) to a value different than
c(v, r) for any v ∈ Vg; as this also implies that c(v, r′ + 1) = c(v, r′) + 1 mod Ψ
for all v ∈ Vg and r′ > r0 +R(C), this will complete the proof.

Accordingly, consider any execution of Step 3ci in a round r′ > r0 + R(C).
The instance of C terminating in this round was started in round r′−R(C) > t0.
However, in this round the weak pulser must have generated a pulse, yielding
that, in fact, r′ −R(C) ≥ r0 +R(C). Assuming for contradiction that r′ is the
earliest round in which the claim is violated, we thus have that c′(v, r′−R(C)) =
c′(w, r′−R(C)) for all v, w ∈ Vg, i.e., all correct nodes used the same input value
c for the instance. By the validity property of C, this implies that v ∈ Vg outputs
y(v, r′) = c in round r′ and sets c′(v, r′) = c + R(C) mod Ψ. However, since
r′ is the earliest round of violation, we already have that c′(v, r′) = c(v, r′) =
c+R(C) mod Ψ after the second step, contradicting the assumption and showing
that the execution stabilized in round r0 +R(C) + 1 ≤ S(W) +R(C) + 1.

Together with Lemma 11.4, we get the following corollary.

Corollary 11.7. Let Ψ > 1. Suppose that there exists an f -resilient Ψ-value
consensus routine C and a weak Φ-pulser W , where Φ ≥ R(C). Then there
exists an f -resilient strong Ψ-pulser P that

120 LECTURE 11. SYNCHRONOUS COUNTING

• stabilizes in time S(P) ≤ R(C) + S(W) + Ψ, and

• uses messages of size at most M(P) ≤M(C) +M(W) bits.

Remarks:

• This straightforward construction reduces our task to designing weak
pulsers.

• Even though we “havn’t done much,” constructing weak pulsers is signif-
icantly easier.

• This is an example where the hardest part is to come up with the right
question, or rather problem to solve. By giving rise to the questions “can
we obtain strong pulsers from weak ones?” and “can we construct weak
pulsers?” the notion of weak pulsers breaks the question “can we construct
strong pulsers” into (as it turns out) more managable tasks.

11.3 Weak from (less Resilient) Strong Pulsers

Having seen that we can construct strong pulsers from weak pulsers using a
consensus algorithm, the missing piece is the existence of efficient weak pulsers.
We now devise a recursive construction of a weak pulser from strong pulsers
of smaller resilience. Given that a 0-resilient pulser is trivial and that we can
obtain strong pulsers from weak ones without losing resilience, this is sufficient
for constructing strong pulsers of optimal resilience from consensus algorithms
of optimal resilience.

At a high level, we take the following approach (see Figure 11.5):

1. Partition the network into two parts, each running a strong pulser (with
small resilience). Our construction guarantees that at least one of the
strong pulsers stabilizes.

2. Filtering of pulses generated by the strong pulsers:

a) Nodes consider the observed pulses generated by the strong pulsers
as potential pulses.

b) Since one of the strong pulsers may not stabilize, it may generate
spurious pulses, that is, pulses that only a subset of the correct nodes
observe.

c) We limit the frequency of the spurious pulses using a filtering mech-
anism based on threshold voting.

3. We force any spurious pulse to be observed by either all or none of cor-
rect nodes by employing a silent consensus routine. In silent consensus,
no message is sent (by correct nodes) if all correct nodes have input 0.
Thus, if all nodes actually participating in an instance have input 0, non-
participating nodes behave as if they participated with input 0. This avoids
the chicken-and-egg problem of having to solve consensus on participation
in the consensus routine. We make sure that if any node uses input 1, i.e.,
the consensus routine may output 1, all nodes participate. Thus, when a
pulse is generated, all correct nodes agree on this.

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 121

Filtering 0

Strong pulser P0 Strong pulser P1

Filtering 1

Silent consensus 0

Silent consensus 1

Weak pulser

≈ n/2 nodes ≈ n/2 nodes

2. All n nodes participate in filtering spurious pulses.

3. Use consensus to agree whether the block generated
 a pulse recently.

1. The network is divided into two blocks.
 Each block runs a strong pulser instance, where
 the pulsers have coprime frequencies.

4. A pulse is generated if one of the consensus instances
 outputs “1”.

Figure 11.5: Overview of the weak pulser construction. Light and dark grey
boxes correspond to steps of block 0 and 1, respectively. The small rounded
boxes denote the pulser algorithms Pi that are run (in parallel) on two disjoint
sets of roughly n/2 nodes, whereas the wide rectangular boxes denote to the
filtering steps in which all of the n nodes are employed. The arrows indicate
the flow of information for each block.

4. If a potential pulse generated by one of the pulsers both passes the fil-
tering step and the consensus instance outputs “1”, then a weak pulse is
generated.

The Filtering Construction

Our goal is to construct a weak Φ-pulser (for sufficiently large Φ) with resilience
f . We partition the set of n nodes into two disjoint sets V0 and V1 with n0 and
n1 nodes, respectively. Thus, we have n = n0 + n1. For i ∈ {0, 1}, let Pi be an
fi-resilient strong Ψi-pulser. That is, Pi generates a pulse every Ψi rounds once
stabilized, granted that Vi contains at most fi faulty nodes. Nodes in block i
execute the algorithm Pi. Our construction tolerates f = f0 + f1 + 1 faulty
nodes. Since we consider Byzantine faults, we require the additional constraint
that f < n/3.

Let ai(v, r) ∈ {0, 1} indicate the output bit of Pi for a node v ∈ Vi. Note
that we might have a block i ∈ {0, 1} that contains more than fi faulty nodes.
Thus, it is possible that the algorithm Pi never stabilizes. In particular, we
might have the situation that some of the nodes in block i produce a pulse,
but others do not. We say that a pulse generated by such a Pi is spurious.
We proceed by showing how to filter out such spurious pulses if they occur too
often.

Filtering rules. We define five variables with the following semantics:

• mi(v, r+1) indicates whether at least ni−fi nodes u ∈ Vi sent ai(u, r) = 1,

• Mi(v, r+1) indicates whether at least n−f nodes u ∈ V sent mi(u, r) = 1,

122 LECTURE 11. SYNCHRONOUS COUNTING

• `i(v, r) indicates when was the last time block i triggered a (possibly
spurious) pulse,

• xi(v, r) is a cooldown counter that indicates how many rounds any firing
events coming from block i are ignored, and

• bi(v, r) indicates whether node v accepts a firing event from block i.

The first two of the above variables are set according to the following rules:

• mi(v, r + 1) = 1 if and only if |{w ∈ Vi : ai(v, w, r) = 1|} ≥ ni − fi,

• Mi(v, r + 1) = 1 if and only if |{w ∈ V : mi(v, w, r) = 1} ≥ n− f ,

where ai(v, w, r) and mi(v, w, r) denote the values for a(·) and m(·) node v
received from u at the end of round r, respectively. Furthermore, we update
the `(·, ·) variables using the rule

`i(v, r + 1) =

{
0 if |{w ∈ V : mi(w, r) = 1}| ≥ f + 1,

y otherwise,

where y = min{Ψi, `i(v, r) + 1} (and, of course, each node v ∈ Vg performs the
update according to the count it perceives). In words, the counter is reset on
round r + 1 if v has proof that at least one correct node w had mi(w, r) = 1,
that is, some w ∈ Vg observed Pi generating a (possibly spurious) pulse.

We reset the cooldown counter xi whenever suspicious activity occurs. The
idea is that it is reset to its maximum value C by node v in the following two
cases:

• some other correct node u 6= v observed block i generating a pulse, but
the node v did not, or

• block i generated a pulse, but this happened either too soon or too late.

To capture this behaviour, the cooldown counter is set with the rule

xi(v, r + 1) =


C if Mi(v, r + 1) = 0 and `i(v, r + 1) = 0,

C if Mi(v, r + 1) = 1 and `i(v, t) 6= Ψi − 1,

y otherwise,

where y = max{xi(v, r)−1, 0} and C = max{Ψ0,Ψ1}+Φ+2. Finally, a node v
accepts a pulse generated by block i if the node’s cooldown counter is zero and
it saw at least n− f nodes supporting the pulse. The variable bi(v, r) indicates
whether node v accepted a pulse from block i on round r. The variable is set
using the rule

bi(v, t) =

{
1 if xi(v, r) = 0 and Mi(v, r) = 1,

0 otherwise.

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 123

Analysis of the Filtering Construction

We now analyse when the nodes accept firing events generated by the blocks.
We say that a block i is correct if it contains at most fi faulty nodes. Note that
since there are at most f = f0 +f1 +1 faulty nodes, at least one block i ∈ {0, 1}
will be correct. Thus, eventually the algorithm Pi run by a correct block i will
stabilize. This yields the following lemma.

Lemma 11.8. For some i ∈ {0, 1}, the strong pulser algorithm Pi stabilizes by
round S(Pi).

We proceed by establishing some bounds on when (possibly spurious) pulses
generated by block i are accepted. We start with the case of having a correct
block i.

Lemma 11.9. If block i is correct, then there exists a round t0 ≤ S(Pi) + 2
such that for each v ∈ Vg, Mi(v, r) = 1 if and only if r = t0 + kΨi for k ∈ N0.

Proof. If block i is correct, then the algorithm Pi stabilizes by round S(Pi).
Hence, there is some r0 ≤ S(P) so that the output variable ai(·) of Pi satisfies

ai(v, r) = 1 if and only if r = r0 + kΨi for k ∈ N0

holds for all r ≥ r0. We will now argue that t0 = r0 + 2 satisfies the claim of
the lemma.

If Pi generates a pulse on round r ≥ r0, then at least ni − fi correct nodes
u ∈ Vi∩Vg have ai(u, r) = 1. Therefore, for all v ∈ Vg we have mi(v, r+ 1) = 1,
and consequently, Mi(v, r + 2) = 1. Since block i is correct, there are at most
fi faulty nodes in the set Vi. Observe that by Lemma 11.4 strong pulsers solve
synchronous counting, which in turn is as hard as consensus (by Lemma 11.1).
This implies that we must have fi < ni/3, as Pi is a strong fi-resilient pulser
for ni nodes. Therefore, if Pi does not generate a pulse on round r ≥ r0, then
at most fi < ni − fi faulty nodes w may claim ai(w, t) = 1. This yields that
mi(v, t+ 1) = Mi(v, t+ 2) = 0 for all v ∈ Vg.

We can now establish that a correct node accepts a pulse generated by a
correct block i exactly every Ψi rounds.

Lemma 11.10. If block i is correct, then there exists a round t1 ≤ S(Pi) + 2C
such that for each v ∈ Vg, bi(v, r) = 1 for any r ≥ r0 if and only if r = t1 + kΨi

for k ∈ N0.

Proof. Lemma 11.9 implies that there exists t0 ≤ S(Pi) + 2 such that both
Mi(v, t) = 1 and `i(v, r) = 0 hold for r ≥ t0 if and only if r = t0 + kΨi for
k ∈ N0. It follows that xi(v, r + 1) = max{xi(v, r) − 1, 0} for all such r and
hence xi(v, r

′) = 0 for all r′ ≥ t0 + C + 2. The claim now follows from the
definition of bi(v, r

′), the choice of t0, and the fact that Ψi ≤ C − 2.

It remains to deal with the faulty block. If we have Byzantine nodes, then a
block i with more than fi faulty nodes may attempt to generate spurious pulses.
However, the filtering mechanism prevents the spurious pulses from occuring too
frequently.

Lemma 11.11. Let v, v′ ∈ Vg and t > 2. Suppose that bi(v, r) = 1 and r′ > r
is minimal such that bi(v

′, r′) = 1. Then r′ = r + Ψi or r′ > r + C.

124 LECTURE 11. SYNCHRONOUS COUNTING

Proof. Suppose that bi(v, r) = 1 for some correct node v ∈ Vg and r > 2. Since
bi(v, r) = 1, xi(v, r) = 0 and Mi(v, r) = 1. Because Mi(v, r) = 1, there must
be at least n − 2f > f correct nodes w such that mi(w, r − 1) = 1. Hence,
`i(w, t) = 0 for every node w ∈ Vg.

Recall that r′ > r is minimal so that bi(v
′, r′) = 1. Again, xi(v

′, r′) = 0 and
Mi(v

′, r′) = 1. Moreover, since `i(v
′, r) = 0, we must have `i(v

′, r) < Ψi − 1
for all r ≤ t < r + Ψi − 1. This implies that r′ ≥ r + Ψi, as xi(v

′, r′) = 0
and Mi(v

′, r′) = 1 necessitate that `i(v
′, r′ − 1) = Ψi − 1. In the event that

r′ 6= r + Ψi, the cooldown counter must have been reset at least once, i.e.,
xi(v

′, t) = C holds for some r < t ≤ r′ − C, implying that r′ > r + C.

Remarks:

• The bottomline: The filtering mechanism does not interfere with the out-
put of correct blocks, but it restricts the possible confusion arising from
faulty blocks to either sticking to a fixed frequency or being eliminated
completely for long enoug (i.e., C rounds).

Using Silent Consensus to Prune Spurious Pulses

The above filtering mechanism prevents spurious pulses from occurring too of-
ten: if some node accepts a pulse from block i, then no node accepts a pulse
from this block for at least Ψi rounds. We now strengthen the construction to
enforce that any (possibly spurious) pulse generated by block i will be accepted
by either all or none of the correct nodes. In order to achieve this, we employ
silent consensus.

Definition 11.12 (Silent consensus). We call a consensus protocol silent, if in
each execution in which all correct nodes have input 0, correct nodes send no
messages.

The idea is that this enables to have consistent executions even if not all
correct nodes actually take part in an execution, provided we can ensure that
in this case all participating correct nodes use input 0: the non-participating
nodes send no messages either, which is the exact same behavior participating
nodes would exhibit.

Theorem 11.13. Any consensus protocol C can be transformed into a silent
binary consensus protocol C ′ with R(C ′) = R(C) + 2 and the same resilience
and message size.

Proof. Exercise.

For example, plugging in the Phase King protocol, we get the following
corollary.

Corollary 11.14. For any f < n/3, there exists a deterministic f -resilient
silent binary consensus protocol C with R(C) ∈ Θ(f) and M(C) ∈ O(1).

As the filtering construction bounds the frequency at which spurious pulses
may occur from above, we can make sure that at each time, only one consensus
instance can be executed for each block. However, we need to further preprocess
the inputs, in order to make sure that (i) all correct nodes participate in an

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 125

instance or (ii) no participating correct node has input 1; here, output 1 means
agreement on a pulse being triggered, while output 0 results in no action.

Recall that bi(v, r) ∈ {0, 1} indicates whether v observed a (filtered) pulse of
the strong pulser Pi in round r. Moreover, assume that C is a silent consensus
protocol running in R(C) rounds. We use two copies Ci, where i ∈ {0, 1}, of
the consensus routine C. We require that Ψi ≥ R(C), which guarantees by
Lemm 11.11 that (after stabilization) every instance of C has sufficient time to
complete. Adding one more level of voting to clean up the inputs, we arrive at
the following routine.

The pruning algorithm. Besides the local variables of Ci, the algorithm will
use the following variables for each v ∈ Vg and round r ∈ N:

• yi(v, r) ∈ {0, 1} denotes the output value of consensus routine Ci,

• ti(v, r) ∈ {1, . . . , R(C)} ∪ {⊥} is a (local) round counter for controlling
Ci, and

• Bi(v, r) ∈ {0, 1} is the output of block i.

Now each node v executes the following on round r:

1. Broadcast the value bi(v, r).

2. If bi(v, w, r−1) = 1 for at least n−2f nodes w ∈ V , then reset ti(v, r) = 1.

3. If ti(v, r) = 1, then

(a) start a new instance of Ci, that is, re-initialise the variables of Ci
correctly,

(b) use input 1 if bi(v, w, r − 1) = 1 for at least n− f nodes w ∈ V and
0 otherwise.

4. If ti(v, r) = R(C), then

(a) execute round R(C) of Ci,

(b) set ti(v, r + 1) = ⊥,

(c) setBi(v, r+1) = yi(v, r), where yi(v, r) ∈ {0, 1} is the output variable
of Ci.

Otherwise, set Bi(v, r + 1) = 0.

5. If ti(v, r) 6∈ {R(C),⊥}, then

(a) execute round ti(v, r) of Ci, and

(b) set ti(v, r + 1) = ti(v, r) + 1.

126 LECTURE 11. SYNCHRONOUS COUNTING

Analysis. Besides the communication used for computing the values bi(·), the
above algorithm uses messages of size M(C) + 1, as M(C) bits are used when
executing Ci and one bit is used to communicate the value of bi(v, r).

We say that v ∈ Vg executes the round t ∈ {1, . . . , T (C)} of Ci in round r iff
ti(v, r) = t. By Lemm 11.11, in rounds t > R(C) + 2, there is always at most
one instance of Ci being executed, and if so, consistently.

Corollary 11.15. Suppose that v ∈ Vg executes round 1 of Ci in some round
r > T (C) + 2. Then there is a subset U ⊆ Vg such that each w ∈ U executes
round t ∈ {1, . . . , R(C)} of Ci in round r + t − 1 and no u ∈ Vg \ U executes
any round of Ci in round r + t− 1.

Exploiting silence of Ci and the choice of inputs, we can ensure that the case
U 6= Vg causes no trouble.

Lemma 11.16. Let r > T (C)+2 and U be as in Corollary 11.15. Then U = Vg
or each w ∈ U has input 0 for the respective instance of Ci.

Proof. Suppose that v ∈ U starts an instance with input 1 in round r′ ∈ {r −
T (C)− 1, . . . , r}. Then bi(w, r

′ − 1) = 1 for at least n− 2f nodes w ∈ Vg, since
v received bi(v, w, r

′ − 1) = 1 from n − f nodes w ∈ V . Thus, each v′ ∈ Vg
received bi(v

′, w, r′−1) = 1 from at least n−2f nodes v′ and sets ri(v
′, r′) = 1,

i.e., U = Vg. The lemma now follows from Corollary 11.15.

Recall that if all nodes executing Ci have input 0, non-participating correct
nodes behave exactly as if they executed Ci as well, i.e., they send no messages.
Hence, if U 6= Vg, all nodes executing the algorithm will compute output 0.
Therefore, Corollary 11.15, Lemm 11.11, and Lemm 11.16 imply the following
corollary.

Corollary 11.17. In rounds r > T (C) + 2 it holds that Bi(v, r) = Bi(w, t)
for all v, w ∈ Vg and i ∈ {0, 1}. Furthermore, if Bi(v, r) = 1 for v ∈ Vg and
r > T (C)+2, then the minimal r′ > r so that Bi(v, r

′) = 1 (if it exists) satisfies
either r′ = r + Ψi or r′ > r + C = t+ max{Ψ0,Ψ1}+ Φ + 2.

Finally, we observe that our approach does not filter out pulses from correct
blocks.

Lemma 11.18. If block i is correct, there is a round t2 ≤ S(Pi)+2C+R(C)+1
so that for any r ≥ t2, Bi(v, r) = 1 if and only if r = t2 + kΨi for some k ∈ N0.

Proof. Lemm 11.10 states the same for the variables bi(v, r) and a round t1 ≤
S(Pi)+2C. If bi(v, r) = 1 for all v ∈ Vg and some round r, all correct nodes start
executing an instance of Ci with input 1 in round r+ 1. As, by Corollary 11.15,
this instance executes correctly and, by validity of Ci, outputs 1 in round r +
R(C), all correct nodes satisfy Bi(v, r + R(C) + 1) = 1. Similarly, Bi(v, r +
R(C) + 1) = 0 for such v and any r ≥ t1 with bi(v, r) = 0.

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 127

Remarks:

• The bottomline: we used consensus to enforce consistency of the outputs
of correct nodes.

• In order to resolve the issue that not always all correct nodes will know
to participate, we used silent consensus. If anyone is set on using input
1 (everything seems to be fine), all correct nodes participate. Otherwise,
the participating nodes have input 0, and because the non-participating
nodes do not send messages, the fact that the consensus routine is silent
means that the run behaves just as if everyone participated with input 0.

• Note how this is similar to how we made the Phase King algorithm work:
either the Phase King figures out that someone is stuck with value b ∈
{0, 1} and broadcasts b, or no correct node is stuck with a fixed value, so
it doesn’t matter which value the king broadcasts.

Obtaining the Weak Pulser

Finally, we define the output variable of our weak pulser as

B(v, r) = max{B0(v, r), B1(v, r)}.

As we have eliminated the possibility that Bi(v, r) 6= Bi(w, r) for v, w ∈ Vg and
r > R(C) + 2, Property W1 holds. Since there is at least one correct block i
by Lemma 11.8, Lemma 11.18 shows that there will be good pulses (satisfying
Properties W2 and W3) regularly, unless block 1 − i interferes by generating
pulses violating Property W3 (i.e., in too short order after a pulse generated by
block i). Here the filtering mechanism comes to the rescue: as we made sure
that pulses are either generated at the chosen frequency Ψi or a long period of
C rounds of generating no pulse is enforced (Corollary 11.17), it is sufficient to
choose Ψ0 and Ψ1 as coprime multiples of Φ.

Accordingly, we pick Ψ0 = 2Φ and Ψ1 = 3Φ and observe that this results in
a good pulse within O(Φ) rounds after the Bi stabilized.

Lemma 11.19. In the construction described in the previous two subsections,
choose Ψ0 = 2Φ and Ψ1 = 3Φ for any Φ ≥ R(C). Then B(v, r) is the output
variable of a weak Φ-pulser with stabilization time max{S(P0), S(P1)}+O(Φ).

Proof. We have that C = max{Ψ0,Ψ1}+ Φ + 2 ∈ O(Φ). By the above observa-
tions, there is a round

r ∈ max{S(P0), S(P1)}+R(C) +O(Φ)

⊆ max{S(P0), S(P1)}+O(Φ)

satisfying the following four properties. For either block i ∈ {0, 1}, we have by
Corollary 11.17 that

1. Bi(v, r
′) = Bi(w, r

′) and B(v, r′) = B(w, r′) for any v, w ∈ Vg and r′ ≥ r.
Moreover, for a correct block i and for all v ∈ Vg we have from Lemma 11.18
that

2. Bi(v, r) = Bi(v, r + Ψi) = 1,

128 LECTURE 11. SYNCHRONOUS COUNTING

3. Bi(v, r
′) = 0 for all r′ ∈ {r+1, . . . , r+Φ−1}∪{r+Ψi+1, . . . , r+Ψi+Φ−1},

and for a (possibly faulty) block 1− i we have from Corollary 11.17 that

4. if B1−i(v, r′) = 1 for some v ∈ Vg and r′ ∈ {r + 1, . . . , r + Ψi + Φ − 1},
then B1−i(w, r′′) = 0 for all w ∈ Vg and r′′ ∈ {r′ + 1, . . . , r′ + C} that do
not satisfy r′′ = r′ + kΨ1−i for some k ∈ N0.

Now it remains to argue that a good pulse is generated. Suppose that i
is a correct block given by Lemma 11.8. By the first property, it suffices to
show that a good pulse occurs in round r or in round r + Ψi. From the second
property, we get for all v ∈ Vg that B(v, r) = 1 and B(v, r + Ψi) = 1. If the
pulse in round r is good, the claim holds. Hence, assume that there is a round
r′ ∈ {r + 1, . . . , r + Ψi − 1} in which another pulse occurs, that is, B(v, r′) = 1
for some v ∈ Vg. This entails that B1−i(v, r′) = 1 by the third property. We
claim that in this case the pulse in round r + Ψi is good. To show this, we
exploit the fourth property. Recall that C > Ψi + Φ, i.e., r′ + C > r + Ψi + Φ.
We distinguish two cases:

• In the case i = 0, we have that r′ + Ψ1−i = r′ + 3Φ = r′ + Ψ0 + Ψ >
r + Ψ0 + Φ, that is, the pulse in round r + Ψ0 = r + Ψi is good.

• In the case i = 1, we have that r′ + Ψ1−i = r′ + 2Φ < r + 3Φ = r + Ψ1

and r′ + 2Ψ1−i = r′ + 4Φ = r′ + Ψ1 + Φ > r + Ψ1 + Φ, that is, the pulse
in round r + Ψ1 = r + Ψi is good.

In either case, a good pulse occurs by round

r + max{Ψ0,Ψ1} ∈ max{S(P0), S(P1)}+O(Φ).

From the above lemma and the constructions discussed in this section, we
get the following theorem.

Theorem 11.20. Let n = n0 +n1 and f = f0 + f1 + 1, where n > 3f . Suppose
that C is an f -resilient consensus algorithm on n nodes and let Φ ≥ R(C)+2. If
there exist fi-resilient strong Ψi-pulser algorithms on ni nodes, where Ψ0 = 2Φ
and Ψ1 = 3Φ, then there exists an f -resilient weak Φ-pulser W on n nodes that
satisfies

• S(W) ∈ max{S(P0), S(P1)}+O(Φ),

• M(W) ∈ max{M(P0),M(P1)}+O(M(C)).

Proof. By Theorem 11.13, we can transform C into a silent consensus protocol
C ′, at the cost of increasing its round complexity by 2. Using C ′ in the con-
struction, Lemma 11.19 shows that we obtain a weak Φ-pulser with the stated
stabilization time, which by construction tolerates f faults. Concerning the
message size, note that we run P0 and P1 on disjoint node sets. Apart from
sending at most max{M(P0),M(P1)} bits per round for its respective strong
pulser, each node may send up to M(C) ≥ 1 bits each to each other node for
the two copies Ci of C it runs in parallel, plus a constant number of additional
bits for the filtering construction including its outputs bi(·, ·).

Remarks:

• The work is done, we merely need to chain the constructions for weak and
strong pulsers recursively now.

11.4. PLUGGING IT TOGETHER 129

11.4 Plugging it Together

Finally, in this section we put the developed machinery to use. As our main
result, we show how to recursively construct strong pulsers out of consensus
algorithms.

Theorem 11.21. Suppose that we are given a family of f -resilient consensus al-
gorithms C(f) running on any number n > 3f of nodes in R(C(f)) rounds using
M(C(f))-bit messages, where both R(C(f)) and M(C(f)) are non-decreasing in
f . Then, for any Ψ ∈ N, f ∈ N0, and n > 3f , there exists a strong Ψ-pulser P
on n nodes that stabilizes in time

S(P) ∈ (1 + o(1))Ψ +O

dlog fe∑
j=0

R(C(2j))


and uses messages of size at most

M(P) ∈ O

1 +

dlog fe∑
j=0

M(C(2j))


bits, where the sums are empty for f = 0.

Proof. We show by induction on k that f -resilient strong Ψ-pulsers P (f,Ψ) on
n > 3f nodes with the stated complexity exist for any f < 2k, with the addition
that the (bounds on) stabilization time and message size of our pulsers are non-
decreasing in f . We anchor the induction at k = 0, i.e., f = 0, for which,
trivially, a 0-resilient strong Ψ-pulser with n ∈ N nodes is given by one node
generating pulses locally and informing the other nodes when to do so. This
requires 1-bit messages and stabilizes in Ψ + 1 rounds.

Now assume that 2k ≤ f < 2k+1 for k ∈ N0 and the claim holds for all
0 ≤ f ′ < 2k. Since 2 · (2k − 1) + 1 = 2k+1 − 1, there are f0, f1 < 2k such that
f = f0 + f1 + 1. Moreover, as n > 3f > 3f0 + 3f1, we can pick ni > 3fi for
both i ∈ {0, 1} satisfying n = n0 + n1. Let P (f ′,Ψ′) denote a strong Ψ′-pulser
that exists by the induction hypothesis for f ′ < 2k.

We intend to use Ψ-valued consensus algorithm C ′ on n nodes resilient to f
faults that we obtain from C(f) as in Task 1 of Exercise 9. In order to make use
of it, we need a weak Φ-pulser, where Φ ∈ O(log Ψ)+R(C(f)) matches the time
complexity of C ′. Without loss of generality, we may assume that the O(log Ψ)
term is at least 2, that is, Φ ≥ 2 +R(C(f)). We apply Theorem 11.20 to C(f)
and Pi = P (fi,Ψi), where Ψ0 = 2Φ and Ψ1 = 3Φ, to obtain a weak Φ-pulser
W on n nodes with resilience f , stabilization time of

S(W) ∈ max{S(P0), S(P1)}+O(Φ) ,

and message size of

M(W) ∈ max{M(P0),M(P1)}+O(M(C(f))) .

Recall from Task 1 of Exercise 9 that C ′ uses messages of size M(C(f)) bits
and runs in R(C ′) ≤ Φ rounds. We feed the weak pulser W and the multivalued

130 LECTURE 11. SYNCHRONOUS COUNTING

consensus protocol C ′ into Corollary 11.7 to obtain an f -resilient strong Ψ-pulser
P that stabilizes in

S(P) ≤ R(C ′) + S(W) + Ψ ≤ S(W) + Ψ + Φ

∈ max{S(P0), S(P1)}+ Ψ +O(Φ)

rounds and has message size bounded by

M(P) ≤M(W) +M(C(f))

∈ max{M(P0),M(P1)}+O(M(C(f))).

Applying the bounds given by the induction hypothesis to P0 and P1, the
definitions of Φ, Ψ0 and Ψ1, and the fact that both R(C(f)) and M(C(f)) are
non-decreasing in f , we get that the stabilization time satisfies

S(P) ∈ max{S(P (f0,Ψ0)), S(P (f1,Ψ1))}+ Ψ +O(Φ)

⊆ (1 + o(1)) · 3Φ +O

dlog 2ke∑
j=0

R(C(2j))


+ Ψ +O(Φ)

⊆ Ψ +O(log Ψ) +O

dlog 2ke∑
j=0

R(C(2j))


+O(R(C(f)))

⊆ (1 + o(1))Ψ +O

dlog fe∑
j=0

R(C(2j))

 ,

and message size is bounded by

M(P) ∈ max{M(P (f0,Ψ0)),M(P (f1,Ψ1))}
+O(M(C(f)))

⊆ O

1 +

dlog 2ke∑
j=0

M(C(2j))

+O(M(C(f)))

⊆ O

1 +

dlog fe∑
j=0

M(C(2j))

 .

Because we bounded complexities using maxi{S(Pi)}, maxi{M(Pi)}, R(C(f))
and M(C(f)), all of which are non-decreasing in f by assumption, we also
maintain that the new bounds on stabilization time and message size are non-
decreasing in f . Thus, the induction step succeeds and the proof is complete.

Plugging in the Phase King protocol, we can extract a strong pulser that is
optimally resilient, has asymptotically optimal stabilization time, and message
size O(log f).

Corollary 11.22. For any Ψ, f ∈ N and n > 3f , an f -resilient strong Ψ-pulser
on n nodes with stabilization time (1+o(1))Ψ+O(f) and message size O(log f)
exists.

11.4. PLUGGING IT TOGETHER 131

Corollary 11.23. For any C, f ∈ N and n > 3f , an f -resilient C-counter on
n nodes with stabilization time O(f + logC) and message size O(log f) exists.

Proof. In the last step of the construction of Theorem 11.21, we do not use
Corollary 11.7 to extract a strong pulser, but directly obtain a counter using
Theorem 11.6. This avoids the overhead of Ψ due to waiting for the next pulse.
Recalling that the o(Ψ) term in the complexity comes from theO(log Ψ) additive
overhead in time of the multi-value consensus routine, the claim follows.

Remarks:

• The construction may look awfully complicated, but this is not the result
of a high difficulty of the proof.

• Taking into account that the idea that recursion might help is borrowed
from the recursive variant of the Phase King protocol, the main challenges
were coming up with the idea to break the problem up into the subtasks
of constructing weak and strong pulsers, and seeing that silent consensus
can be used to circumvent the need for running consensus on whether to
run consensus.

• The entire construction works, without any changes, with randomized
consensus routines (satisfying certain constraints, which can as easily and
generically be achieved as silence). In particular, this yields solutions with

stabilization time logO(1) f .

• Needless to say that you’re not expected to know the full details of the
construction by heart!

Bibliographic Notes

The synchronous counting problem was dubbed by Dolev and Hoch under the
name of self-stabilizing Byzantine digital clock synchronization [HDD06]. They
provide a linear-time solution based on consensus. The construction given in
Lemma 11.2 is a simplification given in a later survey [DFL+15]. The term
“synchronous counting” came up later, because “self-stabilizing Byzantine dig-
ital clock synchronization” just takes way too long to say (try it out 10 times).

However, (another) Dolev and Welch were the ones who originally introduced
the task, in the same article in which they introduce and solve self-stabilizing
pulse synchronization [DW04]. They devise an exponential-time solution for
counting, which they then adapt to yield an exponential-time self-stabilizing
pulse synchronization algorithm. Apart from introducing the problems, this
work surprised by showing that the tasks can actually be solved, despite the
severe fault model. It also shows how the “synchronous version” of pulse syn-
chronization can serve as a testing ground for algorithmic ideas, without the
messy details of drifting clocks and uncertain communication delays, before
adapting them into solutions to pulse synchronization. This was also a main
motivation of the line of work [DHJ+16, LRS15, LRS17] culminating in the
recursive construction presented in this lecture [LR16]: at the time it was un-
known if more efficient (in particular sub-linear time) self-stabilizing solutions to
pulse synchronization could be achieved, so we decided to study the synchronous
counting problem as the “closest of kin” in the synchronous model.

132 LECTURE 11. SYNCHRONOUS COUNTING

Bibliography

[DFL+15] Danny Dolev, Matthias Függer, Christoph Lenzen, Ulrich Schmid,
and Andreas Steininger. Fault-tolerant Distributed Systems in Hard-
ware. Bulletin of the EATCS, 116, 2015.

[DHJ+16] Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen,
Christoph Lenzen, Joel Rybicki, Jukka Suomela, and Siert Wieringa.
Synchronous Counting and Computational Algorithm Design. Jour-
nal of Computer and System Sciences, 82(2):310–332, 2016.

[DW04] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in
the Presence of Byzantine Faults. Journal of the ACM, 51(5):780–
799, 2004.

[HDD06] Ezra Hoch, Danny Dolev, and Ariel Daliot. Self-Stabilizing Byzan-
tine Digital Clock Synchronization. In Proc. 8th Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), pages
350–362, 2006.

[LR16] Christoph Lenzen and Joel Rybicki. Near-Optimal Self-stabilising
Counting and Firing Squads. In Borzoo Bonakdarpour and Franck
Petit, editors, Proc. Symposium on Stabilization, Safety, and Security
of Distributed Systems, pages 263–280, 2016.

[LRS15] Christoph Lenzen, Joel Rybicki, and Jukka Suomela. Towards Opti-
mal Synchronous Counting. In Proc. 34th Symposium on Principles
of Distributed Computing (PODC), pages 441–450, 2015.

[LRS17] C. Lenzen, J. Rybicki, and J. Suomela. Efficient Counting with Opti-
mal Resilience. SIAM Journal on Computing, 46(4):1473–1500, 2017.

Lecture 12

Pulse Synchronization

In this lecture, we finally address the task of self-stabilizing pulse synchroniza-
tion. A trace is good from time t if starting from then (i.e., when starting to
count pulses from time t), the requirements of pulse synchronization are met.

We will head for an algorithm with a very good trade-off between stabiliza-
tion time and communication complexity — here measured by the amount of bits
a correct node broadcasts within O(d) time — right away. This will be achieved
by reducing the task to consensus, very similar to the previous lecture. How-
ever, the fact that timing is now imprecise (due to uncertain message delays and
drifting clocks), the details become rather complex. We will focus on the key
ideas in this lecture, deliberately avoiding to give detailed proofs. Once we strip
away these obfuscating issues, very little conceptual differences remain between
the solution from the previous lecture and the algorithm presented today.

12.1 Outline of the Construction

We will sketch the overall construction, relying on the high similarity to the
recursive construction of synchronous counting algorithms from the previous
lecture for intuition. This will lead to identifying the main challenge in the
approach, which we will focus on afterwards. Let us first state the final result
of the machinery.

Theorem 12.1. For f ∈ N0, denote by C(f) (synchronous deterministic) con-
senus algorithms tolerating f faults on any number n ≥ 3f + 1 of nodes and
by R(f) and M(f) their round complexities and message sizes, respectively. If
1 < ϑ ≤ 1.004, there exists T0 ∈ Θ(R(f)) and ϕ ∈ 1 + O(ϑ − 1) such that for
any T ≥ T0 there is a pulse synchronization algorithm P satisfying that

• it stabilizes in S(P) ∈ O(d(1 +
∑dlog fe
k=0 R(2k))) time,

• correct nodes broadcast M(P) ∈ O(1 +
∑dlog fe
k=0 M(2k)) bits per d time,

• it has skew 2d,

• it has minimum period Pmin ≥ T , and

• it has maximum period Pmax ≤ ϕT .

133

134 LECTURE 12. PULSE SYNCHRONIZATION

Corollary 12.2. If 1 < ϑ ≤ 1.004, there exists T0 ∈ Θ(f) and ϕ ∈ 1+O(ϑ−1)
such that for any T ≥ T0 there is a pulse synchronization algorithm P satisfying
that

• it stabilizes in O(df) time,

• correct nodes broadcast O(log f) bits per d time,

• it has skew 2d,

• it has minimum period Pmin ≥ T , and

• it has maximum period Pmax ≤ ϕT .

Proof. We plug the Phase King algorithm into Theorem 12.1.

To make the recursion underlying this theorem work, again we need two main
steps: The first is to construct pulse synchronization algorithms from resynchro-
nization algorithms, which are “weak” pulse synchronization algorithms that
produce a “proper” pulse only once in a while; the second is to construct resyn-
chronization algorithms from two pulse synchronization algorithms on disjoint
subsets of the nodes.

Definition 12.3 (Resynchronization Algorithm). B is an f -resilient resynchro-
nization algorithm with skew ρ and separation window Ψ that stabilizes in time
S(B), if the following holds: there exists a time t ≤ S(B) such that every correct
node v ∈ Vg locally generates a resynchronization pulse at time r(v) ∈ [t, t+ ρ)
and no other resynchronization pulse before time t + ρ + Ψ. We call such a
resynchronization pulse good.

Here is an example on how this might look like:

Node 1
Node 2
Node 3
Node 4

good resynchronisation pulse

faulty node, arbitrary behaviour

spurious pulses

t t + ⇢ + t + ⇢
no pulses for

time

Note that we do not impose any restrictions on what the nodes do outside the
interval [t, t + ρ + Ψ). In particular, in constrast to the synchronous counting
construction, we do not require that correct nodes agree on whether there are
pulses or not outside this interval. Instead, this part of the construction will
be subsumed by the first step, in which we construct pulse synchronization
algorithms from resynchronization algorithms.

Using the same ideas as in the previous lecture, one can construct resynchro-
nization algorithms from two smaller pulse synchronization instances as follows:

• Both instances may trigger resynchronization pulses via generating pulses.

• The instances (are supposed to) run at different frequencies. Hence, re-
gardless of their initial phase relation, after a few pulses a correct instance
(i.e., one with sufficiently many correct nodes) is guaranteed to produce a
good pulse, provided that the other one adheres to its frequency bound.

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 135

• All correct nodes will “echo” seeing a pulse from either instance and only
accept it if (i) n−f nodes echoed the pulse, (ii) it adheres to the frequency
bounds according to the node’s local clock, and (iii) the node didn’t re-
cently observe fewer than n − f and more than f nodes echo a pulse of
the instance.

• If (i), (ii), or (iii) are violated, a node will (locally) suppress any pulses
by the respective instance for sufficiently long to guarantee that the other
(correct) instance succeeds in generating a good pulse.

As in the previous lecture, this forces a faulty instance to stick to the required
frequency bound or be ignored entirely. It does not guarantee that all pulses
are produced consistently (as we don’t run consensus), but this is not required
from a resynchronization algorithm.

Once we also have a way of constructing pulse synchronization algorithms
from resynchronization algorithms, which we will discuss in more depth, the
recursive construction is performed exactly as for synchronous counting, cf. Fig-
ure 12.1. For f = 0, pulse synchronization is trivial; all nodes simply trigger
pulses when a designated leader tells them to. To construct an algorithm for
f ∈ [2i, 2i+1 − 1], i ∈ N, faults, we select f0, f1 < 2i so that f0 + f1 + 1 = f
and (the already inductively constructed) pulse synchronization algorithms with
n0 = 3f0 +1 and n1 = 3f1 +1 nodes, implying that n0 +n1 < 3f +1 ≤ n. From
these we derive a resynchronization algorithm on all n nodes tolerating f faults,
which in turn we use to obtain the desired pulse synchronization algorithm.
Working out the details, one arrives at the result stated in Theorem 12.1.

Remarks:

• In Theorem 12.1, ϕ is a bit larger than ϑ, as the construction is lossy with
respect to the quality of the hardware clocks. However, up to constant
factors, the quality of the clocks is preserved: ϕ− 1 ∈ O(ϑ− 1).

• The described construction of resynchronization algorithms is fraught with
a frustating amount of bookkeeping due to the slightly different perception
of time of the correct nodes. While the approach works just as described
if ϑ ≤ 1.004 — a somewhat arbitrary bound that could be improved to
a certain extent — formalizing the construction and proving it correct is
very laborious.

• Accordingly, we will not do this in this lecture, but rather focus on the
other main step of the recursive construction, in which we get to see some
new algorithmic ideas.

12.2 Stabilization after Resynchronization Pulse

Before getting to business, let’s have a look at the general setting and a few no-
tational simplifications. First, assume that at time 0 each node locally triggers
a good resynchronization pulse, where Ψ “is large enough” for the stabiliza-
tion process to finish before any other resynchronization pulse, good or bad, is
triggered at a correct node (the minor time difference of up to δ between the
resynchronization pulses can easily be accounted for, so we neglect it here). We
need to guarantee that within Ψ time the algorithm stabilizes and cannot be

136 LECTURE 12. PULSE SYNCHRONIZATION

P(7, 2): pulse synchronisation algorithm (Theorem 6)

B(7, 2): resynchronisation algorithm (Theorem 7)

P(4, 1): pulse synchronisation algorithm (T6)

B(4, 1): resynchronisation algorithm (T7)

P(2, 0) P(2, 0)

P(3, 0): trivial pulse synchronisation algorithm

Figure 12.1: Recursively building a 2-resilient pulse synchronization algorithm
P (7, 2) over 7 nodes. The construction utilises low resilience pulse synchro-
nization algorithms to build high resilience resynchronization algorithms, which
can then be used to obtain highly resilient pulse synchronization algorithms.
Here, the base case consists of trivial 0-resilient pulse synchronization algo-
rithms P (2, 0) and P (3, 0) over 2 and 3 nodes, respectively. Two copies of
P (2, 0) are used to build a 1-resilient resynchronization algorithm B(4, 1) over 4
nodes using. The resynchronization algorithm B(4, 1) is used to obtain a pulse
synchronization algorithm P (4, 1). Now, the 1-resilient pulse synchronization
algorithm P (4, 1) over 4 nodes is used together with the trivial 0-resilient algo-
rithm P (3, 0) to obtain a 2-resilient resynchronization algorithm B(7, 2) for 7
nodes and the resulting pulse synchronization algorithm P (7, 2). White nodes
represent correct nodes and black nodes represent faulty nodes. The gray blocks
contain too many faulty nodes for the respective algorithms to correctly operate,
and hence, they may have arbitrary output.

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 137

“confused” by any inconsistent resynchronization pulses. Accordingly, we will
make sure that resynchronization pulses can affect the behavior of nodes only
when the algorithm has not already stabilized.

Our approach to generating pulses will be to execute consensus for each
pulse. The challenge is to stabilize this procedure.

Simulating Consensus

We want to run synchronous consensus, but we’re not operating in the syn-
chronous model. Hence, we need to simulate synchronous execution. To this
end, we may use any (non-stabilizing) pulse synchronization algorithm, where
we locally count the pulses to keep track of the round number. This works splen-
didly, provided that each run is initialized correctly: using the Srikanth-Toueg
algorithm (cf. Task 3 of exercise sheet 10), if all correct nodes start execution
the pulse synchronization algorithm within a time window of O(Rd) time, simu-
lation of an R-round consensus algorithm can be completed within O(Rd) time;
the outputs will even be generated within O(d) time, as the skew of the algo-
rithm is 2d. We will never need more than one instance to run, so this will be
efficient in terms of communication.

However, as nodes may initially be in arbitrary states, the simulation may
get “messed up,” at least until we can clear the associated variables and (re-
)initialize them properly. This is the first challenge we need to overcome. In
addition, we may also run into the familiar issue that not all correct nodes may
know that they should simulate an instance. In this case, the pulse synchro-
nization algorithm may not even function correctly. All of these problems will
essentially be solved by employing silent consensus. Either all correct nodes
participate, which causes them to reinitialize all state variables of the simu-
lated consensus routine and ensures that the pulse synchronization algorithm
works correctly, or no correct node will send messages for the consensus rou-
tine — meaning that it will never output 1 (the only result that matters), even
if the simulation is completely off in terms of timing and attribution of mes-
sages to rounds due to the Srikanth-Toueg algorithm breaking. Summarizing,
the simulation has the following properties

• Each node stores the state of at most one consensus instance. It aborts
any local simulation if its local clock shows that it has been running for
longer than the maximum possible time of Tmax ∈ O(Rd).

• If all correct nodes initialize an instance within τ ∈ O(Rd) time (for a
suitable relation between τ and Tmax) and none of them re-initialize for
another instance, all correct nodes will terminate within Tmax time and
produce an output satisfying validity and agreement.

• If during (t− d, t] no correct node is simulating an instance (i.e., by time
t there are also no more respective messages in transit), no correct node
will output a 1 as result of a simulation during (t − d, t1 + Tmin], where
t1 is the infimal time larger than t − d when a correct node initializes
an instance with input 1 and Tmin ∈ Θ(Rd) is the minimum time to
complete simulation of a consensus instance (note that we can enforce
such a minimum time even for “incorrect” execution, by having nodes
check the timing locally).

138 LECTURE 12. PULSE SYNCHRONIZATION

G1’

G2

G2

G1

G2’

������� �����

����
Guard Condition
G1 hT1i expires and received � n� f ����� messages

within time T1 before T1 expired
G1’ hT1i expires and ¬G1
G2 auxiliary machine signals ������ 1
G2’ hTwaiti expires or

auxiliary machine signals ������ 0

Figure 12.2: The main state machine. When a node transitions to state pulse
(double circle) it will generate a local pulse event and send a pulse message
to all nodes. When the node transitions to state wait it broadcasts a wait
message to all nodes. Guard G1 employs a sliding window memory buffer, which
stores any pulse messages that have arrived within time T1 (as measured by
the local clock). When a correct node transitions to pulse it resets a local
T1 timeout. Once this expires, either Guard G1 or Guard G1’ become satisfied.
Similarly, the timer Twait is reset when node transitions to wait. Once it expires,
Guard G2’ is satisfied and node transitions from wait to recover. The node
can transition to pulse state when Guard G2 is satisfied, which requires an
output 1 signal from the auxiliary state machine given in Figure 12.3.

Remarks:

• A formal proof would require to work out the constants and how they
relate to each other. However, as we know that ϑ is “sufficiently close” to
1, tweaking the period of the Srikanth-Toueg algorithm the right way, we
can assume that Tmax ≈ Tmin + τ .

State Machines

Our overall strategy is simple. Once stabilized, the algorithm generates pulses
by repeatedly executing consensus instances, where each correct node will use
input 1, and an output of 1 triggers a pulse. To this end, each node runs a copy
of the main state machine shown in fig. 12.2. All correct nodes will see each
other generating a pulse within T1 ∈ Θ(d) local time, transition to wait, and
this will ultimately result in the next consensus instance being initialized by the
auxilliary state machine (shown in fig. 12.3).

To achieve stabilization, we seek to enforce one of two events: either (i) a
consensus instance is simulated correctly, outputs 1 (by agreement at all nodes),
and thus generates a synchronized pulse kicking the system back into the in-
tended mode of operation, or (ii) all nodes end up in state recover of the
state machine. A node being in state recover means that it has proof that the
algorithm has not stabilized (yet) and may thus take actions that are caused
by a resynchronization pulse, as this does not jeopardize stable operation in
case of spurious resynchronization pulses. Therefore, if we ensure that within
O(dR) time after a good resynchronization pulse either (i) occurs or (ii) hap-
pens and no consensus instance is running anymore (or about to be started), we
can “restart” the system by letting each correct node in state recover start

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 139

G4

G3

G6

G6’G5

G5’

G7 G9

G9

G8

G8

G4

G4

������ 1

������ 0

Guard Condition
G3 hTactivei expires while in �������
G4 � f + 1 ���� messages within time Tlisten
G5 � n� f ���� messages within time Tlisten
G5’ hTlisteni expires

Guard Condition
G6 hT2i expires while not in �������
G6’ hT2i expires while in �������
G7 hT2i expires
G8 A outputs ‘1’
G9 A outputs ‘0’or hTconsensusi expires

or G4 is satis�ed

������ ����

����� 0

����� 1 ��� 1

��� 0

Figure 12.3: The auxiliary state machine. The auxiliary state machine is re-
sponsible for initializing and simulating the consensus routine. The gray boxes
denote states which represent the simulation of the consensus routine C. If the
node transitions to run 0, it uses input 0 for the consensus routine. If the node
transitions to run 1, it uses input 1. When the consensus simulation declares
an output, the node transitions to either output 0 or output 1 (sending the
respective output signal to the main state machine) and immediately to state
listen. The timeouts Tlisten, T2, and Tconsensus are reset when a node transi-
tions to the respective states that use a guard referring to them. The timeout
Tactive in Guard G3 (dashed line) is reset by the resynchronisation signal from
the underlying resynchronisation algorithm. Both input 0 and input 1 have a
self-loop that is activated if Guard G4 is satisfied. This means that if Guard G4
is satisfied while in these states, the timer T2 is reset.

140 LECTURE 12. PULSE SYNCHRONIZATION

a consensus instance with input 1, simply when a sufficiently large timeout of
Θ(dR) expires.

Either way, a pulse with small skew will be generated, from which on the
system will run as intended.

Lemma 12.4. Suppose that all correct nodes transition to pulse during [t, t+
2d] and timeouts are suitably chosen. Then the execution stabilized by time
t, where a skew of 2d and period bounds of Pmin ≥ (T1 + T2)/ϑ + Tmin and
Pmax ≤ T1 + T2 + Tmax + 3d are guaranteed.

Proof. Exercise.

The challenge is to ensure that always one of the above two cases applies.
This is mostly ensured by the design of the auxilliary state machine, which
however takes into account the transitions to wait in the main state machine —
which, in turn, does the consistency checks that (i) n−f nodes should transition
to pulse within T1 ∈ Θ(d) local time to go to wait and (ii) within Twait ∈ Θ(dR)
local time nodes expect to generate a pulse again. If either is not satisfied, the
node transitions to recover, which it leaves only when it generates a pulse
again. A node in recover knows that something is wrong and, accordingly,
will use input 0 for consensus instances. The auxilliary state machine uses some
additional thresholds based on transitions to wait.

Sketch of Proof of Stabilization

All these rules are designed to support the following line of reasoning:

1. Once the stabilization process is “started” by a resynchronization pulse,
within O(dR) time no correct node will be executing consensus at some
point (and no respective messages will be in transit).

2. From then on, any consensus instance outputting 1 must have been caused
by a correct node transitioning to run 1, as otherwise the fact that the
consensus routine is silent ensures that only output 0 can be generated
(regardless of participation).

3. If any correct nodes transitions to run 1 before the (large) timeout Tactive
expires, all correct nodes will be “pulled” along into one of the input states
(with suitable timing) to participate in the consensus instance, so it will
be simulated correctly. Thus, if any node outputs 1, (i) applies.

4. On the other hand, if no correct node outputs a 1 for Θ(dR) time, they
end up in the states recover in the main state machine and listen in
the auxilliary state machine, i.e., case (ii) applies.

We now sketch proofs of these statements. Naturally, all of this hinges on the
right choice of timeouts; to minimize distraction, in our proof sketch we will
assume that they are suitably chosen. Moreover, Tactive, which nodes reset
upon locally triggering a resynchronization pulse, is “large enough,” i.e., the
dashed transition will not occur for long enough for us to either end up in case
(i) (meaning that it will never happen) or case (ii) (meaning that the timeout
expiring correctly initializes a consensus instance). To simplify matters further,
assume that ϑ− 1 is sufficiently small (read: a constant that is arbitrarily close

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 141

to 1) and that all timeouts are in O(dR), which for such ϑ is feasible. Note
that this implies that after all timeouts had the opportunity to expire, i.e., after
O(rD) time, we know that timeouts and memory buffers of sliding windows are
in states consistent with what actually happened, e.g., a node in state wait is
there because it actually received n− f pulse messages within T1 local time no
more than Twait local time ago.

We now work our way down the above list, starting by showing that, even-
tually, execution of consensus instances stops for at least d time at all correct
nodes.

Lemma 12.5. There is a time t0 ∈ O(dR) such that no correct node is in states
run 0 or run 1 during [t0, t0 + d].

Proof Sketch. In order for any correct node to transition out of state listen at
some time t, there must be at least one correct node to transition to wait during
(t−O(d), t]. This, in turn, requires n− 2f correct nodes to transition to pulse
within T1+d ∈ O(d) time. These nodes will have to get from state listen in the
auxilliary machine back to output 1 again if they are to serve in supporting
any correct node to transition to wait again. As n > 3f , the remaining correct
nodes are not sufficiently many to reach the n − f threshold for convincing a
correct node to transition to wait, implying that for roughly (at least) T2 time
(see Guard G6, Guard G6’, and Guard G7) no node can transition from ready
to listen.

Hence, no node leaving state listen after time t +O(d) makes it to either
of run 0 or run 1 before (roughly) time t + 2T2. On the other hand, any
node that transitioned from listen to ready by time t+O(d) will get back to
listen by time t+O(d) + Tlisten + T2 + Tconsensus, where (as we will see later)
Tlisten ∈ O(d) and Tconsensus ≈ Tmax. Thus, up to minor order terms the claim
follows if T2 > Tmax, which can be arranged with T2 ∈ O(dR).

Finally, observe that if no node transitions to ready for O(d) + Tlisten +
T2 + Tconsensus ∈ O(dR) time, then of course also all correct nodes end up in
state listen as well.

Lemma 12.6. Let t0 be as in lemma 12.5. Suppose at time t > t0, v ∈ Vg
transitions to run 1. Then each w ∈ Vg transitions to run 1 or run 0 within
a time window of size roughly (1− 1/ϑ)T2 +O(d).

Proof Sketch. We already observed that if any node transitions to wait, this
means that there is a window of size O(d) during which this is possible, followed
by a window of size at least T2 during which this is not possible. Hence, in
order for v to transition to run 1, it observes at least n− 2f > f correct nodes
transition to wait within O(d) time (we make sure that T2 is large enough to
enforce this). This means that all correct nodes observe these transitions in a
(slightly larger) time window. If we choose Tlisten to be ϑ times this time window
(i.e., still in O(d) as promised), this implies that (i) any correct node in state
listen, run 0, or run 1 transitions to read and (ii) any node in states input
0 or input 1 resets its timeout T2. As Tlisten ∈ O(d), all of these nodes thus
will, up to a time difference of O(d), switch to one of execution states after T2
expires at them, i.e., within a time window of the required size. Here we use that
the (properly initialized) consensus instance will not terminate and have nodes
transition to pulse (and thus potentially wait) again before its execution, i.e.,

142 LECTURE 12. PULSE SYNCHRONIZATION

the established timing relation between the nodes starting to execute consensus
cannot be destroyed by another correct node switching to wait again.

Corollary 12.7. Let t0 be as in lemma 12.5. If after time t0 (but before any
Tactive timeout expires) any correct node transitions to pulse, the system sta-
bilizes.

Proof Sketch. By lemma 12.5 and the fact that the utilized consenus routine is
silent, after time t0 no correct node can transition to pulse without some correct
node transitioning to run 1 first. By lemma 12.6, such an event will correctly
initialize a consensus instance, which will thus be correctly simulated (note,
again, that no transitions to wait happen before the instance terminates). If
it outputs 1 (at all nodes), lemma 12.4 proves stabilization. If it outputs 0, we
have a new time t′0 such that no consensus instance is running and can repeat
the argument inductively.

Lemma 12.8. Let t0 be as in lemma 12.5. If by time t0 + O(dR) the system
has not stabilized, all correct nodes are in states recover and listen, with no
wait messages in transit.

Proof Sketch. If after time t0 (but before Tactive expires) any correct node out-
puts 1 for a consensus instance, then Corollary 12.7 shows stabilization. If this is
not the case, no correct node transitions to pulse. In this case, after T1 +Twait

time all correct nodes will be and stay in state recover (without wait mes-
sages in transit), and after at most another 2Tlisten + T2 + Tconsensus ∈ O(dR)
time all correct nodes will be in state listen. As mentioned earlier, in all of
this we assume that Tactive ∈ O(dR) is large enough for this entire process to
be complete before it expires at any correct node.

Corollary 12.9. The algorithm given by the state machines in fig. 12.2 and
fig. 12.3 stabilizes within O(dR) time after a good resynchronization pulse, pro-
vided Ψ ∈ O(dR) is large enough.

Proof Sketch. If the prerequisites of lemma 12.8 are not satisfied, the claim is im-
mediate. Otherwise, when Tactive expires at the correct nodes, they will transi-
tion from listento run 1, as the lemma states that they are all in recover and
listen. Correct initialization necessitates τ ≥ (1− 1/ϑ)Tactive ∈ O((ϑ− 1)dR),
which is feasible for sufficiently small ϑ. Thus, for an appropriate choice of τ , the
instance will be correctly simulated, and by validity it outputs 1. lemma 12.4
hence shows stabilization by time Tactive + Tmax ∈ O(dR).

Remarks:

• When actually proving this, one collects all the inequalities necessary for
the various lemmas and then shows that there are assignments to the
timeouts satisfying all of them concurrently.

• The framework can also be applied to randomized consensus routines.
This way, it is, e.g., possible to get stabilization time of O(log2 f) (with
high communication cost) or both stabilization time and broadcasted bits

per d time both logO(1) f (with resilience f < n/(3 + ε) for arbitrarily
small constant ε > 0).

BIBLIOGRAPHY 143

• It is unknown whether any of these bounds are close to optimal. In con-
trast to synchronous counting, there is no reduction from consensus to
self-stabilizing pulse synchronization known. For instance, it cannot be
ruled out that a constant-time deterministic solution exists.

• We are still interested in showing how to combine this solution with Lynch-
Welch along the lines of chapter 9. This will be done in an exercise.

Bibliographic Notes

We already mentioned that self-stabilizing pulse synchronization was first solved
by Dolev and Welch [DW04], albeit with exponential stabilization time. Sub-
sequently, this was improved to polynomial [?] and, eventually, linear [DH07].
The latter solution can be seen as the pulse synchronization equivalent of the
counting algorithm derived from running R consensus instances concurrently —
although here it is not one instance per round of the algorithm, but rather Θ(f)
instances, the idea being that each node may initiate an instance, and this is
going to succeed in stabilizing the algorithm, if the initiating node is correct.

This linear-time linear bandwidth (i.e., number of broadcasted bits per d
time) was first overcome by randomization [DFLS14]. The idea of resynchro-
nization pulses already shows up in this algorithm, but they are not provided
recursively. Rather, each node may trigger a pulse once every Θ(fd) time by
a simple broadcast, and randomization together with bounding the influence of
faulty nodes by threshold voting and memorization ensures that this succeeds
with a very large probability within O(fd) time. This improved the number of
bits nodes need to broadcast for stabilization in O(df) time to O(1). However,
the construction cannot be used recursively as-is, since the algorithm exploits
that the resynchronization pulses are distributed randomly to avoid “bad” tim-
ing relations. The construction presented in this lecture [?] overcomes this
restriction by relying on consensus.

It is worth noting that most constructions, in particular those of with sta-
bilization time O(df), end up directly using consensus or tools that are strong
enough to solve consensus in constant expected time. However, it remains open
whether this is actually necessary or there are algorithms that outperform any
consensus-based solution.

Bibliography

[DFLS14] Dolev Dolev, Matthias Függer, Christoph Lenzen, and Ulrich Schmid.
Fault-tolerant Algorithms for Tick-generation in Asynchronous Logic.
Journal of the ACM, 61(5):30:1–30:74, 2014.

[DH07] Danny Dolev and Ezra N. Hoch. Byzantine Self-stabilizing Pulse
in a Bounded-Delay Model. In Proc. 9th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (2007),
pages 234–252, 2007.

[DW04] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in
the Presence of Byzantine Faults. Journal of the ACM, 51(5):780–
799, 2004.

144 LECTURE 12. PULSE SYNCHRONIZATION

[LR17] Christoph Lenzen and Joel Rybicki. Self-stabilising Byzantine Clock
Synchronisation is Almost as Easy as Consensus. In Proc. 31th Sym-
posium on Distributed Computing (DISC), pages 32:1–32:15, 2017.

Lecture 13

Clock Distribution

For most of this lecture series, we have focused on fully connected topologies.
As discussed, this has some justification, as high resilience to (permanent) faults
requires high connectivity. However, in many cases it may simply not be prac-
tical to have a fully connected system — e.g., having n(n− 1)/2 links on a chip
means that we quickly run out of (physical) space for all these wires!

Instead, we can use the fault-tolerance techniques provided so far to build a
reliable clock source, and strive for a fault-tolerant distribution scheme. Here,
we need to assume that the (permanent) faults in the system are not distributed
in a worst-case fashion, but reasonably “spread out.” With this assumption, we
can hope for smaller degrees, as we won’t end up with a situation in which the
neighborhood of a correct node is “taken over” by a majority of faulty ones,
effectively cutting the node off from the rest of the network. In the following,
we assume that each neighborhood contains at most f faults (for some constant
or at least small f).

Definition 13.1 (Local Faults). We say that there are at most f local faults
in a given graph (V,E) with correct nodes Vg ⊆ V , if each v ∈ Vg has at most
f neighbors in V \ Vg. If the graph is directed, we require that at most f in-
neighbors are faulty.

This lecture is mostly about discussing this fairly open problem. We give no
definite solutions, and we will not formalize the presented ones carefully.

13.1 First Attempt: Clock Trees

We could build a fault-tolerant version of a clock distribution tree. Using the
techniques we discussed in previous lectures, we can set up a highly robust clock
source serving as root of the tree, and we replace each node in the tree by a
cluster of 2f + 1 nodes, whose (logical) clocks will just mirror what happens
at the parent “node” in the tree. Concretely, this means to locally trigger and
forward a clock flank — which we will refer to as pulse — when receiving the
(f+1)th signal from the parent cluster. We end up with a very simple structure
and node degrees of O(f), which is the best we can hope for. Self-stabilization
is essentially for free, as we have a simple master-slave relationship; once the
parent cluster pulses in synchrony and with the right frequency, its easy for the
child cluster to start following suit.

145

146 LECTURE 13. CLOCK DISTRIBUTION

Lemma 13.2. If each node is faulty with uniform and independent probability
of p ∈ o(1/(fnf+1)) and (in-)degrees are at most 2f + 1, there are at most f
local faults with probability 1− o(1).

Proof. W.l.o.g., we assume that all nodes have in-degree 2f+1, as the probabil-
ity for having more than f faulty neighbors decreases with the degree (and all
random choices are independent). For a single node, the probability that more
than f of its neighbors are faulty is bounded by

2f+1∑
f ′=f+1

(
2f + 1

f ′

)
pf
′
(1− p)2f+1−f ′ ≤ (f + 1)

(
2f + 1

f + 1

)
pf+1

≤ ((2f + 1)p)f+1 ∈ o
(

1

n

)
.

By the union bound, the overall probability of having more than f local faults
is thus bounded by

∑n
i=1 o(1/n) = o(1).

Corollary 13.3. Assume that each node is faulty with uniform and independent
probability of p ∈ o(1/(fnf+1)) and other system parameters (like delay and
uncertainty) are identical to the clock tree from which the “fat tree” described
above is derived. Then, with probability 1 − o(1), each correct node produces
clock pulses within the same worst-case time bounds as the corresponding node
in the original tree.

Proof. By Lemma 13.2, with probability 1−o(1) there are at most f local faults.
Thus, any (non-root) node will disregard faulty nodes’ signals unless they lie
within the interval spanned by correct nodes’ signals. As delays, etc. match
those of the original tree, the resulting worst-case bounds are identical.

Is the resulting solution good? It depends on the the system, but we can
argue that it doesn’t scale well. We know from the first lecture that the (worst-
case) skew between tree nodes is proportional to their distance in terms of the
considered graph. Sticking to (traditional) computer chips, a clock tree needs to
provide the clock signal to a roughly quadratic area, where we can expect that
at the very least physically close-by parts of the chip need the signals provided
to them to be well-synchronized. At least for some nodes, a tree must fail to do
so.

Lemma 13.4. For k ∈ N, consider a k × k grid in R2 in which adjacent grid
nodes have distance 1. For any tree spanning the grid points, there are adjacent
grid nodes that are in distance Ω(k) in the tree.

Proof. Observe that if a tree node v has degree larger than 3, we can reduce its
degree by inserting an additional node arbitrarily close to it and attaching 2 or
more of the children of v to the new node instead. This changes tree distances
by an arbitrarily small amount. Accordingly, we can w.l.o.g. assume that the
tree is binary.

In any tree T of maximum degree 3 (of at least 4 nodes), there is some edge
so that the two components resulting from removing this edge have size at least
(n − 1)/3 ∈ Ω(n). To see this, pick an arbitrary node edge, delete it, and look
at the resulting components T1 and T2. If |T1|, |T2| ≥ (n − 1)/3, we’re done.

13.1. FIRST ATTEMPT: CLOCK TREES 147

Otherwise, assume w.l.o.g. that |T1| < (n − 1)/3, i.e., |T2| ≥ n − (n − 1)/3 =
2(n − 1)/3 + 1. Let w be the endpoint of the deleted edge that lies in T2.
Deleting w from T2 results in (at most) two components of T2, as w has degree
3 (and thus at most 2 in T2). One of these components must have size at least
(|T2|−1)/2 ≥ (n−1)/3. Consider the edge connecting w to this component and
delete it from T , resulting in components T ′1 and T ′2; let’s say w ∈ T ′1. By the
previous considerations, we have that |T ′1| > |T1|, while |T ′2| ≥ (n − 1)/3. Now
either |T ′1| ≥ (n−1)/3 and we’re done, or we can repeat the argument, resulting
in an edge for which one component is even larger than T ′1 and the other remains
of size at least (n − 1)/3. Thus, repeating this argument inductively, we must
eventually reach an edge satisfying the claim.

From the above claim, we can infer that we can partition the nodes into
two sets such that (i) each set contains Ω(k2) nodes and (ii) each set induces
a subtree. We call a node a boundary node if it has a neighbor in the other
set. From (i) we can infer that the boundary must contain nodes in distance
Ω(k) from each other, as any area of size Ω(k2) must have a boundary of size
Ω(k) (even when not considering nodes at the boundary of the entire grid). Fix
two such nodes v and w in the same subtree. As they are in distance Ω(k), the
path in the subtree connecting them is of that length. This in turn means that
at least one of them is in distance Ω(k) of the root of its subtree. Finally, we
conclude that this node is in distance Ω(k) from its neighbor(s) in the other set
within the tree.

Remarks:

• If uncertainties are proportional to the length of a link, we can immedi-
ately conclude that the worst-case skew between adjacent nodes is Ω(uk),
cf. Theorem 1.6.

• One can rely on probabilistic guarantees instead. However, even if things
behave “nicely,” we still end up adding up variances in link delays, re-
sulting in standard deviation Ω(u

√
k) (if a unit length link has standard

deviation u).

• There are quite a few tricks electrical engineers came up with in order to
deal with the (few) long links of an H-tree (and relatives) in a better way,
but ultimately physics gets in the way of scaling tree topologies arbitrarily.

• The above bound is tight up to constants, which is shown by an H-tree.
For k + 1 (the “width” of the grid) being a power of 2, an H-tree is
constructed recursively as follows. Place the root in the center of the
grid. Then connect it to two children by going k/2 to the right and left,
respectively. Each of these children also has two children, which are in
distance k/4 going up or down respectively. The four nodes in depth
two of the tree are now exactly in the center of four disjoint subgrids of
k/2×k/2 nodes, and the construction is applied recursively for log k steps.
In the end, each grid point with both x- and y-index being odd (or even,
depending on indexation) is occupied by a leaf.

• The construction from the lemma actually shows that there must be Ω(k)
adjacent grid nodes that are in distance Ω(k) in the tree. More generally,

148 LECTURE 13. CLOCK DISTRIBUTION

one can show that Ω(2ik) adjacent grid nodes are in distance Ω(k/2i) in
the tree.

• AnH-tree matches this bound, too: Cutting the square in half horizontally
and vertically, one gets four subsquares, each of which hosts a smaller H-
tree. Where we cut the grid, we have 2k node pairs that end up being in
distance (almost) 2k in the tree. All other node pairs are in the same of
one of the four sub-H-trees, so they are by factor 2 closer to each other.

• All this is only useful when faults do not “cluster” within, well, clusters.
The assumption that faults are completely independent is unrealistic, but
it’s crucial to design the system to make this an approximate reality. Of
course, this also applies to the techniques from earlier chapters — a system-
wide power failure will bring down any algorithm, regardless of how many
node failures it can tolerate.

• Fault-tolerance and self-stabilization (under the assumption of at most f
local faults) become easy due to the fact that we don’t have any cyclic de-
pendencies. In other words, we don’t have to restrict ourselves to trees —
DAGs are perfectly fine!

13.2 Second Attempt: Lynch-Welch on DAGs

The same strategy we used in Chapter 5 can be extended to directed acyclic
graphs. Assuming f -local faults, we make sure that each node (except “source”
nodes, which are supplied with a clock signal), have at least 3f+1 in-neighbors.
We then get the following property.

Corollary 13.5. For v, w ∈ Vg, assume that both of them have the same set
N of in-neighbors, where |N | ≥ 3f + 1 and |Vg ∩ N | ≥ |N | − f . Suppose each
node x ∈ Ng := Vg ∩N pulses once at time px and v, w interpret the respective
messages as in Line 5 and that T and S are sufficiently large. Then v and w
pulse at times pv and pw such that |pv − pw| ∈ O(‖~p‖/2 + (ϑ− 1)T + u).

• We can use this to adapt the earlier approach of fat trees to guarantee that
local skews with respect to the tree topology and any given pulse remain
bounded, regardless of the depth of the tree. However, this does not fix
the problem of large skews between different branches of the tree.

• As stated, we can use this on more general DAGs. We could, e.g., take
two clusters and let them have a “common” child. In this case, the 3f + 1
nodes of the child cluster may exhibit a larger skew, though, as the bound
on the skew between the two parent clusters may be much larger than
within each parent cluster.

• This leads to the following open problem: Is there a clever choice of a
DAG that avoids the issues of trees, i.e., it can clock a two- (or three-
)dimensional area with small local skews (with respect to physical dis-
tances)?

13.3. THIRD ATTEMPT: FAULT-TOLERANT GCS 149

13.3 Third Attempt: Fault-tolerant GCS

Trying something else, we could seek to simulate the (non-fault-tolerant) GCS
algorithm from chapter 2 on an arbitrary topology. In fact, node degrees of 3 are
sufficient to cover any structure without “misrepresenting” physical distances
too much.

The general idea is to have clusters of size 3f+1, which each may have up to
f faulty nodes, that we synchronize internally with the Lynch-Welch algorithm.
However, these clocks will not be the hardware clocks of the GCS algorithm —
they will be the logical clocks! Concretely:

• The output of the Lynch-Welch algorithm at a (correct) node can be seen
as (up to the skew) accurate representation of the cluster’s logical clock.
The node will communicate this clock to all adjacent clusters.

• At the same time, it is the node’s logical clock of the Lynch-Welch algo-
rithm, which is set up to handle the increased clock drift of a logical clock
of the GCS algorithm, i.e., it assumes that the underlying “hardware”
clock has drift ϑ(1 + µ).

• The GCS algorithm also takes into account a larger “hardware” clock
drift, as it needs to account for the clock corrections of the Lynch-Welch
algorithm within clusters. By amortizing these changes over Θ(T) time,
this implies a “hardware” clock drift of O(ϑ(1+µ)+u/T), and by choosing
T large enough and recalling that µ ∈ O(1), we can bound this by O(ϑ).
In other words, if ϑ is small enough, both algorithms are able to handle
each other’s clock manipulations.

• Now each node can read the own cluster clock (by looking at its own clock)
and that of adjacent clusters (by looking at all nodes there and, e.g., taking
the median value) with an error of u+S (plus possibly a term for refreshing
this information only infrequently), where S ∈ O((ϑ−1)d+u) is the skew
of the Lynch-Welch algorithm within each cluster.

• This yields a δ ∈ O((ϑ − 1)d + u) for the GCS algorithm, i.e., the same
asymptotic guarantee as for the original GCS algorithm.

• To control the global skew, one could, e.g., use a tree structure as discussed
above, employing the strategy from Task 1 of the second exercise sheet.

Remarks:

• Take this description with a grain of salt; it’s an idea for an approach that
has not been proven correct yet.

• The failure condition of the system (more than f faults in a cluster) is
slightly different from f -local faults, but the asymptotics in terms of the
failure probability that can be sustained are the same.

• Even for f = 1 and a maximum degree of 3 of the original graph, the
minimum node degree is 3f + 3(3f + 1) = 12f + 3 = 15, where all these
links are bidirectional. One could reduce this to 3f + 3(2f + 1) = 12 by
arguing that 2f + 1 values suffice to “read” a cluster clock (the median

150 LECTURE 13. CLOCK DISTRIBUTION

layer

column

l + 1

l

l � 1

i� 1 i i + 1

Figure 13.1: Structure of the HEX grid.

value will be in the range of correct nodes’ values), but this comes at the
cost of having less accurate readings.

• If all of this works out, efficiently adding self-stabilization is still an open
problem. We have discussed how to do this for the Lynch-Welch algo-
rithm, but we also need to make sure that clock values are communicated
correctly between clusters. At least when considering a hardware imple-
mentation, communicating (and performing computations with) encoded
clock values, as opposed to just sending clock “ticks,” might be rather
expensive.

• When all of this is done, despite the good asymptotics, we end up with
awfully complicated nodes. Even if we can afford the energy and area for
this, it means that our nodes are more likely to fail than simpler ones.
The gains in reliability may be small or we may even end up with a less
reliable system! We may need much simpler solutions!

13.4 Fourth Attempt: HEX

With this issue in mind, we looked for a very low-degree (for convenience also
planar) topology that can tolerate one local fault, with an extremely simple
algorithm.

The idea is that nodes are organized in layers, where the nodes in the initial
layer are provided with a clock signal by some other means. A node locally trig-
gers and forwards a pulse when it has received messages from two in-neighbors.
Byzantine nodes cannot trigger spurious faults if we have 1-local faults. And
they also can’t prevent nodes from triggering their pulse, as an in-neighbor in

13.5. FIFTH ATTEMPT: TRIX 151

the same layer will provide a pulse signal in case an in-neighbor in the previous
layer is faulty (this is not completely trivial, but easy to show).

With reasonable effort, the approach can also be made self-stabilizing, by
ensuring via some timeouts that the system will recover layer by layer once
the clock source works correctly. There are also elaborate (laborious?) proofs
showing that HEX has a worst-case skew of d +O(min{L,W} · u2/d) between
neighbors in the same layer, where L is the number of layers and W the “width”
of the grid, respectively, granted that skews at initial layer are 0 (non-zero skews
are accounted for by the bounds as well). Moreover, the same bound holds
between neighbors from different layers when shifting the output clocks by an
additive d per layer to account for delays. Despite all this, HEX suffers from a
rather basic flaw.

Observation 13.6. Even with a single crash fault, perfect input (i.e., skew 0
on the initial layer), and u = 0, correct neighbors in the same layer may exhibit
a skew of d.

Proof. The crashing node will cause its out-neighbors on the next layer to trigger
a pulse d time later, yet all other nodes on this layer will pulse at the same time
as they would without the fault.

You might argue now that the bound we had already has an additive d in it,
and you would be correct — from the point of view of a worst-case analysis. In
contrast, things look very different when assuming that delays do not behave in
a worst-case fashion.

Getting a better understanding of this is an art. First, one needs to de-
termine how delays behave if they are not chosen adversarially (meaning that
we just make sure that this does not matter). As a first stab at the task, one
may be optimistic: we assume that each delay is chosen independently and uni-
formly at random from (d− u, d). Second, the resulting distributions appear to
be very hard to analyze mathematically. This is owed to the fact that they are
the result of operations involving both taking the minimum and maximum, dis-
qualifying straightforward application of concentration bounds and other basic
probabilistic tools.

We ended up simply study the grid under the above assumptions by com-
puter simulation. The result was that, if there are no faults (and skews at
the initial layer are small), the grid performs astoundingly well, without ever
needing any of the communication links between nodes in the same layer, see
Figure 13.2. We observe skews of O(u), where u� d implies that the worst-case
bounds are not all that informative. In a way, the grid performed too well for
the approach to fault-tolerance to make sense!

Remarks:

• The name “HEX” originates in the hexagonal structure of a node’s neigh-
borhood in what appears to be the most natural physical layout.

13.5 Fifth Attempt: TRIX

The above insights suggest an even simpler topology, in which each node has 3
in- and outneighbors each, and triggers a pulse when receiving the second pulse
on its incoming links.

152 LECTURE 13. CLOCK DISTRIBUTION

0
2

4
6

8 0
5

10
15

20
1

3

5

7

9

11

13

15

17

19

layerwidth

tr
ig

g
e

r
ti
m

e
 [

d
+
]

Figure 13.2: A pulse of a fault-free HEX grid with uniformly random delays
(d+ = d). It’s easy to see that skews between neighbors remain far smaller than
d, meaning that the links within a layer never contribute to triggering pulses.

Figure 13.3: Structure of the TRIX grid.

13.5. FIFTH ATTEMPT: TRIX 153

Note that from the point of view of a worst-case analysis, this solution is
rather bad: If all message delays are small on one “side” of the grid and large on
the other, a skew of up to u per layer can be built up, which is by a factor of (up
to reasonably small constants) d/u worse than HEX — except that HEX suffers
from an additive d in its bound. Up to d/u layers, HEX thus doesn’t really look
better on this front, requiring at least 100 layers before these asymptotics could
kick in.

But these are worst-case bounds, which the above considerations suggest to
not matter as much as one might think. An important advantage of TRIX over
HEX is that even when a node fails, this does not cause any of its out-neighbors
to be triggered significantly later. As under the assumption of 1-local faults any
node has two in-neighbors on the previous layer, it will still trigger its pulse
between d− u and d time after (at least) one of its correct in-neighbors.

In some ways, TRIX is much easier to analyze: self-stabilization is almost
trivial, as there are no interactions between nodes in the same layer. The worst-
case skew bounds are essentially obvious. The effect of faults on skews can be
easily bounded by u for any given fault, and one can easily suspect that faults
have no significant effect on far-away parts of the system (so long as they are
1-local). But when it comes to the behavior of skews under u.i.r. link delays,
the situation is equally embarrassing as for HEX.

Here are some results from computer experiments, where for simplicity link
delays are either 0 or 1 with (independent) probability of 1/2 each, and there is
no skew in the first layer.

Figure 13.4: Distributions of skews between neighbors in layers 7, 100, and
2000 for TRIX with random 0-1-delays. This suggests a binomial (or related)
distribution with extremly small standard deviation, where the number of layers
has very limited influence.

Remarks:

• The name “TRIX” indicates that in- and outdegrees are three (and plays
on “HEX”).

154 LECTURE 13. CLOCK DISTRIBUTION

Figure 13.5: Plot of the variance of the above distribution as function of the
number of layers. Does it grow very slowly, but is unbounded, or does it converge
to a fixed value corresponding to a limit distribution?

Figure 13.6: The same plot, but with a doubly logarithmic x-scale. One may
suspect that the growth is bounded by log logL, where L is the number of layers.
However, the considered range of values is rather small for this (especially given
the very small change of the actual y-values), and the number of experiments
may be insufficient for a reliable assessment.

• We do not understand why the TRIX grid appears to work so extraordi-
narily well with randomized link delays.

• Do the skews just grow very slowly, or converge to a limit distribution?

13.5. FIFTH ATTEMPT: TRIX 155

A′

B′

C ′

L

I

S1 S2

E

A

B

B

C

C

A

E

Figure 13.7: Circuit implementing the critical path in triggering a pulse. The
“gates” connected to signals A, B, C, and E are transistors; you can think of
them as switches that are “open” (i.e., conduct) if the input is high (a.k.a. 1)
and “closed” (i.e., have almost infinite resistance) if the input is low (a.k.a. 0). E
is an enable signal that is controlled in a non-time-critical manner by additional
(local) circuitry. At the beginning of a cycle, enable is high, i.e., the connection
to ground (in the bottom) is open and the connection to the supply voltage (top)
is closed; the storage loop formed by the inverters S1 and S2 has low output,
meaning that the outgoing (A′, B′, and C ′) and local (L) output signals are
low. As soon as at least two out of the three incoming signals (A, B, and C)
become high, this pulls the storage loop input to low (i.e., ground), and the
outputs switch to high. The inverter I has a high threshold, meaning that S1,
S2, and I essentially form a masking register. Thus, no matter what a faulty
node provides as input, the output transition will be clean and occur within
the interval spanned by the correct in-neighbors’ signal transition times (plus
delay). E is then controlled via L in a way that holds the output signals high for
long enough for the outneighbors to react and for the incoming correct signals
to go low again, and then is set to low in order to “reset” the circuit to the
initial state, readying it for the next pulse.

• Is the grid even reducing larger skews effectively?

• For a practical realization, one has to further adapt the topology. Con-
cretely, the clock source should not be a (wide) intial layer, but rather a
few nodes. This suggests a layout with layers being nested circles, adding
a constant number of nodes per layer. These and other concerns will affect
a final design, requiring further studies.

TRIX and Metastability

TRIX nodes are extremely simple, but that doesn’t mean that we can ignore
metastability issues. Given that we assume Byzantine faults, we should better
make sure that they don’t break the abstract pulse triggering logic we’ve been
thinking about. Synchronizers are not an option here, as (forcibly) aligning the
incoming pulses to some local clock would significantly increase skews. There
are unclocked circuit elements with similar function, but we can take a more
direct approach by designing a suitable circuit element for the (time-)critical
path on the transistor level.

156 LECTURE 13. CLOCK DISTRIBUTION

Remarks:

• This is conceptually very similar to the Strategy shown in Figure 7.6,
except for the addition of the loop capturing the transition. The storage
loop ensures that a Byzantine node cannot, e.g., wait until the first correct
signal transition arrived, then pull the output high (using its own input),
and then pull it down again before the second correct transition arrives.

Bibliographic Notes

Clock trees have been the standard clocking method for decades, and they still
are for many systems or at least subsystems. They have been heavily engineered,
and in fact most clock “trees” are not real trees any more, for instance due to
a grid-like structure connecting the leaves to reduce skews. It’s difficult to find
comprehensive and up-to-date literature, as most developments nowadays occur
within companies, which are not eager to share their know-how. See [X09] for
some introductory material.

To my knowledge, neither have variants of the Lynch-Welch algorithm on
not fully connected graphs been studied, nor have attempts at making GCS
algorithms fault-tolerant been made in the literature; fault-tolerant clock distri-
bution methods — at least in terms of mathematical proven guarantees — appear
to be essentially unchartered territory. For results on HEX see [DFL+16]; no
publications discussing TRIX exist at the time of writing.

Bibliography

[DFL+16] Danny Dolev, Matthias Függer, Christoph Lenzen, Martin
Perner, and Ulrich Schmid. HEX: Scaling Honeycombs is
Easier than Scaling Clock Trees. J. Comput. Syst. Sci.,
82(5):929–956, 2016. Preprint available at https://people.mpi-
inf.mpg.de/∼clenzen/pubs/DFLPS16scaling.pdf.

[X09] Thucydides Xanthopoulos. Clocking in modern VLSI systems.
Springer Science & Business Media, 2009.

Appendix A

Notation and Preliminaries

This appendix sums up important notation, definitions, and key lemmas that
are not the main focus of the lecture.

A.1 Numbers and Sets

In this lecture, zero is not a natural number: 0 /∈ N; we just write N0 := N∪{0}
whenever we need it. Z denotes the integers, Q the rational numbers, and R
the real numbers. We use R+ = {x ∈ R | x > 0} and R+

0 = {x ∈ R | x ≥ 0}.
Rounding down x ∈ R is denoted by bxc := max{z ∈ Z | z ≤ x} and

rounding up by dxe := min{z ∈ Z | z ≥ x}.
For n ∈ N0, we define [n] := {0, . . . , n − 1}, and for a set M and k ∈ N0,(

M
k

)
:= {N ⊆ M | |N | = k} is the set of all subsets of M that contain exactly

k elements.

A.2 Graphs

A finite set of vertices, also referred to as nodes V together with edges E ⊆(
V
2

)
defines a graph G = (V,E). Unless specified otherwise, G has n = |V |

vertices and m = |E| edges and the graph is simple: Edges e = {v, w} ⊆ V are
undirected, there are no loops, and there are no parallel edges.

If e = {v, w} ∈ E, the vertices v and w are adjacent, and e is incident to v
and w, furthermore, e′ ∈ E is adjacent to e if e∩ e′ 6= ∅. The neighborhood of v
is

Nv := {w ∈ V | {v, w} ∈ E},
i.e., the set of vertices adjacent to v. The degree of v is

δv := |Nv|,

the size of v’s neighborhood. We denote by

∆ := max
v∈V

δv

the maximum degree in G.

157

158 APPENDIX A. NOTATION AND PRELIMINARIES

A v1-vd-path p is a set of edges p = {{v1, v2}, {v2, v3}, . . . , {vd−1, vd}} such
that |{e ∈ p | v ∈ e}| ≤ 2 for all v ∈ V . p has |p| hops, and we call p a cycle
if it visits all of its nodes exactly twice. The diameter D of the graph is the
minimum integer such that for any v, w ∈ V there is a v-w-path of at most D
hops (or D =∞ if no such integer exists). We consider connected graphs only,
i.e., graphs satisfying D 6=∞.

A.2.1 Trees and Forests

A forest is a cycle-free graph, and a tree is a connected forest. Trees have n− 1
edges and a unique path between any pair of vertices. The tree T = (V,E) is
rooted if it has a designated root node r ∈ V . A leaf is a node of degree 1. A
rooted tree has depth d if the maximum length of a root-leaf path is d.

A.3 Asymptotic Notation

We require asymptotic notation to reason about the complexity of algorithms.
This section is adapted from Chapter 3 of Cormen et al. [?]. Let f, g : N0 → R
be functions.

A.3.1 Definitions

O(g(n)) is the set containing all functions f that are bounded from above by
cg(n) for some constant c > 0 and for all sufficiently large n, i.e. f(n) is asymp-
totically bounded from above by g(n).

O(g(n)) := {f(n) | ∃c ∈ R+, n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ f(n) ≤ cg(n)}

The counterpart of O(g(n)) is Ω(g(n)), the set of functions asymptotically
bounded from below by g(n), again up to a positive scalar and for sufficiently
large n:

Ω(g(n)) := {f(n) | ∃c ∈ R+, n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ cg(n) ≤ f(n)}

If f(n) is bounded from below by c1g(n) and from above by c2g(n) for positive
scalars c1 and c2 and sufficiently large n, it belongs to the set Θ(g(n)); in this
case g(n) is an asymptotically tight bound for f(n). It is easy to check that
Θ(g(n)) is the intersection of O(g(n)) and Ω(g(n)).

Θ(g(n)) := {f(n) | ∃c1, c2 ∈ R+, n0 ∈ N0 : ∀n ≥ n0 :

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}
f(n) ∈ Θ(g(n)) ⇔ f ∈ (O(g(n)) ∩ Ω(g(n)))

For example, n ∈ O(n2) but n /∈ Ω(n2) and thus n /∈ Θ(n2).1 But 3n2−n+ 5 ∈
O(n2), 3n2 − n + 5 ∈ Ω(n2), and thus 3n2 − n + 5 ∈ Θ(n2) for c1 = 1, c2 = 3,
and n0 = 4.

1We write f(n) ∈ O(g(n)) unlike some authors who, by abuse of notation, write f(n) =
O(g(n)). f(n) ∈ O(g(n)) emphasizes that we are dealing with sets of functions.

A.3. ASYMPTOTIC NOTATION 159

In order to express that an asymptotic bound is not tight, we require o(g(n))
and ω(g(n)). f(n) ∈ o(g(n)) means that for any positive constant c, f(n) is
strictly smaller than cg(n) for sufficiently large n.

o(g(n)) := {f(n) | ∀c ∈ R+ : ∃n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ f(n) < cg(n)}

As an example, consider 1
n . For arbitrary c ∈ R+, 1

n < c we have that for all
n ≥ 1

c + 1, so 1
n ∈ o(1). A similar concept exists for lower bounds that are not

asymptotically tight; f(n) ∈ ω(g(n)) if for any positive scalar c, cg(n) < f(n)
as soon as n is large enough.

ω(g(n)) := {f(n) | ∀c ∈ R+ : ∃n0 ∈ N0 : ∀n ≥ n0 : 0 ≤ cg(n) < f(n)}
f(n) ∈ ω(g(n)) ⇔ g(n) ∈ o(f(n))

A.3.2 Properties

We list some useful properties of asymptotic notation, all taken from Chapter 3
of Cormen et al. [?]. The statements in this subsection hold for all f, g, h : N0 →
R.

Transitivity

f(n) ∈ O(g(n)) ∧ g(n) ∈ O(h(n)) ⇒ f(n) ∈ O(h(n)),

f(n) ∈ Ω(g(n)) ∧ g(n) ∈ Ω(h(n)) ⇒ f(n) ∈ Ω(h(n)),

f(n) ∈ Θ(g(n)) ∧ g(n) ∈ Θ(h(n)) ⇒ f(n) ∈ Θ(h(n)),

f(n) ∈ o(g(n)) ∧ g(n) ∈ o(h(n)) ⇒ f(n) ∈ o(h(n)), and

f(n) ∈ ω(g(n)) ∧ g(n) ∈ ω(h(n)) ⇒ f(n) ∈ ω(h(n)).

Reflexivity

f(n) ∈ O(f(n)),

f(n) ∈ Ω(f(n)), and

f(n) ∈ Θ(f(n)).

Symmetry

f(n) ∈ Θ(g(n)) ⇔ g(n) ∈ Θ(f(n)).

Transpose Symmetry

f(n) ∈ O(g(n)) ⇔ g(n) ∈ Ω(f(n)), and

f(n) ∈ o(g(n)) ⇔ g(n) ∈ ω(f(n)).

160 APPENDIX A. NOTATION AND PRELIMINARIES

A.4 Bounding the Growth of a Maximum of Dif-
ferentiable Functions

Lemma A.1. For k ∈ N, let F = {fi | i ∈ [k]}, where each fi : [t0, t1]→ R is dif-
ferentiable, and [t0, t1] ⊂ R. Define F : [t0, t1]→ R by F (t) := maxi∈[k] {fi(t)}.
Suppose F has the property that for every i and t, if fi(t) = F (t), then d

dt
fi(t) ≤

r. Then for all t ∈ [t0, t1], we have F (t) ≤ F (t0) + r(t− t0).

Proof. We prove the stronger claim that for all a, b satisfying t0 ≤ a < b ≤ t1,
we have

F (b)− F (a)

b− a ≤ r. (A.1)

To this end, suppose to the contrary that there exist a0 < b0 satisfying (F (b0)−
F (a0))/(b0−a0) ≥ r+ε for some ε > 0. We define a sequence of nested intervals
[a0, b0] ⊃ [a1, b1] ⊃ · · · as follows. Given [aj , bj], let cj = (bj + aj)/2 be the
midpoint of aj and bj . Observe that

F (bj)− F (aj)

bj − aj
=

1

2

F (bj)− F (cj)

bj − cj
+

1

2

F (cj)− F (aj)

cj − aj
≥ r + ε,

so that
F (bj)− F (cj)

bj − cj
≥ r + ε or

F (cj)− F (aj)

cj − aj
≥ r + ε.

If the first inequality holds, define aj+1 = cj , bj+1 = bj , and otherwise define
aj+1 = aj , bj = cj . From the construction of the sequence, it is clear that for
all j we have

F (bj)− F (aj)

bj − aj
≥ r + ε. (A.2)

Observe that the sequences {aj}∞j=0 and {bj}∞j=0 ar both bounded and mono-

tonic, hence convergent. Further, since bj − aj = 1
2j (b0− a0), the two sequences

share the same limit.
Define

c := lim
j→∞

aj = lim
j→∞

bj ,

and let f ∈ F be a function satisfying f(c) = F (c). By the hypothesis of the
lemma, we have f ′(c) ≤ r, so that

lim
h→0

f(c+ h)− f(h)

h
≤ r.

Therefore, there exists some h > 0 such that for all t ∈ [c− h, c+ h], t 6= c, we
have

f(t)− f(c)

t− c ≤ r +
1

2
ε.

Further, from the definition of c, there exists N ∈ N such that for all j ≥ N ,
we have aj , bj ∈ [c− h, c+ h]. In particular this implies that for all sufficiently
large j, we have

f(c)− f(aj)

c− aj
≤ r +

1

2
ε, (A.3)

f(bj)− f(c)

bj − c
≤ r +

1

2
ε. (A.4)

A.4. BOUNDING THEGROWTHOF AMAXIMUMOFDIFFERENTIABLE FUNCTIONS161

Since f(aj) ≤ F (aj) and f(c) = F (c), (A.3) implies that for all j ≥ N ,

F (c)− F (aj)

c− aj
≤ r +

1

2
ε.

However, this expression combined with with (A.2) implies that for all j ≥ N

F (bj)− F (c)

bj − c
≥ r + ε. (A.5)

Since F (c) = f(c), the previous expression together with (A.4) implies that for
all j ≥ N we have f(bj) < F (bj).

For each j ≥ N , let gj ∈ F be a function such that gj(bj) = F (bj). Since F
is finite, there exists some g ∈ F such that g = gj for infinitely many values j.
Let j0 < j1 < · · · be the subsequence such that g = gjk for all k ∈ N. Then for
all jk, we have F (bjk) = g(bjk). Further, since F and g are continuous, we have

g(c) = lim
k→∞

g(bjk) = lim
k→∞

F (bjk) = F (c) = f(c).

By (A.5), we therefore have that for all k

g(bjk)− g(c)

bjk − c
=
F (bj)− F (c)

bj − c
≥ r + ε.

However, this final expression contradicts the assumption that g′(c) ≤ r. There-
fore, (A.1) holds, as desired.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Gradient Clock Synchronization
	Formalizing the Problem
	Averaging Protocols
	GCS Algorithm
	Analysis of the GCS Algorithm

	Lower Bound on the Local Skew
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Fault-Tolerant Clock Synchronization
	The Pulse Synchronization Problem
	A Variant of the Srikanth-Toueg Algorithm
	Impossibility of Synchronization for one Third of Faulty Nodes

	Synchronizing by Approximate Agreement
	Approximate Agreement
	A Variant of the Lynch-Welch Algorithm

	Metastability
	Kleene Logic and Circuits
	The Limits of Metastability-Containment
	Hardness of Containment
	Containing a Bounded Number of Metastable Inputs

	Metastability-Containing Control Loops
	Metastability in Control Loops
	First Try: Binary Counters
	Second Try: Unary ``Counters''
	Third Try: Gray Codes

	Metastability-Containing Sorting
	4-valued Comparison of BRGC Strings
	Determining the Output Bits
	Parallel Prefix Computation

	Self-Stabilization
	Making Lynch-Welch Self-Stabilizing
	First Attempt: Reset on Heartbeats
	Second Attempt: Adding Feedback
	Third Attempt: Reset on Unexpected Heartbeats Only
	Analysis

	Consensus
	The Phase King Algorithm
	Recursive Phase King
	Running Time Lower Bound

	Synchronous Counting
	Synchronous Counting vs. Consensus
	Pulsers
	Weak from (less Resilient) Strong Pulsers
	Plugging it Together

	Pulse Synchronization
	Outline of the Construction
	Stabilization after Resynchronization Pulse

	Clock Distribution
	First Attempt: Clock Trees
	Second Attempt: Lynch-Welch on DAGs
	Third Attempt: Fault-tolerant GCS
	Fourth Attempt: HEX
	Fifth Attempt: TRIX

	Notation and Preliminaries
	Numbers and Sets
	Graphs
	Asymptotic Notation
	Bounding the Growth of a Maximum of Differentiable Functions

