Lecture 2

Gradient Clock
Synchronization

In the previous lesson, we proved essentially matching upper and lower bounds
on the worst-case global skew for the clock synchronization problem. We saw
that during an execution of the Max algorithm (Algorithm 1.2), all logical clocks
in all executions eventually agree up to an additive term of O(uD) (ignoring
other parameters). The lower bound we proved in Section 1.3 shows that global
skew of Q(uD) is unavoidable for any algorithm in which clocks run at an amor-
tized constant rate, at least in the worst case. In our lower bound construction,
the two nodes v and w that achieved the maximal skew were distance D apart.
However, the lower bound did not preclude neighboring nodes from remaining
closely synchronized throughout an execution. In fact, this is straightforward if
one is willing to slow down clocks arbitrarily (or simply stop them), even if the
amortized rate is constant.

Today, we look into what happens if one requires that clocks progress at a
constant rate at all times. In many applications, it is sufficient that neighboring
clocks are closely synchronized, while nodes that are further apart are only
weakly synchronized. To model this situation, we introduce the gradient clock
synchronization (GCS) problem. Intuitively, this means that we want to ensure
a small skew between neighbors despite maintaining “proper” clocks. That is,
we minimize the local skew under the requirement that logical clocks always run
at least at rate 1.

2.1 Formalizing the Problem

Let G = (V, E) be a network. As in the previous lecture, each node v € V has
a hardware clock H, :]RS' — Rg‘ that satisfies for all ¢,t' € Rar with ¢/ < ¢t

t—t' < H,(t)— H,(t') <9t —t).
Again, we denote by h,(t) the rate of H,(t) at time ¢, i.e., 1 < h(t) < ¢ for all
t € R{. Recall that each node v computes a logical clock L,: Rj — Ry from

its hardware clock and messages received from neighbors. During an execution
&, for each edge e = {v,w} € E, we define the local skew of e at time ¢ to be

13

14 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Le(t) = |Ly(t) — Ly(t)]. The gradient skew at time ¢ in the network, denoted
L(t), is the largest local skew across any edge: L£(t) = maxeecr Lc(t). Finally,
the gradient skew over an execution £ is defined to be

L= sup {L(t)} .

teRT

The goal of the gradient clock synchronization problem is to minimize £ for any
possible execution £.

Attention: In order to simplify our presentation of the gradient clock syn-
chronization problem, we abstract away from the individual messages and mes-
sage delays from the previous chapter. Instead, we assume that throughout an
execution, each node v maintains an estimate of its neighbors’ logical clocks.
Specifically, for each neighbor w € N,, v maintains a variable Eg (t). The pa-
rameter 0 represents the error in the estimates: for all {v,w} € F and t € RS‘,
we have

Ly(t) > LY (t) > Ly (t) — 6. (2.1)

When the node v is clear from context, we will omit the superscript v, and
simply write Ly.

In order to obtain the estimates quj(t), each node w periodically broadcasts
its logical clock value to its neighbors. Each neighbor v then computes zfu(t)
using the known bounds on message delays, and increases i’{u at rate h, /v
between messages from w. Thus, an upper bound on the error parameter §
can be computed as a function of u (the uncertainty in message delay), ¥ (the
maximum clock drift), T (the frequency of broadcasts), and p (a parameter
determining how fast logical clocks may run, see below); you do this in the
exercises.

To focus on the key ideas, we make another simplifying abstraction: Instead
of analyzing the global skew, we assume that it is taken care of and plug in G
as a parametrized upper bound. You will address this issue as an exercise, too.

2.2 Averaging Protocols

In this section, we consider a natural strategy for achieving gradient clock syn-
chronization: trying to bring the own logical clock to the average value between
the neighbors whose clocks are furthest ahead and behind, respectively. Specif-
ically, each node can be in either fast mode or slow mode. If a node v detects
that its clock is behind the average of its neighbors, it will run in fast mode, and
increase its logical clock at a rate faster than its hardware clock by a factor of
1+ u, where p is some appropriately chosen constant. On the other hand, if v’s
clock is at least the average of its neighbors, it will run in slow mode, increasing
its logical clock only as quickly as its hardware clock. Note that this strategy
results in logical clocks that behave like “real” clocks of drift ¢ = 9(1 4 p) — 1.
If 4 € O(Y), these clocks are roughly as good as the original hardware clocks.
The idea of switching between fast and slow modes gives a well-defined
protocol if neighboring clock values are known precisely,! however ambiguity

IThere is one issue of pathological behavior in which nodes could switch infinitely quickly
between fast and slow modes. This can be avoided by introducing a small threshold § so that
a node only changes, say, from slow to fast mode if it detects that its clock is J time units
behind the average.

2.2. AVERAGING PROTOCOLS 15

arises in the presence of uncertainty.
We consider two natural ways of dealing with the uncertainty. Set Ly**(t) :=
maxyeN, {Lw} and LM (t) := mingen, { Luw }-

Aggresive strategy: each v computes an upper bound on the average between
Ly and L%i“, and determines whether to run in fast or slow mode based
on this upper bound;

Conservative strategy: each v computes a lower bound on the average be-
tween L™ and L™ and determines the mode accordingly.

We will see that, in fact, both strategies yield terrible results, but for opposite
reasons. In Section 2.3, we will derive an algorithm that strikes an appropriate
balance between both stragies, with impressive results!

Aggressive Averaging

Here we analyze the aggressive averaging protocol described above. Specifically,
each node v € V computes an upper bound on the average of its neighbors’
logical clock values:

maxye N, { Lo} + mingen, { Lo} s> Ly 4 Lyn
2 2
The algorithm then increases the logical clock of v at a rate of h,(t) if Li(t) >

L'(t), and a rate of (1 4 u)hy(t) otherwise. We show that the algorithm
performs poorly for any choice of p > 0.

Liv(r) =

Claim 2.1. Consider the aggressive averaging protocol on a path network of
diameter D, i.e., V ={v;|i € [D+ 1]} and E = {v;,v;+1}|i € [D]. Then there
exists an execution £ such that the gradient skew satisfies L € Q(6D).

Proof Sketch. Throughout the execution, we will assume that all clock estimates
are correct: forallv € V and w € N,,, we have L (t) = L,,(t). This means for all
i € [D]\{0} that L¥P(t) = (Ly,_, (t)+Lu,,, (t))/2+0, whereas LUP(t) = Ly, (t)+4
and fjgg = Ly, _, (t)+0. Initially, the hardware clock rate of node v; is 1+%.
Thus, even though all nodes immediately “see” that skew is building up, they all
set their clock rates to fast mode in order to catch up in case they underestimate
their neighbors’ clock values.

Now let’s see what happens to the logical clocks in this execution. While
nodes are running fast, skew keeps building up, but the property that L,,(t) =
(L4, (t) = Ly,_, (t)) is maintained at nodes ¢ € [D] \ {0}. In this state, vg—
despite running fast —has no way of catching up to v;. However, at time
To == % we would have that L, (10) = L,,_,(70) +6 = Egg (10) and
vp would stop running fast. We set ¢y := 19 — € for some arbitrarily small £ > 0
and set hyp, (t) == hy,_, (t) for all ¢ > to. Thus, all nodes would remain in fast
mode until the time 71 := to + m;f)% when we had L,,_, (1) = iBE,l (11).
We set t; := 1 — € and proceed with this construction inductively. Note that,
with every hop, the local skew increases by (almost) 24, as this is the additional
skew that L,, must build up to L,, , when L,,,, = L,, in order to increase
f/}jip — L,, by ¢, i.e., for v; to stop running fast. As ¢ is arbitrarily small, we
build up a local skew that is arbitrarily close to (2D — 1)4. O

16 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Remarks:

e The algorithm is also bad in that the above execution results in a global
skew of Q(6D?).

e This could be fixed fairly easily, but without further changes still a large
local skew could build up.

e The above argument can be generalized to arbitrary graphs, by taking
two nodes v,w € V in distance D and using the function d(z) = d(x,v) —
d(x,w), just as in Lemma 1.5.

Conservative Averaging

Let’s be more careful. Now each node v € V' computes a lower bound on the
average of its neighbors’ logical clock values:

f/gp(t) _ maxweNv{ffw} + mingen, {f’w} < LR+ L%in .

2 2
The algorithm then increases the logical clock of v at a rate of h,(t) if L,(t) >
LiP(t), and a rate of (14 p)h,(t) otherwise. Again, the algorithm fails to achieve
a small local skew.

Claim 2.2. Consider the conservative averaging protocol on a path network
of diameter D. Then there exists an execution & such that the gradient skew
satisfies L € Q(4D).

Proof Sketch. We do the same as for the aggressive strategy, except that now
for each v € V, w € N, and time ¢, we rule that Ly (t) = Ly (t) — 6 + ¢ for
some arbitrarily small ¢ > 0. Thus, all nodes are initially in slow mode. We
inductively change hardware clock speeds just before nodes would switch to fast
mode, building up the exact same skews between logical clocks as in the previous
execution. The only difference is that now it does not depend on g how long
this takes! O

Remarks:

e It seems as if we just can’t do things right. Both the aggressive and
the conservative strategy do not result in a proper response to the gobal
distribution of clock values.

e Surprisingly, mixing the two strategies works! We study this during the
remainder of the lecture.

2.3 GCS Algorithm

The high-level strategy of the algorithm is as follows. As above, at each time
each node can be either in slow mode or fast mode. In slow mode, a node
v will increase its logical clock at rate h,(t). In fast mode, v will increase
its logical clock at rate (1 4+ u)h,(t). The parameter p will be chosen large
enough for nodes whose logical clocks are behind to be able to catch up to

2.3. GCS ALGORITHM 17

other nodes. The conditions for a node to switch from slow to fast or vice versa
are simple, but perhaps unintuititve. In what follows, we first describe “ideal”
conditions to switch between modes. In the ideal behavior, each node knows
exactly the logical clock values of its neighbors. Since the actual algorithm only
has access to estimates of neighboring clocks, we then describe fast and slow
triggers for switching between modes that can be implemented in our model for
GCS. We conclude the section by proving that the triggers do indeed implement
the conditions.

Fast and Slow Conditions

Definition 2.3 (FC: Fast Mode Condition). We say that a node v € V' satisfies
the fast mode condition (FC) at time t € R{ if there exists s € N such that:

FC1: 3z € N,: Ly(t) — Ly(t) > 256 ;
FC2: Vy € Ny: Ly(t) — Ly(t) < 255 .

Informally, FC 1 says that v has a neighbor = whose logical clock is signifi-
cantly ahead of L,(t), while FC 2 stipulates that none of v’s neighbors’ clocks
is too far behind L, (t). In particular, if FC is satisfied with € N, satisfying
FC 1, then the local skew across {v,z} is at least 2sd, where L, is at least 256
time units ahead of L,. Since none of v’s neighbors are running more than
2sd units behind L,, v can decrease the maximum skew with its neighbors by
increasing its logical clock.

The slow mode condition below is dual to FC. It essentially gives condi-
tions under which v could decrease the maximum skew in its neighborhood by
decreasing its logical clock.

Definition 2.4 (SC: Slow Mode Condition). We say that a node v € V satisfies
the slow mode condition (or SC) at time t € Ry if there exists s € N such that:

SC1: 3z € Ny: L,(t) — Ly(t) > (2s = 1)d;
SC2: Yy € Ny: Ly(t) — Ly(t) < (2s —1)4.

Substracting an additional ¢ in SC1 and SC 2 ensures that conditions FC
and SC are mutually exclusive. Together, the conditions mean that, if in doubt,
the algorithm alternates between aggressively seeking to reduce skew towards
neighbors that are ahead (FC) and conservatively avoiding to build up ad-
ditional skew to neighbors that are behind (SC), depending on the currently
observed average skew.

Fast and Slow Triggers

While the fast and slow mode conditions described in the previous section are
well-defined (and mutually exclusive), uncertainty on neighbors’ clock values
prevents an algorithm from checking the conditions directly. Here we define
corresponding triggers that our computational model does allow us to check.

The separation of between the conditions is just enough for this purpose.
As we assumed that clock values are never overestimated, but may be underes-
timated by 9§, the fast mode trigger needs to shift its thresholds by d.

18 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Definition 2.5 (FT: Fast Mode Trigger). We say that v € V' satisfies the fast
mode trigger (F'T) at time ¢ € Rar if there exists an integer s € N such that:

FT1: 3z € Ny: Ly(t) — Ly(t) > (25 — 1)5;

FT2: Yy € N,: L,(t) — L,(t) < (25 +1)4 .

Definition 2.6 (ST: Slow Mode Trigger). We say that a node v € V' satisfies
the slow mode trigger (or ST) at time t € Rg if there exists s € N such that:
ST1: 3w € Ny: Ly(t) — Lo(t) > (25 — 1)d ;

ST 2: Yy € Ny: Ly(t) — Ly(t) < (25 — 1)5 .

Before we formally describe the GCS algorithm, we give two preliminary
results about the fast and slow mode triggers. The first result claims that FT
and ST cannot simultaneously be satisfied by the same node. The second shows
that FT and ST implement FC and SC, respectively. That is, if the fast (resp.
slow) mode condition is satisfied, then the fast (resp. slow) mode trigger is also
satisfied.

Lemma 2.7. No node v € V can simultaneously satisfy FT and ST.
Proof. Suppose v satisfies F'T, i.e., there is s € N so that there is some z € N,

such that L, (t) — L,(t) > (25 — 1)§ and for all y € N, we have L,(t) — L,(t) <
(2s +1)6. Consider s’ € N. If ¢’ > s, then for all y € N,, we have that

Ly(t) — Ly(t) < (2s + 1)5 < (28’ — 1),

so ST 1 is not satisfied for s’. If s’ < s, then there is some x € N, so that
Lo(t) — Ly(t) > (25 — 1)6 > (25’ — 1)4,

so ST 2 is not satisfied for s’. Hence, ST is not satisfied. O

Lemma 2.8. Suppose v € V satisfies FC (resp. SC) at timet. Then v satisfies
FT (resp. SC) at time t.

Proof. Suppose FC holds (at time t). Then, by (2.1), there is some s € N such
that
3z € Ny: Ly(t) — Ly(t) > Ly(t) — 6 — Ly(t) > (25 — 1)6

and

Vy € Ny: Ly(t) — Ly(t) < Ly(t) — Ly(t) + 6 < (2s 4+ 1)4,
i.e.,, FT holds. Similarly, if SC holds, (2.1) yields that
J2 € Ny: Ly(t) — Ly(t) > Ly(t) — Lp(t) > (25 — 1)6
and B
Vy € Ny: Ly(t) — Ly(t) < Ly(t) — Ly(t) < (2s — 1)6

for some s € N, establishing ST. O

We now describe the GCS algorithm. Each node v initializes its logical clock
to its hardware clock value. It continuously checks if the fast (resp. slow) mode
trigger is satisfied. If so, it increases its logical clock at a rate of (1 + p)h,(t)
(resp. hy(t)). Pseudocode is presented in Algorithm 2.1. The algorithm itself is
simple, but the analysis of the algorithm (presented in the following section) is
rather delicate.

2.4. ANALYSIS OF THE GCS ALGORITHM 19

Algorithm 2.1: GCS algorithm
Ly(0) = H,(0)
r==1
at all times ¢ do the following
if FT then
| ri=14p // v is in fast mode
if ST then
| =1 // v is in slow mode
increase L, at rate rh,(t)

o N O oA W N

Remarks:

e In fact, when neither FT nor ST hold, the logical clock may run at any
speed from the range [h,(t), (1 + p)hy(¢)].

e In order for the algorithm to be implementable, ¢ should leave some wiggle
space. We expressed this by having (2.1) include a strict inequality, but
if the inequality can become arbitrarily tight, the algorithm may have to
switch between slow and fast mode arbitrarily fast.

e For technical reasons, we will assume that logical clocks are differentiable.
Thus, I, == 4L, exists and is between 1 and 9(1 + p) at all times. It is
possible to prove the guarantees of the algorithm without this assumption,
but all this does is making the math harder.

e Even with this assumption, we still need Lemma A.1. This is not a math-
ematics lecture, but as we couldn’t find any suitable reference, the lemma
and a proof is given in the appendix.

2.4 Analysis of the GCS Algorithm

We now show that the GCS algorithm (Algorithm 2.1) indeed achieves a small
local skew, which is expressed by the following theorem.

Theorem 2.9. For every network G and every execution & in which H,(0) —
H,,(0) <4 for all edges {v,w} € E, the GCS algorithm achieves a gradient skew
of L < 25[log, G/d], where o := u/(9 —1).

In order to prove Theorem 2.9, we analyze the average skew over paths in G
of various lengths. For long paths of (D) hops, we will simply exploit that G
bounds the skew between any pair of nodes. For successively shorter paths, we
inductively show that the average skew between endpoints cannot increase too
quickly: reducing the length of a path by factor ¢ can only increase the skew
between endpoints by an additive constant term. Thus, paths of constant length
(in particular edges) can only have a skew that is logarithmic in the network
diameter.

Leading Nodes

We start by showing that skew cannot build up too quickly. This is captured
by the following functions.

20 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Definition 2.10 (¥ and Leading Nodes). For eachv € V, s € N, and t € R{,
we define
W3(1) = max{Lo(t) ~ Lult) ~ (25 — 1)sd(o,w)}

we

where d(v, w) denotes the distance between v and w in G. Moreover, set

U () = max{ ¥, (1)} -

Finally, we say that w € V is a leading node if there is some v € V' so that
UP(t) = Ly(t) — Ly(t) — (2s — 1)od(v,w) > 0.

We will show that U%(¢) < G/o® for each s € N and all times ¢. For s =
[log, G/d], this yields that

Lo(t) = Lu(t) — (25— 1)6 < G/o* <6 = Ly(t) — Lu(t) < 28[log, /5] .

The definition of W3 is closely related to the slow mode condition SC. It
makes sure that leading nodes are always in slow mode.

Lemma 2.11 (Leading Lemma). Suppose w € V is a leading node at time t.
Then w satisfies SC and ST.

Proof. As w is a leading node at time ¢, there are s € N and v € V so that

U (t) = Ly(t) — Ly(t) — (25 — 1)dd(v,w) > 0.
In particular, L,,(t) > L,(t), so w # v. For any y € V', we have that
Ly(t) — Ly(t) — (25 — 1)0d(v, w) = W5 (t) > Ly (t) — Ly(t) — (25 — 1)dd(y,w) .
Rearranging this yields

Lu(t) = Ly(t) > (25 —)o(d(v,w) — d(y,w)) .
In particular, for any y € N, d(v,w) > d(y,w) — 1 and hence

Ly () = La(t) < (25— 1)3,

i.e., SC2 holds at w. Now consider x € N, so that d(z,w) = d(v,w) — 1; as
v # w, such a node exists. We get that

L, (t) — Ly(t) > (2s — 1)4,
showing SC 1. By Lemma 2.8, w then also satisfies ST at time ¢. O

This can readily be translated into a bound on the growth of ¥9 whenever
it is positive.

Lemma 2.12 (Wait-up Lemma). Suppose w € V satisfies ¥ (t) > 0 for all
t e (to,tl]. Then

W3, (t1) < W3, (o) — (Luw(t1) — Lu(to)) + 9(t1 — to).

2.4. ANALYSIS OF THE GCS ALGORITHM 21

Proof. Fix w € V, s € N and (to,t1] as in the hypothesis of the lemma. For
v € Vand t € (to,t1], define the function f,(t) = L,(t) — (2s — 1)dd(v, w).
Observe that

max{fy(t)} = Lu(t) = ¥y (1)

Moreover, for any v satisfying f,(t) = L (t) + S (t), we have that L,(t) —
Ly(t) — (25 — 1)dd(v,w) = WS (t) > 0. Thus, Lemma 2.11 shows that v is in
slow mode at time ¢. As (we assume that) logical clocks are differentiable, so is
fu, and it follows that < f,(t) < for any v € V and time ¢ € (to, t1] satisfying
that f,(t) = maxzcv{f.(¢t)}. By Lemma A.1, it follows that max,cv{f,(¢)}
grows at most at rate 9:

max{f,(t1)} < max{fo(to)} +9(t1 —to).
We conclude that
W3, (1) — U (to) = max{ fu (1)} — L (t1) — (max{f,(to)} — Lu(to))
< —(Luw(t1) = Luw(to)) +9(t1 — to) ,

which can be rearranged into the claim of the lemma. O

Trailing Nodes

As L, (t1) — Ly (to) > t1 — to at all times, Lemma 2.15 shows that U® cannot
grow faster than at rate 1 — 1 when it is positive. This buys us some time, but
we need to show that w will make sufficient progress before W* grows larger
than the desired bound. The approach to showing this is very similar to the one
for Lemma 2.12, where now we need to exploit the fast mode condition FC.

Definition 2.13 (Trailing Nodes). We say that w € V is a trailing node at
time t, if there is some s € N and a node v such that

Ly (t) — Ly (t) — 256d(v,w) = mea‘ac{Lv(t) — L, (t) — 2séd(v,z)} > 0.
Lemma 2.14 (Trailing Lemma). Suppose w € V' is a trailing node at time t.
Then w satisfies FC and FT.

Proof. Let s and v be such that

L,(t) — Ly (t) — 2s0d(v,w) = ma‘i({Lv(t) — L(t) — 2sdd(v,z)} > 0.

re

In particular, L,(t) > L,(t), implying that v # w. For y € V| we have that
L,(t) — Ly (t) — 2sdd(v, w) > Ly (t) — Ly(t) — 2s6d(v, y)
and thus for all neighbors y € N, that
Ly(t) — Ly(t) + 2s6(d(v,y) — d(v,w)) > 0.
It follows that
Yy € Ny: Ly (t) — Ly(t) < 2s6,

i.e., FC2 holds. As v # w, there is some node z € N,, with d(v,z) = d(v,w)—1.
We obtain that
dx € Ny: Ly(t) — Ly(t) > 256,

showing FC 1. By Lemma 2.8, w thus also satisfies FT at time t. O

22 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

Using this, we can show that if U3 (tp) > 0, w will eventually catch up. How
long this takes can be expressed in terms of U*~1(ty), or, if s =1, G.

Lemma 2.15 (Catch-up Lemma). Let s € N and tg, t; be times. If s = 1,
suppose that t; > to+G/u; otherwise, suppose that t; > to+ WS~ 1(to)/p. Then,
for any w eV,

Ly(t1) — Ly (to) > t1 — to + U3, (to) -

Proof. Choose v € V such that
W3, (to) = Lo (to) = Lu(to) — (25 — 1)dd(v,w) > 0.

Define f,(t) == L,(to) + (t —to) — Lo (t) — (28 — 2)dd(v, x) for x € V and observe
that U3 (t9) < fu(to). Hence, if max,ev{f,(t)} < 0 for some t € [to,t1], then

Liy(t1) = L(t) = (01 — 1) =2 0 > fu(t)
= L,(tg) + (t —to) — Lyw(t) — (25 — 2)dd(v, x)
= fw(to) + (- tO) (Lw(t) - Lw<t0))
> W3, (to) + (t — to) — (Luw(t) — Luw(to))

which can be rearranged into the claim of the lemma.
To show this, consider any time ¢ € [tg,¢;] when max,cv{f.(¢t)} > 0 and let
y € V be any node such that max,ecy{f;(t)} = fy,(t). Then y is trailing, as

rznea‘l}({Lv(t) — L,(t) — (2s — 2)0d(v, x)}
= Ly(t) = Lu(to) — (t — to) + r;lea&({fx(t)}

= Ly(t) — Ly(to) — (t — to) + fy(t)
= Ly (t) — Ly(t) — (25 — 2)dd(v, y)

and

Lo(t) = Lo(to) = (t = to) + max{fa(t)} > Lo(t) = Lu(to) — (t —to) 2 0.

Thus, by Lemma 2.14 y is in fast mode. As logical clocks are (assumed to be)
differentiable, we get that < f,(t) =1 —I,(t) < —p.

Now assume for contradiction that max,ev{f;(t)} > 0 for all ¢t € [to,1].
Then, applying Lemma A.1 again, we conclude that

max{fz(to)} > —(max{fz(t1)} — max{fs(to)}) = u(ts — to) .
If s =1, u(ty — tg) > G, contradicting the fact that
Fulto) = Lu(to) — Lalto) < G
for all x € V. If s > 1, then u(t; —to) > ¥~ 1(¢y). However, we have that
fa(to) < Ly(to) — La(to) — (25 — 3)dd(v, x) < W (¢p)

for all z € V. As this is a contradiction as well, the claim of the lemma
follows. O

2.4. ANALYSIS OF THE GCS ALGORITHM 23

Putting Things Together

Theorem 2.16. Assume that H,(0) — H,

w(0) <6 for all {v,w} € E. Then, for
all s € N, Algorithm 2.1 guarantees ¥*(t) <

G/o®, where o = p/(1 —19).

Proof. Suppose for contradiction that the statement of the theorem is false. Let
s € N be minimal such that there is a time ¢; for which ¥*(¢1) = G/o° + ¢ for
some € > 0. Thus, there is some w € V such that

\I/fu(tl) = \I/S(tl) = % +e.

Set to :== max{t — G/(uo®*"1),0}. Consider the time t' € [to, ;] that is minimal
with the property that W2 (t) > 0 for all ¢ € (¢, 1] (by continuity of ¥$ such a
time exists). Thus, we can apply Lemma 2.12 to this interval, yielding that

U, (t) S U (t) + 0t —) = (Lu(tr) = Lo (t) < WL(E) + (9 = 1)(t = 1').
s (') cannot be 0, as otherwise

W3, (h) < (9= 1)(t —) < “9;1).089’ _9

contradicting U3 (¢1) = G/o® + €.
On the other hand, if U2 (¢') > 0, we must have t' = ¢, from the definition
of ¥, and tg # 0 because

max {L,(0) — L, (0) — (2s — 1)dd(v, w)}

v,weV
= v%?%/{H'“(O) — H,(0) — (25 — 1)dd(v,w)}
< m;g%/{Hv(O) — H,(0) — dd(v,w)} <0,

as H,(0) — H,(0) <4 for all neighbors v, w by assumption. Hence, t' = to =
t1 — G/(no®~h). If s > 1, the minimality of s yields that U*(¢y) < G/o°~1. We
apply Lemma 2.15 to level s, node w, and time ¢’ = ty, yielding that

Wiy (t) < W5, (to) + 9t — to) — (Lw(t1) — Lu(to)) < (9 —1)(t1 —to) < %7

again contradicting W2 (1) = G/0® + . Reaching a contradiction in all cases,
we conclude that the statement of the theorem must indeed hold. O

Our main result, Theorem 2.9, is now immediate.

Proof of Theorem 2.9. We apply Theorem 2.16 and consider s := [log,(G/d)].
For any {v,w} € FE and any time ¢, we thus have that

L,(t) — Ly(t) — (2s = 1)d = Ly(t) — Ly (t) — (25 — 1)dd(v, w) < W*(t) < % <9.
o
Rearranging this and exchanging the roles of v and w, we obtain
L(t) = max {|L,(t) — Ly, (t)|} < 285 = 25[log,(G/d)] . O

{v,w}eE

24 LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

What to Take Home

e A very simple algorithm achieves a surprisingly good local skew, even if
clocks must advance at all times.

e The base of the logarithm in the bound is typically large. A cheap quartz
oscillator guarantees ¥ — 1 < 107°, while typically u/d > 10~2. With a
base of roughly 103, the logarithmic term usually remains quite small.

e The algorithmic idea is surprisingly versatile. It works if ¢ is different
for each link, and with some modifications (to algorithm and analysis),
adversarial changes in the graph can be handled.

Bibliographic Notes

Gradient clock synchronization was introduced by Fan and Lynch [FL06], who
show a lower bound of Q(log(uD)/loglog(uD)) on the local skew. Some re-
searchers found this result rather counter-intuitive, and it triggered a line of
research seeking to resolve the question what precisely can be achieved. The
first non-trivial upper bound was provided by Locher and Wattenhofer [LWO06].
Their blocking algorithm bounds the local skew by (’)(\/@) The first logarith-
mic bound on the local skew was given in [LLWO08] and soon after improved
to the algorithm presented here [LLW10]. However, the elegant way of phras-
ing it in terms of the fast and slow modes and conditions is due to Kuhn and
Oshman [KO09].

The algorithmic idea underlying the presented solution turns out to be sur-
prisingly robust and versatile. Essentially the same algorithm works for different
uncertainties on the edges [KO09]. With a suitable method of carefully incor-
porating newly appearing edges, it can handle dynamic graphs [KLLO10] (this
problem is introduced in [KLO11]), in the sense that edges that were continu-
ously present for sufficiently long satisfy the respective guarantee on the skew
between their endpoints. Recently, the approach has been independently dis-
covered (twice!) for solving load balancing tasks that arise in certain packet
routing problems [DLNO17, PR17].

Bibliography

[DLNO17] Stefan Dobrev, Manuel Lafond, Lata Narayanan, and Jaroslav Opa-
trny. Optimal local buffer management for information gathering
with adversarial traffic. In Proceedings of the 29th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA 2017,
Washington DC, USA, July 24-26, 2017, pages 265—274, 2017.

[FLO6] Rui Fan and Nancy Lynch. Gradient Clock Synchronization. Dis-
tributed Computing, 18(4):255—266, 2006.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. CoRR, abs/1005.2894, 2010.

BIBLIOGRAPHY 25

[KLO11]

[KO09)]

[LLWO0S]

[LLW10]

[LWO6]

[PR17]

Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient
Clock Synchronization in Dynamic Networks. Theory Comput. Syst.,
49(4):781-816, 2011.

Fabian Kuhn and Rotem Oshman. Gradient Clock Synchronization
Using Reference Broadcasts. In Proc. 13th Conference on Principles
of Distributed Systems (OPODIS), pages 204-218, 2009.

Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Clock
Synchronization with Bounded Global and Local Skew. In Proc. 49th
Symposium on Foundations of Computer Science (FOCS), pages
509-518, 2008.

Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. J. ACM, 57(2):8:1-8:42, 2010.

Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In Proc. 20th Symposium on Distributed Comput-
ing (DISC), pages 520-533, 2006.

Boaz Patt-Shamir and Will Rosenbaum. The space requirement of
local forwarding on acyclic networks. In Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, pages 13-22, 2017.

26

LECTURE 2. GRADIENT CLOCK SYNCHRONIZATION

