
Lecture 11

Synchronous Counting

Before getting to self-stabilizing pulse synchronization in the next lecture, we
consider the related task of synchronous counting. In synchronous counting, the
goal is to establish a self-stabilizing joint counter (modulo some 2 C 2 N),
despite f < n/3 Byzantine faults. This means the good traces are those in
which for each round r, it holds for all v, w 2 Vg that c(v, r) = c(w, r) and
c(v, r + 1) = c(v, r) + 1 mod C.

stabilisation

Clock

Node 1 1 1 2 1 0 1 2 0 1 2

Node 2 0 1 2 1 0 1 2 0 1 2

Node 3 (faulty) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

Node 4 2 0 1 0 0 1 2 0 1 2

counting

Despite being instructive for the approach we’ll take to pulse synchronization in
the next lecture, this is in itself a very useful subroutine. Once the synchronous
abstraction is established by a pulse synchronization algorithm, it makes sense
to ask for a common numbering of the pulses, allowing for implicit coordination.
For instance, this way the nodes can call a subroutine every C rounds without
further communication overhead.

11.1 Synchronous Counting vs. Consensus

The first observation is that counting is no easier than (synchronous) consensus.

Lemma 11.1. A synchronous C-counting algorithm with stabilization time S
implies a synchronous C-valued consensus algorithm terminating in S rounds,

which satisfies the same bounds on message and bit complexity as the original

counting algorithm.

Proof. Once stabilized, the counting algorithm guarantees a good trace, i.e., the
correct nodes will jointly count modulo C. For each c 2 [C], denote by ~x(c)
the state vector of the correct nodes in some round r � S in which the count is

113

114 LECTURE 11. SYNCHRONOUS COUNTING

c. Our consensus algorithm now operates as follows. Each v 2 Vg runs a local
instance of the counting algorithm for S rounds, where given input c 2 [C] it
initializes its state to xv(c). At the end of round S, it outputs c(v, S)�S mod C.

The claims about running time and communication complexity are trivially
satisfied, so it remains to show agreement and validity. Agreement is immediate
from the fact that the counting algorithm stabilized no later than round S,
i.e., c(v, S) = c(w, S) for all v, w 2 Vg. Concerning validity, observe that the
initialization ensures that if each v 2 Vg has input c 2 [C], then the initial state
of the counting algorithm is ~x(c). As this is a system state after stabilization,
regardless of the behavior of faulty nodes, the correct nodes must increment their
counters by exactly 1 modulo C in the following rounds. Thus, in round S, it
holds that c(v, S) = c + S mod C, and each v 2 Vg outputs c + S � S mod C =
c.

The other direction is not as straightforward. However, it is not hard to
come up with a reduction that translates running time to stabilization time if
we neglect communication.

Lemma 11.2. Any synchronous C-valued consensus algorithm terminating in

R rounds implies a synchrounous C-counting algorithm with stabilization time

O(R).

Proof. Given the consensus algorithm, we solve C-counting as follows. In each
synchronous round, we start a new consensus instance that will generate an
output value c(v, r + R) at each node v 2 Vg exactly R rounds later (which
will double as node v’s counter value); if the consensus instance terminates
earlier at v, it will simply store the output value until it is needed. Note that,
while we have no guarantees about the outputs in the first R rounds (as initial
states are arbitrary), in all rounds r � R all correct nodes will output the
same value c(r) = c(v, r) (by the agreement property of consensus). Hence,
if we define the input value f(v, r) of node v 2 Vg as a function of the most
recent O(R) output values at node v, after 2R rounds all nodes will start using
identical inputs f(r) = f(v, r) and, by validity of the consensus algorithm,
reproduce these inputs as output R rounds later (cf. Figure 11.1). In light of
these considerations, it is su�cient to determine an input function f from the
previous O(R) outputs to values [C] so that counting starts within O(R) rounds,
assuming that the output of the consensus algorithm in round r + R equals the
input determined at the end of round r.

We define the following input function, where all values are taken modulo
C:

input(r) :=

8
>>>>>>><

>>>>>>>:

c + R if (o(r � R + 1), . . . , o(r)) = (c � R + 1, . . . , c)

x + R if
(o(r � 2R + 1 � x), . . . , o(r)) = (0, . . . , 0, 1, . . . , x)
for some x 2 [R]

x if
(o(r � R + 1 � x), . . . , o(r)) = (0, . . . , 0)
for maximal x 2 [R]

0 else.

In the setting discussed above, it is straightforward to verify the following prop-
erties of input:

• Always exactly one of the rules applies, i.e., input is well-defined.

11.1. SYNCHRONOUS COUNTING VS. CONSENSUS 115

node 2

node 1

3

0

r4

1

0

r4

0

0

r4

0

0

r4

0

0

r2

0

1

r2

0

2

r2

0

3

r3

0

3

r3

0

3

r3

0

3

r3

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input
rule

1

4

r1

2

5

r1

3

6

r1

0

0

r4

0

0

r4

0

0

r2

0

1

r2

0

2

r2

0

3

r3

0

3

r3

0

3

r3

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input
rule

agreement on o

agreement on input and applied rule

o(r) = input(r � R)

Figure 11.1: Part of an execution of two nodes running the C-counting algorithm
given in the proof of Lemma 11.2, for C = 8 and R = 3. The execution
progresses from left to right, each box representing a round. On top of the input
field the applied rule (1 to 4) to compute the input is displayed. Displayed are
the initial phases of stabilization: (i) after R rounds agreement on the output
is guaranteed by consensus, (ii) then agreement on the input and the applied
rule is reached, and (iii) another R rounds later the agreed upon outputs are
the agreed upon inputs shifted by 3 rounds.

• If the outputs counted modulo C for 2R consecutive rounds, they will do
so forever (by induction, using the first rule); cf. Figure 11.2.

• If this does not happen within O(R) rounds, there will be R consecutive
rounds where input 0 will be used (by the third and the last rule), cf.
Figure 11.2.

• Once R consecutive rounds with input 0 occurred, inputs 1, . . . , 2R will
be used in the following 2R rounds (by the second and third rule).

• Finally, the algorithm will commence counting correctly (by the first rule).

nodes 1 & 2

0

0

r4

0

0

r2

0

1

r2

0

2

r2

0

3

r3

1

4

r3

2

5

r3

3

6

r1

4

7

r1

5

0

r1

6

1

r1

7

2

r1

0

3

r1

1

4

r1

2

5

r1

o

input
rule

counting correctly modulo 8

Figure 11.2: Extension of the execution shown in Figure 11.1. Nodes have
already agreed upon inputs and outputs so that the latter just reproduce the
inputs from R rounds ago. The rules now make sure that the nodes start
counting modulo 8 in synchrony, always executing rule 1.

116 LECTURE 11. SYNCHRONOUS COUNTING

Overall, if each node i computes its input Fi(r) from its local view of the previous
outputs using input, the algorithm will start counting correctly within S 2 O(R)
rounds.

Remarks:

• The second reduction shows that the time complexities of both tasks are,
up to a constant factor, identical.

• However, reduction from counting to consensus is ine�cient in terms of
communication and computation, as there are always R consensus in-
stances running concurrently.

• Resolving this issue will be more challenging, as we can’t simply circum-
vent the issue that the correct nodes don’t agree on round numbers any
more when using consensus as a subroutine any more by just starting an
instance each round.

11.2 Pulsers

As useful tools, we introduce two tasks that are closely related to counting, but
not exactly the same. The first one is, essentially, just slightly rephrasing the
counting task.

Definition 11.3 (Strong pulser). An algorithm P is an f -resilient strong -
pulser that stabilizes in S(P) rounds if it satisfies the following conditions in

the presence of at most f faulty nodes. Each node v 2 Vg produces an output bit

p(v, r) 2 {0, 1} on each round r 2 N. We say that v generates a pulse in round

r if p(v, r) = 1 holds. We require that there is a round r0 S(P) such that:

1. For any v 2 Vg and round r = r0 + k , where k 2 N0, it holds that

p(v, r) = 1.

2. For any v 2 Vg and round r � r0 satisfying r 6= r0 + k for k 2 N0, we

have p(v, r) = 0.

stabilisation

Clock

Node 1 1 1 0 1 1 0 0 1 0 0

Node 2 0 1 0 1 1 0 0 1 0 0

Node 3 (faulty) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

Node 4 0 0 1 0 1 0 0 1 0 0

strong pulser

Figure 11.3: An example execution of a strong 3-pulser on n = 4 nodes with
f = 1 faulty node.

11.2. PULSERS 117

Lemma 11.4. Let C 2 N and 2 N. If C divides , then a strong -pulser
that stabilizes in S rounds implies a synchronous C-counter that stabilizes in at

most S rounds. If divides C, then a synchronous C-counter that stabilizes in

S rounds implies a strong -pulser that stabilizes in at most S + � 1 rounds.

Proof. For the first claim, set c(v, r) = 0 in any round r for which p(v, r) = 1
and c(v, r) = c(v, r � 1) + 1 mod C in all other rounds. For the second claim,
set p(v, r) = 1 in all rounds r in which c(v, r) mod = 0 and p(v, r) = 0 in all
other rounds.

Remarks:

• Another way of interpreting this relation is to view a strong -pulser as a
di↵erent encoding of the output of a -counter: since the system is syn-
chronous, it su�ces to communicate when the counter overflows to value
0 and otherwise count locally. This saves bandwidth when communicating
the state of the counter.

• The additive overhead of will not matter to us, as we will recursively
construct strong pulsers, deriving a counter only in the very end.

A weak �-pulser is similar to a strong pulser, but does not guarantee a
fixed frequency of pulses. However, it guarantees to eventually generate a pulse
followed by �� 1 rounds of silence.

Definition 11.5 (Weak pulsers). An algorithm W is an f -resilient weak �-
pulser that stabilizes in S(W) rounds if the following holds. In each round

r 2 N, each node v 2 Vg produces an output a(v, r). Moreover, there exists a

round r0 S(W) such that

1. for all v, w 2 Vg and all rounds r � r0, a(v, r) = a(w, r),

2. a(v, r0) = 1 for all v 2 Vg, and

3. a(v, r) = 0 for all v 2 Vg and r 2 {r0 + 1, . . . , r0 + �� 1}.

We say that on round r0 a good pulse is generated by W .

Figure 11.4 illustrates a weak 4-pulser.

Remarks:

• While the definition formally only asks for one good pulse, the fact that
the algorithm guarantees this property for any starting state implies that
there is a good pulse at least every S(W) rounds.

• Weak pulsers are (surprise!) easier to construct than strong pulsers. Yet,
they are good enough to eventually get a consensus instance to be executed
correctly, using the good pulse as starting shot for the execution of the
consensus algorithm. This we can use to stabilize a strong pulser.

Constructing Strong Pulsers from Weak Pulsers

For constructing a strong -pulser, we assume that we have the following f -
resilient algorithms available:

• an R(C)-round -valued consensus algorithm C and

• a weak �-pulser W for some � � R(C).

118 LECTURE 11. SYNCHRONOUS COUNTING

Clock

Node 1 0 1 1 0 1 0 0 0 0 1

Node 2 0 1 1 0 1 0 0 0 0 1

Node 3 (faulty) ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

Node 4 0 0 1 0 1 0 0 0 0 1

good pulse

stabilisation

Figure 11.4: An example execution of a weak 4-pulser on n = 4 nodes with
f = 1 faulty node. Eventually, a good pulse is generated, which is highlighted.
A good pulse is followed by three rounds in which no correct node generates a
pulse. In contrast, the pulse two rounds earlier is not good, as it is followed by
only one round of silence.

Variables. Beside the variables of the weak pulser W and (a single copy of)
C, our construction of a strong -pulser uses the following local variables:

• a(v, r) 2 {0, 1} is the output variable of the weak �-pulser W ,

• b(v, r) 2 {0, 1} is the output variable of the strong -pulser we are con-
structing,

• c(v, r) 2 [] is the local counter keeping track on when the next pulse
occurs, and

• d(v, r) 2 {1, . . . , R(C)}[{?} keeps track of how many rounds an instance
of C has been executed since the last pulse from the weak pulser W . The
value ? denotes that the consensus routine has stopped.

Strong pulser algorithm. The algorithm is as follows. Each node v executes
the weak �-pulser algorithm W in addition to the following instructions on each
round r 2 N:

1. If c(v, r) = 0, then set b(v, r) = 1 and otherwise b(v, r) = 0.

2. Set c0(v, r) = c(v, r).

3. If d(v, r) 6= ?, then

(a) Execute the instructions of C for round d(v, r).

(b) If d(v, r) 6= R(C), set d(v, r + 1) = d(v, r) + 1.

(c) If d(v, r) = R(C), then

i. Set c0(v, r) = y(v, r) + R(C) mod , where y(v, r) is the output
value of C.

ii. Set d(v, r + 1) = ?.

4. Update c(v, r + 1) = c0(v, r) + 1 mod .

11.2. PULSERS 119

5. If a(v, r) = 1, then

(a) Start a new instance of C using c0(v, r) as input (resetting all state
variables of C).

(b) Set d(v, r + 1) = 1.

In the above algorithm, the first step simply translates the counter value to
the output of the strong pulser. We then use a temporary variable c0(v, r) to
hold the counter value, which is overwritten by the output of C (increased by
R(C) mod) if it completes a run in this round. In either case, the counter
value needs to be increased by 1 mod for the next round. The remaining code
does the bookkeeping for an ongoing run of C and starting a new run if the weak
pulser generates a pulse.

Observe that in the above algorithm, each node only sends messages re-
lated to the weak pulser W and the consensus algorithm C. Thus, there is
no additional overhead in communication and the message size is bounded by
M(W) + M(C), where M(·) denotes the maximum message size of an algo-
rithm. Hence, it remains to show that the local counters c(v, r) implement a
strong -counter.

Theorem 11.6. The variables c(v, r) in the above algorithm implement a syn-

chronous -counter that stabilizes in S(W)+R(C)+1 rounds and uses messages

of at most M(W) + M(C) bits.

Proof. Suppose round r0 S(W) is as in Definition 11.5, that is, a(v, r) =
a(w, r) for all r � r0, and a good pulse is generated in round r0. Thus, all correct
nodes participate in simulating an instance of C during rounds r0 + 1, . . . , r0 +
R(C), since no pulse is generated during rounds r0 + 1, . . . , r0 + R(C) � 1, and
thus, also no new instance is started in the last step of the code during these
rounds.

By the agreement property of the consensus routine, it follows that c0(v, r0 +
R(C)) = c0(w, r0 + R(C)) for all v, w 2 Vg after Step 3ci. By Steps 2 and 4, the
same will hold for both c(·, r0) and c0(·, r0), r0 > r0+R(C), provided that we can
show that in rounds r0 > r, Step 3ci never sets c0(v, r) to a value di↵erent than
c(v, r) for any v 2 Vg; as this also implies that c(v, r0 + 1) = c(v, r0) + 1 mod
for all v 2 Vg and r0 > r0 + R(C), this will complete the proof.

Accordingly, consider any execution of Step 3ci in a round r0 > r0 + R(C).
The instance of C terminating in this round was started in round r0

�R(C) > t0.
However, in this round the weak pulser must have generated a pulse, yielding
that, in fact, r0

� R(C) � r0 + R(C). Assuming for contradiction that r0 is the
earliest round in which the claim is violated, we thus have that c0(v, r0

�R(C)) =
c0(w, r0

�R(C)) for all v, w 2 Vg, i.e., all correct nodes used the same input value
c for the instance. By the validity property of C, this implies that v 2 Vg outputs
y(v, r0) = c in round r0 and sets c0(v, r0) = c + R(C) mod . However, since
r0 is the earliest round of violation, we already have that c0(v, r0) = c(v, r0) =
c+R(C) mod after the second step, contradicting the assumption and showing
that the execution stabilized in round r0 + R(C) + 1 S(W) + R(C) + 1.

Together with Lemma 11.4, we get the following corollary.

Corollary 11.7. Let > 1. Suppose that there exists an f -resilient -value
consensus routine C and a weak �-pulser W , where � � R(C). Then there

exists an f -resilient strong -pulser P that

120 LECTURE 11. SYNCHRONOUS COUNTING

• stabilizes in time S(P) R(C) + S(W) + , and

• uses messages of size at most M(P) M(C) + M(W) bits.

Remarks:

• This straightforward construction reduces our task to designing weak
pulsers.

• Even though we “havn’t done much,” constructing weak pulsers is signif-
icantly easier.

• This is an example where the hardest part is to come up with the right
question, or rather problem to solve. By giving rise to the questions “can
we obtain strong pulsers from weak ones?” and “can we construct weak
pulsers?” the notion of weak pulsers breaks the question “can we construct
strong pulsers” into (as it turns out) more managable tasks.

11.3 Weak from (less Resilient) Strong Pulsers

Having seen that we can construct strong pulsers from weak pulsers using a
consensus algorithm, the missing piece is the existence of e�cient weak pulsers.
We now devise a recursive construction of a weak pulser from strong pulsers
of smaller resilience. Given that a 0-resilient pulser is trivial and that we can
obtain strong pulsers from weak ones without losing resilience, this is su�cient
for constructing strong pulsers of optimal resilience from consensus algorithms
of optimal resilience.

At a high level, we take the following approach (see Figure 11.5):

1. Partition the network into two parts, each running a strong pulser (with
small resilience). Our construction guarantees that at least one of the
strong pulsers stabilizes.

2. Filtering of pulses generated by the strong pulsers:

a) Nodes consider the observed pulses generated by the strong pulsers
as potential pulses.

b) Since one of the strong pulsers may not stabilize, it may generate
spurious pulses, that is, pulses that only a subset of the correct nodes
observe.

c) We limit the frequency of the spurious pulses using a filtering mech-
anism based on threshold voting.

3. We force any spurious pulse to be observed by either all or none of cor-
rect nodes by employing a silent consensus routine. In silent consensus,
no message is sent (by correct nodes) if all correct nodes have input 0.
Thus, if all nodes actually participating in an instance have input 0, non-
participating nodes behave as if they participated with input 0. This avoids
the chicken-and-egg problem of having to solve consensus on participation
in the consensus routine. We make sure that if any node uses input 1, i.e.,
the consensus routine may output 1, all nodes participate. Thus, when a
pulse is generated, all correct nodes agree on this.

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 121

Filtering 0

Strong pulser P0 Strong pulser P1

Filtering 1

Silent consensus 0

Silent consensus 1

Weak pulser

≈ n/2 nodes ≈ n/2 nodes

2. All n nodes participate in filtering spurious pulses.

3. Use consensus to agree whether the block generated
 a pulse recently.

1. The network is divided into two blocks.
 Each block runs a strong pulser instance, where
 the pulsers have coprime frequencies.

4. A pulse is generated if one of the consensus instances
 outputs “1”.

Figure 11.5: Overview of the weak pulser construction. Light and dark grey
boxes correspond to steps of block 0 and 1, respectively. The small rounded
boxes denote the pulser algorithms Pi that are run (in parallel) on two disjoint
sets of roughly n/2 nodes, whereas the wide rectangular boxes denote to the
filtering steps in which all of the n nodes are employed. The arrows indicate
the flow of information for each block.

4. If a potential pulse generated by one of the pulsers both passes the fil-
tering step and the consensus instance outputs “1”, then a weak pulse is
generated.

The Filtering Construction

Our goal is to construct a weak �-pulser (for su�ciently large �) with resilience
f . We partition the set of n nodes into two disjoint sets V0 and V1 with n0 and
n1 nodes, respectively. Thus, we have n = n0 + n1. For i 2 {0, 1}, let Pi be an
fi-resilient strong i-pulser. That is, Pi generates a pulse every i rounds once
stabilized, granted that Vi contains at most fi faulty nodes. Nodes in block i
execute the algorithm Pi. Our construction tolerates f = f0 + f1 + 1 faulty
nodes. Since we consider Byzantine faults, we require the additional constraint
that f < n/3.

Let ai(v, r) 2 {0, 1} indicate the output bit of Pi for a node v 2 Vi. Note
that we might have a block i 2 {0, 1} that contains more than fi faulty nodes.
Thus, it is possible that the algorithm Pi never stabilizes. In particular, we
might have the situation that some of the nodes in block i produce a pulse,
but others do not. We say that a pulse generated by such a Pi is spurious.

We proceed by showing how to filter out such spurious pulses if they occur too
often.

Filtering rules. We define five variables with the following semantics:

• mi(v, r+1) indicates whether at least ni�fi nodes u 2 Vi sent ai(u, r) = 1,

• Mi(v, r+1) indicates whether at least n�f nodes u 2 V sent mi(u, r) = 1,

122 LECTURE 11. SYNCHRONOUS COUNTING

• `i(v, r) indicates when was the last time block i triggered a (possibly
spurious) pulse,

• xi(v, r) is a cooldown counter that indicates how many rounds any firing
events coming from block i are ignored, and

• bi(v, r) indicates whether node v accepts a firing event from block i.

The first two of the above variables are set according to the following rules:

• mi(v, r + 1) = 1 if and only if |{w 2 Vi : ai(v, w, r) = 1|} � ni � fi,

• Mi(v, r + 1) = 1 if and only if |{w 2 V : mi(v, w, r) = 1} � n � f ,

where ai(v, w, r) and mi(v, w, r) denote the values for a(·) and m(·) node v
received from u at the end of round r, respectively. Furthermore, we update
the `(·, ·) variables using the rule

`i(v, r + 1) =

(
0 if |{w 2 V : mi(w, r) = 1}| � f + 1,

y otherwise,

where y = min{ i, `i(v, r) + 1} (and, of course, each node v 2 Vg performs the
update according to the count it perceives). In words, the counter is reset on
round r + 1 if v has proof that at least one correct node w had mi(w, r) = 1,
that is, some w 2 Vg observed Pi generating a (possibly spurious) pulse.

We reset the cooldown counter xi whenever suspicious activity occurs. The
idea is that it is reset to its maximum value C by node v in the following two
cases:

• some other correct node u 6= v observed block i generating a pulse, but
the node v did not, or

• block i generated a pulse, but this happened either too soon or too late.

To capture this behaviour, the cooldown counter is set with the rule

xi(v, r + 1) =

8
><

>:

C if Mi(v, r + 1) = 0 and `i(v, r + 1) = 0,

C if Mi(v, r + 1) = 1 and `i(v, t) 6= i � 1,

y otherwise,

where y = max{xi(v, r)�1, 0} and C = max{ 0, 1}+�+2. Finally, a node v
accepts a pulse generated by block i if the node’s cooldown counter is zero and
it saw at least n � f nodes supporting the pulse. The variable bi(v, r) indicates
whether node v accepted a pulse from block i on round r. The variable is set
using the rule

bi(v, t) =

(
1 if xi(v, r) = 0 and Mi(v, r) = 1,

0 otherwise.

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 123

Analysis of the Filtering Construction

We now analyse when the nodes accept firing events generated by the blocks.
We say that a block i is correct if it contains at most fi faulty nodes. Note that
since there are at most f = f0 +f1 +1 faulty nodes, at least one block i 2 {0, 1}

will be correct. Thus, eventually the algorithm Pi run by a correct block i will
stabilize. This yields the following lemma.

Lemma 11.8. For some i 2 {0, 1}, the strong pulser algorithm Pi stabilizes by

round S(Pi).

We proceed by establishing some bounds on when (possibly spurious) pulses
generated by block i are accepted. We start with the case of having a correct
block i.

Lemma 11.9. If block i is correct, then there exists a round t0 S(Pi) + 2
such that for each v 2 Vg, Mi(v, r) = 1 if and only if r = t0 + k i for k 2 N0.

Proof. If block i is correct, then the algorithm Pi stabilizes by round S(Pi).
Hence, there is some r0 S(P) so that the output variable ai(·) of Pi satisfies

ai(v, r) = 1 if and only if r = r0 + k i for k 2 N0

holds for all r � r0. We will now argue that t0 = r0 + 2 satisfies the claim of
the lemma.

If Pi generates a pulse on round r � r0, then at least ni � fi correct nodes
u 2 Vi \Vg have ai(u, r) = 1. Therefore, for all v 2 Vg we have mi(v, r +1) = 1,
and consequently, Mi(v, r + 2) = 1. Since block i is correct, there are at most
fi faulty nodes in the set Vi. Observe that by Lemma 11.4 strong pulsers solve
synchronous counting, which in turn is as hard as consensus (by Lemma 11.1).
This implies that we must have fi < ni/3, as Pi is a strong fi-resilient pulser
for ni nodes. Therefore, if Pi does not generate a pulse on round r � r0, then
at most fi < ni � fi faulty nodes w may claim ai(w, t) = 1. This yields that
mi(v, t + 1) = Mi(v, t + 2) = 0 for all v 2 Vg.

We can now establish that a correct node accepts a pulse generated by a
correct block i exactly every i rounds.

Lemma 11.10. If block i is correct, then there exists a round t1 S(Pi) + 2C
such that for each v 2 Vg, bi(v, r) = 1 for any r � r0 if and only if r = t1 + k i

for k 2 N0.

Proof. Lemma 11.9 implies that there exists t0 S(Pi) + 2 such that both
Mi(v, t) = 1 and `i(v, r) = 0 hold for r � t0 if and only if r = t0 + k i for
k 2 N0. It follows that xi(v, r + 1) = max{xi(v, r) � 1, 0} for all such r and
hence xi(v, r0) = 0 for all r0

� t0 + C + 2. The claim now follows from the
definition of bi(v, r0), the choice of t0, and the fact that i C � 2.

It remains to deal with the faulty block. If we have Byzantine nodes, then a
block i with more than fi faulty nodes may attempt to generate spurious pulses.
However, the filtering mechanism prevents the spurious pulses from occuring too
frequently.

Lemma 11.11. Let v, v0
2 Vg and t > 2. Suppose that bi(v, r) = 1 and r0 > r

is minimal such that bi(v0, r0) = 1. Then r0 = r + i or r0 > r + C.

124 LECTURE 11. SYNCHRONOUS COUNTING

Proof. Suppose that bi(v, r) = 1 for some correct node v 2 Vg and r > 2. Since
bi(v, r) = 1, xi(v, r) = 0 and Mi(v, r) = 1. Because Mi(v, r) = 1, there must
be at least n � 2f > f correct nodes w such that mi(w, r � 1) = 1. Hence,
`i(w, t) = 0 for every node w 2 Vg.

Recall that r0 > r is minimal so that bi(v0, r0) = 1. Again, xi(v0, r0) = 0 and
Mi(v0, r0) = 1. Moreover, since `i(v0, r) = 0, we must have `i(v0, r) < i � 1
for all r t < r + i � 1. This implies that r0

� r + i, as xi(v0, r0) = 0
and Mi(v0, r0) = 1 necessitate that `i(v0, r0

� 1) = i � 1. In the event that
r0

6= r + i, the cooldown counter must have been reset at least once, i.e.,
xi(v0, t) = C holds for some r < t r0

� C, implying that r0 > r + C.

Remarks:

• The bottomline: The filtering mechanism does not interfere with the out-
put of correct blocks, but it restricts the possible confusion arising from
faulty blocks to either sticking to a fixed frequency or being eliminated
completely for long enoug (i.e., C rounds).

Using Silent Consensus to Prune Spurious Pulses

The above filtering mechanism prevents spurious pulses from occurring too of-
ten: if some node accepts a pulse from block i, then no node accepts a pulse
from this block for at least i rounds. We now strengthen the construction to
enforce that any (possibly spurious) pulse generated by block i will be accepted
by either all or none of the correct nodes. In order to achieve this, we employ
silent consensus.

Definition 11.12 (Silent consensus). We call a consensus protocol silent, if in
each execution in which all correct nodes have input 0, correct nodes send no

messages.

The idea is that this enables to have consistent executions even if not all
correct nodes actually take part in an execution, provided we can ensure that
in this case all participating correct nodes use input 0: the non-participating
nodes send no messages either, which is the exact same behavior participating
nodes would exhibit.

Theorem 11.13. Any consensus protocol C can be transformed into a silent

binary consensus protocol C 0
with R(C 0) = R(C) + 2 and the same resilience

and message size.

Proof. Exercise.

For example, plugging in the Phase King protocol, we get the following
corollary.

Corollary 11.14. For any f < n/3, there exists a deterministic f -resilient
silent binary consensus protocol C with R(C) 2 ⇥(f) and M(C) 2 O(1).

As the filtering construction bounds the frequency at which spurious pulses
may occur from above, we can make sure that at each time, only one consensus
instance can be executed for each block. However, we need to further preprocess
the inputs, in order to make sure that (i) all correct nodes participate in an

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 125

instance or (ii) no participating correct node has input 1; here, output 1 means
agreement on a pulse being triggered, while output 0 results in no action.

Recall that bi(v, r) 2 {0, 1} indicates whether v observed a (filtered) pulse of
the strong pulser Pi in round r. Moreover, assume that C is a silent consensus
protocol running in R(C) rounds. We use two copies Ci, where i 2 {0, 1}, of
the consensus routine C. We require that i � R(C), which guarantees by
Lemm 11.11 that (after stabilization) every instance of C has su�cient time to
complete. Adding one more level of voting to clean up the inputs, we arrive at
the following routine.

The pruning algorithm. Besides the local variables of Ci, the algorithm will
use the following variables for each v 2 Vg and round r 2 N:

• yi(v, r) 2 {0, 1} denotes the output value of consensus routine Ci,

• ti(v, r) 2 {1, . . . , R(C)} [{?} is a (local) round counter for controlling
Ci, and

• Bi(v, r) 2 {0, 1} is the output of block i.

Now each node v executes the following on round r:

1. Broadcast the value bi(v, r).

2. If bi(v, w, r�1) = 1 for at least n�2f nodes w 2 V , then reset ti(v, r) = 1.

3. If ti(v, r) = 1, then

(a) start a new instance of Ci, that is, re-initialise the variables of Ci

correctly,

(b) use input 1 if bi(v, w, r � 1) = 1 for at least n � f nodes w 2 V and
0 otherwise.

4. If ti(v, r) = R(C), then

(a) execute round R(C) of Ci,

(b) set ti(v, r + 1) = ?,

(c) set Bi(v, r+1) = yi(v, r), where yi(v, r) 2 {0, 1} is the output variable
of Ci.

Otherwise, set Bi(v, r + 1) = 0.

5. If ti(v, r) 62 {R(C), ?}, then

(a) execute round ti(v, r) of Ci, and

(b) set ti(v, r + 1) = ti(v, r) + 1.

126 LECTURE 11. SYNCHRONOUS COUNTING

Analysis. Besides the communication used for computing the values bi(·), the
above algorithm uses messages of size M(C) + 1, as M(C) bits are used when
executing Ci and one bit is used to communicate the value of bi(v, r).

We say that v 2 Vg executes the round t 2 {1, . . . , T (C)} of Ci in round r i↵
ti(v, r) = t. By Lemm 11.11, in rounds t > R(C) + 2, there is always at most
one instance of Ci being executed, and if so, consistently.

Corollary 11.15. Suppose that v 2 Vg executes round 1 of Ci in some round

r > T (C) + 2. Then there is a subset U ✓ Vg such that each w 2 U executes

round t 2 {1, . . . , R(C)} of Ci in round r + t � 1 and no u 2 Vg \ U executes

any round of Ci in round r + t � 1.

Exploiting silence of Ci and the choice of inputs, we can ensure that the case
U 6= Vg causes no trouble.

Lemma 11.16. Let r > T (C)+2 and U be as in Corollary 11.15. Then U = Vg

or each w 2 U has input 0 for the respective instance of Ci.

Proof. Suppose that v 2 U starts an instance with input 1 in round r0
2 {r �

T (C) � 1, . . . , r}. Then bi(w, r0
� 1) = 1 for at least n � 2f nodes w 2 Vg, since

v received bi(v, w, r0
� 1) = 1 from n � f nodes w 2 V . Thus, each v0

2 Vg

received bi(v0, w, r0
�1) = 1 from at least n�2f nodes v0 and sets ri(v0, r0) = 1,

i.e., U = Vg. The lemma now follows from Corollary 11.15.

Recall that if all nodes executing Ci have input 0, non-participating correct
nodes behave exactly as if they executed Ci as well, i.e., they send no messages.
Hence, if U 6= Vg, all nodes executing the algorithm will compute output 0.
Therefore, Corollary 11.15, Lemm 11.11, and Lemm 11.16 imply the following
corollary.

Corollary 11.17. In rounds r > T (C) + 2 it holds that Bi(v, r) = Bi(w, t)
for all v, w 2 Vg and i 2 {0, 1}. Furthermore, if Bi(v, r) = 1 for v 2 Vg and

r > T (C)+2, then the minimal r0 > r so that Bi(v, r0) = 1 (if it exists) satisfies

either r0 = r + i or r0 > r + C = t + max{ 0, 1} + �+ 2.

Finally, we observe that our approach does not filter out pulses from correct
blocks.

Lemma 11.18. If block i is correct, there is a round t2 S(Pi)+2C+R(C)+1
so that for any r � t2, Bi(v, r) = 1 if and only if r = t2 + k i for some k 2 N0.

Proof. Lemm 11.10 states the same for the variables bi(v, r) and a round t1

S(Pi)+2C. If bi(v, r) = 1 for all v 2 Vg and some round r, all correct nodes start
executing an instance of Ci with input 1 in round r +1. As, by Corollary 11.15,
this instance executes correctly and, by validity of Ci, outputs 1 in round r +
R(C), all correct nodes satisfy Bi(v, r + R(C) + 1) = 1. Similarly, Bi(v, r +
R(C) + 1) = 0 for such v and any r � t1 with bi(v, r) = 0.

11.3. WEAK FROM (LESS RESILIENT) STRONG PULSERS 127

Remarks:

• The bottomline: we used consensus to enforce consistency of the outputs
of correct nodes.

• In order to resolve the issue that not always all correct nodes will know
to participate, we used silent consensus. If anyone is set on using input
1 (everything seems to be fine), all correct nodes participate. Otherwise,
the participating nodes have input 0, and because the non-participating
nodes do not send messages, the fact that the consensus routine is silent
means that the run behaves just as if everyone participated with input 0.

• Note how this is similar to how we made the Phase King algorithm work:
either the Phase King figures out that someone is stuck with value b 2

{0, 1} and broadcasts b, or no correct node is stuck with a fixed value, so
it doesn’t matter which value the king broadcasts.

Obtaining the Weak Pulser

Finally, we define the output variable of our weak pulser as

B(v, r) = max{B0(v, r), B1(v, r)}.

As we have eliminated the possibility that Bi(v, r) 6= Bi(w, r) for v, w 2 Vg and
r > R(C) + 2, Property W1 holds. Since there is at least one correct block i
by Lemma 11.8, Lemma 11.18 shows that there will be good pulses (satisfying
Properties W2 and W3) regularly, unless block 1 � i interferes by generating
pulses violating Property W3 (i.e., in too short order after a pulse generated by
block i). Here the filtering mechanism comes to the rescue: as we made sure
that pulses are either generated at the chosen frequency i or a long period of
C rounds of generating no pulse is enforced (Corollary 11.17), it is su�cient to
choose 0 and 1 as coprime multiples of �.

Accordingly, we pick 0 = 2� and 1 = 3� and observe that this results in
a good pulse within O(�) rounds after the Bi stabilized.

Lemma 11.19. In the construction described in the previous two subsections,

choose 0 = 2� and 1 = 3� for any � � R(C). Then B(v, r) is the output

variable of a weak �-pulser with stabilization time max{S(P0), S(P1)} + O(�).

Proof. We have that C = max{ 0, 1} +�+ 2 2 O(�). By the above observa-
tions, there is a round

r 2 max{S(P0), S(P1)} + R(C) + O(�)

✓ max{S(P0), S(P1)} + O(�)

satisfying the following four properties. For either block i 2 {0, 1}, we have by
Corollary 11.17 that

1. Bi(v, r0) = Bi(w, r0) and B(v, r0) = B(w, r0) for any v, w 2 Vg and r0
� r.

Moreover, for a correct block i and for all v 2 Vg we have from Lemma 11.18
that

2. Bi(v, r) = Bi(v, r + i) = 1,

128 LECTURE 11. SYNCHRONOUS COUNTING

3. Bi(v, r0) = 0 for all r0
2 {r+1, . . . , r+��1}[{r+ i+1, . . . , r+ i+��1},

and for a (possibly faulty) block 1 � i we have from Corollary 11.17 that

4. if B1�i(v, r0) = 1 for some v 2 Vg and r0
2 {r + 1, . . . , r + i + � � 1},

then B1�i(w, r00) = 0 for all w 2 Vg and r00
2 {r0 + 1, . . . , r0 + C} that do

not satisfy r00 = r0 + k 1�i for some k 2 N0.

Now it remains to argue that a good pulse is generated. Suppose that i
is a correct block given by Lemma 11.8. By the first property, it su�ces to
show that a good pulse occurs in round r or in round r + i. From the second
property, we get for all v 2 Vg that B(v, r) = 1 and B(v, r + i) = 1. If the
pulse in round r is good, the claim holds. Hence, assume that there is a round
r0

2 {r + 1, . . . , r + i � 1} in which another pulse occurs, that is, B(v, r0) = 1
for some v 2 Vg. This entails that B1�i(v, r0) = 1 by the third property. We
claim that in this case the pulse in round r + i is good. To show this, we
exploit the fourth property. Recall that C > i + �, i.e., r0 + C > r + i + �.
We distinguish two cases:

• In the case i = 0, we have that r0 + 1�i = r0 + 3� = r0 + 0 + >
r + 0 + �, that is, the pulse in round r + 0 = r + i is good.

• In the case i = 1, we have that r0 + 1�i = r0 + 2� < r + 3� = r + 1

and r0 + 2 1�i = r0 + 4� = r0 + 1 + � > r + 1 + �, that is, the pulse
in round r + 1 = r + i is good.

In either case, a good pulse occurs by round

r + max{ 0, 1} 2 max{S(P0), S(P1)} + O(�).

From the above lemma and the constructions discussed in this section, we
get the following theorem.

Theorem 11.20. Let n = n0 +n1 and f = f0 + f1 +1, where n > 3f . Suppose

that C is an f -resilient consensus algorithm on n nodes and let � � R(C)+2. If
there exist fi-resilient strong i-pulser algorithms on ni nodes, where 0 = 2�
and 1 = 3�, then there exists an f -resilient weak �-pulser W on n nodes that

satisfies

• S(W) 2 max{S(P0), S(P1)} + O(�),

• M(W) 2 max{M(P0), M(P1)} + O(M(C)).

Proof. By Theorem 11.13, we can transform C into a silent consensus protocol
C 0, at the cost of increasing its round complexity by 2. Using C 0 in the con-
struction, Lemma 11.19 shows that we obtain a weak �-pulser with the stated
stabilization time, which by construction tolerates f faults. Concerning the
message size, note that we run P0 and P1 on disjoint node sets. Apart from
sending at most max{M(P0), M(P1)} bits per round for its respective strong
pulser, each node may send up to M(C) � 1 bits each to each other node for
the two copies Ci of C it runs in parallel, plus a constant number of additional
bits for the filtering construction including its outputs bi(·, ·).

Remarks:

• The work is done, we merely need to chain the constructions for weak and
strong pulsers recursively now.

11.4. PLUGGING IT TOGETHER 129

11.4 Plugging it Together

Finally, in this section we put the developed machinery to use. As our main
result, we show how to recursively construct strong pulsers out of consensus
algorithms.

Theorem 11.21. Suppose that we are given a family of f -resilient consensus al-
gorithms C(f) running on any number n > 3f of nodes in R(C(f)) rounds using
M(C(f))-bit messages, where both R(C(f)) and M(C(f)) are non-decreasing in

f . Then, for any 2 N, f 2 N0, and n > 3f , there exists a strong -pulser P
on n nodes that stabilizes in time

S(P) 2 (1 + o(1)) + O

0

@
dlog feX

j=0

R(C(2j))

1

A

and uses messages of size at most

M(P) 2 O

0

@1 +

dlog feX

j=0

M(C(2j))

1

A

bits, where the sums are empty for f = 0.

Proof. We show by induction on k that f -resilient strong -pulsers P (f,) on
n > 3f nodes with the stated complexity exist for any f < 2k, with the addition
that the (bounds on) stabilization time and message size of our pulsers are non-
decreasing in f . We anchor the induction at k = 0, i.e., f = 0, for which,
trivially, a 0-resilient strong -pulser with n 2 N nodes is given by one node
generating pulses locally and informing the other nodes when to do so. This
requires 1-bit messages and stabilizes in + 1 rounds.

Now assume that 2k
 f < 2k+1 for k 2 N0 and the claim holds for all

0 f 0 < 2k. Since 2 · (2k
� 1) + 1 = 2k+1

� 1, there are f0, f1 < 2k such that
f = f0 + f1 + 1. Moreover, as n > 3f > 3f0 + 3f1, we can pick ni > 3fi for
both i 2 {0, 1} satisfying n = n0 + n1. Let P (f 0, 0) denote a strong 0-pulser
that exists by the induction hypothesis for f 0 < 2k.

We intend to use -valued consensus algorithm C 0 on n nodes resilient to f
faults that we obtain from C(f) as in Task 1 of Exercise 9. In order to make use
of it, we need a weak �-pulser, where � 2 O(log)+R(C(f)) matches the time
complexity of C 0. Without loss of generality, we may assume that the O(log)
term is at least 2, that is, � � 2 + R(C(f)). We apply Theorem 11.20 to C(f)
and Pi = P (fi, i), where 0 = 2� and 1 = 3�, to obtain a weak �-pulser
W on n nodes with resilience f , stabilization time of

S(W) 2 max{S(P0), S(P1)} + O(�) ,

and message size of

M(W) 2 max{M(P0), M(P1)} + O(M(C(f))) .

Recall from Task 1 of Exercise 9 that C 0 uses messages of size M(C(f)) bits
and runs in R(C 0) � rounds. We feed the weak pulser W and the multivalued

130 LECTURE 11. SYNCHRONOUS COUNTING

consensus protocol C 0 into Corollary 11.7 to obtain an f -resilient strong -pulser
P that stabilizes in

S(P) R(C 0) + S(W) + S(W) + + �

2 max{S(P0), S(P1)} + + O(�)

rounds and has message size bounded by

M(P) M(W) + M(C(f))

2 max{M(P0), M(P1)} + O(M(C(f))).

Applying the bounds given by the induction hypothesis to P0 and P1, the
definitions of �, 0 and 1, and the fact that both R(C(f)) and M(C(f)) are
non-decreasing in f , we get that the stabilization time satisfies

S(P) 2 max{S(P (f0, 0)), S(P (f1, 1))} + + O(�)

✓ (1 + o(1)) · 3�+ O

0

@
dlog 2k

eX

j=0

R(C(2j))

1

A

+ + O(�)

✓ + O(log) + O

0

@
dlog 2k

eX

j=0

R(C(2j))

1

A

+ O(R(C(f)))

✓ (1 + o(1)) + O

0

@
dlog feX

j=0

R(C(2j))

1

A ,

and message size is bounded by

M(P) 2 max{M(P (f0, 0)), M(P (f1, 1))}

+ O(M(C(f)))

✓ O

0

@1 +

dlog 2k
eX

j=0

M(C(2j))

1

A + O(M(C(f)))

✓ O

0

@1 +

dlog feX

j=0

M(C(2j))

1

A .

Because we bounded complexities using maxi{S(Pi)}, maxi{M(Pi)}, R(C(f))
and M(C(f)), all of which are non-decreasing in f by assumption, we also
maintain that the new bounds on stabilization time and message size are non-
decreasing in f . Thus, the induction step succeeds and the proof is complete.

Plugging in the Phase King protocol, we can extract a strong pulser that is
optimally resilient, has asymptotically optimal stabilization time, and message
size O(log f).

Corollary 11.22. For any , f 2 N and n > 3f , an f -resilient strong -pulser
on n nodes with stabilization time (1+o(1)) +O(f) and message size O(log f)
exists.

11.4. PLUGGING IT TOGETHER 131

Corollary 11.23. For any C, f 2 N and n > 3f , an f -resilient C-counter on

n nodes with stabilization time O(f + log C) and message size O(log f) exists.

Proof. In the last step of the construction of Theorem 11.21, we do not use
Corollary 11.7 to extract a strong pulser, but directly obtain a counter using
Theorem 11.6. This avoids the overhead of due to waiting for the next pulse.
Recalling that the o() term in the complexity comes from the O(log) additive
overhead in time of the multi-value consensus routine, the claim follows.

Remarks:

• The construction may look awfully complicated, but this is not the result
of a high di�culty of the proof.

• Taking into account that the idea that recursion might help is borrowed
from the recursive variant of the Phase King protocol, the main challenges
were coming up with the idea to break the problem up into the subtasks
of constructing weak and strong pulsers, and seeing that silent consensus
can be used to circumvent the need for running consensus on whether to
run consensus.

• The entire construction works, without any changes, with randomized
consensus routines (satisfying certain constraints, which can as easily and
generically be achieved as silence). In particular, this yields solutions with
stabilization time logO(1) f .

• Needless to say that you’re not expected to know the full details of the
construction by heart!

Bibliographic Notes

The synchronous counting problem was dubbed by Dolev and Hoch under the
name of self-stabilizing Byzantine digital clock synchronization [HDD06]. They
provide a linear-time solution based on consensus. The construction given in
Lemma 11.2 is a simplification given in a later survey [DFL+15]. The term
“synchronous counting” came up later, because “self-stabilizing Byzantine dig-
ital clock synchronization” just takes way too long to say (try it out 10 times).

However, (another) Dolev and Welch were the ones who originally introduced
the task, in the same article in which they introduce and solve self-stabilizing
pulse synchronization [DW04]. They devise an exponential-time solution for
counting, which they then adapt to yield an exponential-time self-stabilizing
pulse synchronization algorithm. Apart from introducing the problems, this
work surprised by showing that the tasks can actually be solved, despite the
severe fault model. It also shows how the “synchronous version” of pulse syn-
chronization can serve as a testing ground for algorithmic ideas, without the
messy details of drifting clocks and uncertain communication delays, before
adapting them into solutions to pulse synchronization. This was also a main
motivation of the line of work [DHJ+16, LRS15, LRS17] culminating in the
recursive construction presented in this lecture [LR16]: at the time it was un-
known if more e�cient (in particular sub-linear time) self-stabilizing solutions to
pulse synchronization could be achieved, so we decided to study the synchronous
counting problem as the “closest of kin” in the synchronous model.

132 LECTURE 11. SYNCHRONOUS COUNTING

Bibliography

[DFL+15] Danny Dolev, Matthias Függer, Christoph Lenzen, Ulrich Schmid,
and Andreas Steininger. Fault-tolerant Distributed Systems in Hard-
ware. Bulletin of the EATCS, 116, 2015.

[DHJ+16] Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen,
Christoph Lenzen, Joel Rybicki, Jukka Suomela, and Siert Wieringa.
Synchronous Counting and Computational Algorithm Design. Jour-
nal of Computer and System Sciences, 82(2):310–332, 2016.

[DW04] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in
the Presence of Byzantine Faults. Journal of the ACM, 51(5):780–
799, 2004.

[HDD06] Ezra Hoch, Danny Dolev, and Ariel Daliot. Self-Stabilizing Byzan-
tine Digital Clock Synchronization. In Proc. 8th Symposium on Sta-

bilization, Safety, and Security of Distributed Systems (SSS), pages
350–362, 2006.

[LR16] Christoph Lenzen and Joel Rybicki. Near-Optimal Self-stabilising
Counting and Firing Squads. In Borzoo Bonakdarpour and Franck
Petit, editors, Proc. Symposium on Stabilization, Safety, and Security

of Distributed Systems, pages 263–280, 2016.

[LRS15] Christoph Lenzen, Joel Rybicki, and Jukka Suomela. Towards Opti-
mal Synchronous Counting. In Proc. 34th Symposium on Principles

of Distributed Computing (PODC), pages 441–450, 2015.

[LRS17] C. Lenzen, J. Rybicki, and J. Suomela. E�cient Counting with Opti-
mal Resilience. SIAM Journal on Computing, 46(4):1473–1500, 2017.

