
Lecture 3

Lower Bound on the Local

Skew

In Chapter 1, we proved tight upper and lower bounds of ⇥(D) for the global
skew of any clock synchronization algorithm. However, the algorithms achiev-
ing optimal global skew had the undesireable feature that the maximal global
skew could be attained between any pair of nodes in the network—even adja-
cent nodes. In Chapter 2, we developed a more refined algorithm that further
controlled the gradient skew—the maximum skew between any pair of adja-

cent nodes. Specifically, the gradient clock synchronization (GCS) algorithm of
Chapter 2 achieved a local skew of O(� logD).

In this chapter, we address the question of whether the O(� logD) skew
upper bound for GCS can be improved. Since gradient clock synchronization is
a local property (in the sense that the definition of gradient skew only references
logical clocks of neighboring nodes), one may expect that a distributed algorithm
may be able to achieve O(�) local skew. However, we will show that this is
impossible: any GCS algorithm must incur local skew of ⌦(u logD) for some
executions. Thus, the GSC algorithm of Chapter 2 is asymptotically optimal.

3.1 Lower Bound with Bounded Clock Rates

In this section, we first prove a lower bound assuming that each logical clock
increases at a rate of at most (1+µ)hv > 1. That is, for all v 2 V and t, t

0
2 R+

0

with t < t
0, we assume Lv(t0) � Lv(t) (1 + µ)(Hv(t0) �Hv(t)).1 We use the

model of Chapter 1. Moreover, all logical clocks have a minimum rate of 1: for
all v 2 V and t, t

0
2 R+

0 with t < t
0, we have Lv(t0)�Lv(t) � t

0
� t. Under these

assumptions, we will prove the following theorem.

Theorem 3.1. Any algorithm for the gradient clock synchronization problem

with logical clock rates between 1 and (1 + µ)hv incurs a worst-case gradient

skew of L � (u/4� (#� 1)d) logd�e D, where � := µ/(#� 1).

1Note that this assumption does not allow for algorithms that increase their clocks dis-
continuously. For example, the argument does not apply to the max algorithm presented in
Chapter 1.

27

28 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

To gain some intuition, assume that (# � 1)d ⌧ u, so we can neglect this
term. In order to prove Theorem 3.1, we first show that the adversary can build
up a hardware clock skew of ⌦(uk) between any pair of nodes in distance k

in O(uk/(# � 1)) time, in an indistinguishable way. Specifically, for v and w

in distance k, we get that H
(Ev)
v (t) � H

(E1)
v (t) 2 ⌦(uk) for some time t, while

H
(Ev)
w (t) = H

(E1)
w (t). By the minimum progress condition, this implies that the

logical clock of v di↵ers by at least ⌦(uk) between the two executions. This
is, in fact, a straightforward generalization of Lemma 1.5. The key di↵erence
is that we sacrifice a factor of 2 in the amount of skew we sneak in, so we can
choose the pair of nodes between which we build the skew after examining what
happens in E1, i.e., E1 provides no information regarding where the skew will
“appear.”

We can use this inductively as follows. Assuming that we know how to build
up a skew of ↵uk between nodes in distance k (initially, k ⇡ D and ↵ = 0),
we run a given GCS algorithm for O(uk0/(#� 1)) time with all hardware clock
rates being 1 (that’s the case in E1), where k

0
2 ⇥(k/�) (with constants chosen

suitably). As logical clock rates are between 1 and 1+µ in E1, the skew between
the original nodes is still ↵uk �O(uµk0/(#� 1)) = (↵ �O(1))uk. Thus, there
must be two nodes in distance k

0 with skew at least (↵ �O(1))uk0. If v is the
node with the larger clock value, we now consider Ev, in which the skew is by
⌦(uk0) larger. For the right choice of k0, we end up with a path of length k

0

that has skew (↵+⌦(1))uk0! We can repeat this up to ⇥(log� D)) many times,
yielding the desired lower bound.

Lemma 3.2. Assume that (#�1)d < u/2 and set t0 := d(v, w)(u/(2(#�1))�d).
For any algorithm, there is an execution E1 such that for any v, w 2 V , there is

an indistinguishable execution Ev satisfying that

• H
(E1)
x (t) = t for all x 2 V and t,

• H
(Ev)
v (t) = H

(E1)
v (t) + d(v, w)(u/2� (#� 1)d) for all t � t0, and

• H
(Ev)
w (t) = t for all t.

Proof. The proof is very similar to the one of Lemma 1.5. In both executions
and for all x 2 V , we set Hx(0) := 0. Execution E1 is given by running the
algorithm with all hardware clock rates being 1 at all times and the message
delay from x to y being d� u/2.

Set

d(x) :=

8
><

>:

�d(v, w) if d(x,w)� d(x, v) < �d(v, w)

d(v, w) if d(x,w)� d(x, v) > d(v, w)

d(x,w)� d(x, v) else.

Note that |d(x) � d(y)| 2 for any {x, y} 2 E. Moreover, d(v) = d(v, w) and
d(w) = �d(v, w). In Ev, we set the hardware clock rate of node x 2 V to
1 + (# � 1)(d(x) + d(v, w))/(2d(v, w)) at all times t t0 and to 1 at all times
t > t0. This implies that

H
(Ev)
v (t0) = #t0 = H

(E1)
v (t0) + d(v, w)

⇣
u

2
� (#� 1)d

⌘
and

H
(Ev)
w (t0) = t0 .

3.1. LOWER BOUND WITH BOUNDED CLOCK RATES 29

As clock rates are 1 from time t0 on, this means that the hardware clocks satisfy
all stated constraints.

It remains to specify message delays and show that the two executions are
indistinguishable. We achieve this by simply ruling that a message sent from
some x 2 V to a neighbor y 2 Nx in Ev arrives at the same local time at y as it
does in E1. By induction over the arrival sending times of messages, then indeed
all nodes also send identical messages at identical local times in both executions,
i.e., the executions are indistinguishable. However, it remains to prove that this
results in all message delays being in the range (d� u, d).

To see this, recall that for any {x, y} 2 E, we have that |d(x) � d(y)| 2.
As clock rates are 1 after time t0 and constant before, and all hardware clocks
are 0 at time 0, the maximum di↵erence between any two local times between
neighbors is attained at time t0. We compute

H
(Ev)
x (t0)�H

(Ev)
y (t0) =

d(y)� d(x)

2d(v, w)
· (#� 1)t0 =

d(y)� d(x)

2

⇣
u

2
� (#� 1)d

⌘
.

In execution E1, a message sent from x to y at local time H(E1)
x (t) = t is received

at local time H
(E1)
y (t) = H

(E1)
x (t) + d� u/2. If a message is sent at time t in Ev,

we have that

H
(Ev)
y (t+ d) � H

(Ev)
y (t) + d

= H
(Ev)
x (t) + d+

d(x)� d(y)

2

⇣
u

2
� (#� 1)d

⌘

> H
(Ev)
x (t) + d�

u

2

where the last inequality uses that d(x) � d(y) � �2 and that u/2 > (# � 1)d
by assumption. On the other hand,

H
(Ev)
y (t+ d� u) < H

(Ev)
y (t) + #d� u

= H
(Ev)
x (t) + #d� u+

d(x)� d(y)

2

⇣
u

2
� (#� 1)d

⌘

 H
(Ev)
x (t) + d�

u

2
,

where the final inequality holds with equality if d(x) � d(y) = 2 and thus also
for d(x)� d(y) < 2, as u/2 > (#� 1)d.

Proof of Theorem 3.1. Note that the claim is vacuous if (#� 1)d � u/4, so we
can assume the opposite in the following. Set b := d2�e and imax := blogb Dc.
By induction over i 2 [imax + 1], we show that we can build up a skew of
(i+2)(u/4�(#�1)d)d(v, w) between nodes v, w 2 V in distance d(v, w) = b

imax�i

at a time ti in execution E
(i), such that after time ti all hardware clock rates

are 1 and all sent messages have delays of d� u/2.
We anchor the induction at i = 0 by applying Lemma 3.2, choosing t0 as

in the lemma. We pick two nodes v, w 2 V in distance b
imax D of each

other such that L(E1)
v (t0) � L

(E1)
w (t0). Now consider Ev for this choice of v, w 2

V , which satisfies that H
(Ev)
v (t0) = H

(E1)
v (t0) + (u/2 � (# � 1)d)d(v, w) and

H
(Ev)
w (t0) = H

(E1)
w (t0). By indistinguishability of the two executions and the

30 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

minimum logical clock rate of 1, we get that

L
(Ev)
v (t0)� L

(Ev)
w (t0) = L

(E1)
v

⇣
t0 +

⇣
u

2
� (#� 1)d

⌘
d(v, w)

⌘
� L

(E1)
w (t0)

� L
(E1)
v (t0) +

⇣
u

2
� (#� 1)d

⌘
d(v, w)� L

(E1)
w (t0)

�

⇣
u

2
� (#� 1)d

⌘
d(v, w) .

We obtain E
(0) by changing all hardware clock rates in Ev to 1 at time t0 and

all message delays of messages sent at or after time t0 to d� u/2. As this does
not a↵ect the logical clock values at time t0 — E

(0) is indistinguishable from Ev

at x 2 V until local time H
(E(0))
x (t0)— this shows the claim for i = 0.

For the induction step from i to i+ 1, let v, w 2 V , E(i), and ti be given by
the induction hypothesis, i.e.,

L
(E(i))
v (ti)� L

(E(i))
w (ti) � (i+ 2)

⇣
u

4
� (#� 1)d

⌘
d(v, w) ,

and from time ti on all hardware clock rates are 1 and sent messages have delay
d � u/2. Note that the latter conditions mean that E

(i) behaves exactly like
E1 from Lemma 3.2 from time ti on, except that some messages sent at times
t < ti may arrive during [ti, ti + d). Hence, if we apply the same modifications
to E

(i) as to E1, but starting from time ti + d instead of time 0, we can, for any
v
0
, w

0
2 V , construct an execution Ev0 indistinguishable from E

(i), where

• H
(E(i))
x (t) = H

(E(i))
x (ti) + t� ti for all x 2 V and t � ti,

• H
(Ev0)
v0 (t) = H

(E(i))
v0 (t) + d(v0, w0)(u/2� (#� 1)d) for all times t � ti + d+

(u/(2(#� 1))� d)d(v0, w0), and

• H
(Ev0)
w0 (t) = H

(E(i))
w0 (ti) + t� ti for all t � ti.

Consider the logical clock values of v and w in E
(i) at time

ti+1 := ti + d+

✓
u

2(#� 1)
� d

◆
d(v, w)

b
.

Recall that lv(t) � hv(t) � 1 and lw(t) (1 + µ)hw(t) at all times t. As

h
(E(i))
w (t) = 1 at times t � ti, we get that

L
(E(i))
v (ti+1)� L

(E(i))
w (ti+1) � L

(E(i))
v (ti)� L

(E(i))
w (ti)� µ(ti+1 � ti) . (3.1)

Recall that d(v, w) = b
imax�i and that b = d2�e. We split up a shortest path

from v to w in b subpaths of length b
imax�(i+1). By the pidgeon hole principle, at

least one of these paths must exhibit at least a 1/b fraction of the skew between
v and w, i.e., there are v

0
, w

0
2 V with d(v0, w0) = b

imax�(i+1) = d(v, w)/b so

3.1. LOWER BOUND WITH BOUNDED CLOCK RATES 31

that

L
(E(i))
v0 (ti+1)� L

(E(i))
w0 (ti+1)

�
L
(E(i))
v (ti+1)� L

(E(i))
w (ti+1)

b
by (3.1) we have:

�
L
(E(i))
v (ti)� L

(E(i))
w (ti)� µ(ti+1 � ti)

b

=
L
(E(i))
v (ti)� L

(E(i))
w (ti)� µ(d+ (u/(2(#� 1))� d)d(v0, w0))

b

�
L
(E(i))
v (ti)� L

(E(i))
w (ti)� µud(v0, w0)/(2(#� 1))

b

�
L
(E(i))
v (ti)� L

(E(i))
w (ti)

b
�

µ

2�(#� 1)
·
u

2
· d(v0, w0)

=
L
(E(i))
v (ti)� L

(E(i))
w (ti)

b
�

u

4
· d(v0, w0)

�
(i+ 2)(u/4� (#� 1)d)d(v, w)

b
�

u

4
· d(v0, w0)

=
⇣
(i+ 2)

⇣
u

4
� (#� 1)d

⌘
�

u

4

⌘
d(v0, w0) .

In other words, as the average skew on a shortest path from v to w did not de-
crease by more than u/4, there most be some subpath of length d(v, w)/b with
at least the same average skew. Now we sneak in additional skew by advanc-
ing the (hardware and thus also logical) clock of v0 using the indistinguishable
execution Ev0 :

L
(Ev)
v0 (ti+1)� L

(Ev)
w0 (ti+1)

= L
(E(i))
v0

⇣
ti+1 +

⇣
u

2
� (#� 1)d

⌘
d(v0, w0)

⌘
� L

(E(i))
w0 (ti+1)

� L
(E(i))
v0 (ti+1) +

⇣
u

2
� (#� 1)d

⌘
d(v0, w0)� L

(E(i))
w0 (ti+1)

� (i+ 3)
⇣
u

4
� (#� 1)d

⌘
d(v0, w0) .

This completes the induction. Plugging in i = imax and noting that log b =
logd2�e 1+logd�e, we get an execution in which two nodes at distance b0 = 1
exhibit a skew of at least

(imax + 2)
⇣
u

4
� (#� 1)d

⌘
�

⇣
u

4
� (#� 1)d

⌘
(1 + logb D)

�

⇣
u

4
� (#� 1)d

⌘
logd�e D .

Remarks:

• It is somewhat “bad form” to adapt Lemma 3.2 on the fly, as we did in the
proof. However, the alternative of carefully defining partial executions,
how to stitch them together, and proving indistinguishability results in
this setting would mean to crack a nut with a sledgehammer.

32 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

• By making the base of the logarithm larger (i.e., making paths shorter
more quickly), we can reduce the “loss” of skew in each step. Thus, we
get a skew of (u/2 � (# � 1)d � ") per iteration, at the cost of reducing
the number of iterations by a factor of log �/(log � � log "�1).

• We can gain another factor of two by introducing skew more carefully. If
we constract E1 so that messages “in direction of w” have delay (roughly)
d � u and messages “in direction of v” have delay d, we can hide u skew
per hop, just like in Lemma 1.5. We favored the simpler construction to
avoid additional bookkeeping.

• Overall, if (# � 1)d ⌧ u, � � 1, and log� D � 1, we can show a lower
bound of (u� ") log� D for some small " > 0.

• Assuming a similar bunch of reasonable things and that T 2 O(d) (i.e.,
message frequency is not the bottleneck in determining estimates), the
asymptotically optimal choice of µ we computed in the exercises yields a
skew of roughly 2u log� D for our GCS algorithm. Thus, this lower bound
shows that the algorithm is optimal up to a factor of roughly 2, provided
� � 1 and (#� 1)d ⌧ u. Dropping that � � 1, we still get optimality up
to a constant factor.

• So what of the case that (#�1)d is comparable to u or even larger? Recall
that we have shown how to generate a better “logical hardware clock” in
this case by bouncing messages back and forth between nodes. Using this
idea (with some modifications and the occasional atrocity), one could, up
to an additive O((#� 1)d), eliminate the dependence of the upper bound
on (#� 1)d.

• As for a lower bound construction we can always pretend that clock drifts
are actually smaller, e.g., #0 := min{#, 1 + u/(4d)}, the lower bound is
asymptotically optimal in all cases. . .

• . . . except for unbounded clock rates, which we will deal with next.

3.2 Lower Bound with Arbitrary Clock Rates

It can be shown that clock rates lv(t) 2 !(1) do not help. That is, if (#� 1)d <

u/4, we have that L 2 ⌦(u log1/(#�1) D). However, the only (currently known)
proof for this is tedious, to the point where it conveys little insight regarding
what’s going on. Hence, we will settle for a (much) simpler argument by Fan
and Lynch showing a slightly weaker lower bound, followed by some intution as
to why the stronger result is true as well.

We need a technical lemma stating that, provided that we leave some slack
in terms of clock drifts and message delays, we can introduce ⌦(u) hardware
clock skew between any pair of neighbors in an indistinguishable manner. As
this follows from repetition of previous arguments, we skip the proof.

Lemma 3.3. Let E be any execution in which clock rates are at most 1+(#�1)/2
and message delays are in the range (d�3u/4, d�u/4). Then, for any {v, w} 2 E

and su�ciently large times t, there is an indistinguishable execution Ev such that

L
(Ev)
v (t) = L

(E)
v (t+ u/4) and L

(Ev)
w (t) = L

(E)
w (t).

3.2. LOWER BOUND WITH ARBITRARY CLOCK RATES 33

Proof Sketch. The general idea is to use the remaining slack of u/2 to hide the
additional skew, and the slack in the clock rates to introduce it. We can do this
as slowly as needed, just as in the proof of Lemma 1.5. Again, we can choose
the clock rates according to the function d(x) defined in Lemma 3.2; as v and
w are neighbors here, it can only take on values of �1, 0, or 1.

This is all we need to generalize our lower bound to arbitrarily large logical
clock rates.

Theorem 3.4. Assume that # 2. Any algorithm for the gradient clock syn-

chronization problem with logical clock rates of at least 1 incurs a worst-case

gradient skew of

L 2 ⌦
⇣⇣

u

4
� (#� 1)d

⌘
log(logD)/(#�1) D

⌘
.

Proof. Set u
0 := u/2, d0 := d � u/4, and #

0 := 1 + (# � 1)/2. We perform the
exact same construction as in Theorem 3.1, with three modifications. First, u,
d, and # are replaced by u

0, d0, and #
0. Second, before starting the construction,

we wait for su�ciently long so that Lemma 3.3 is applicable to all times when
we actually “work,” i.e., we let the algorithm run for the required time with
hardware clock rates of 1 and message delays of d0�u

0
/2. Third, we assume that

µ = log1/(#�1) D in the construction; if ever we attempt to use this (assumed)
bound on the clock rates in an inequality and it does not hold, the construction
fails.

Now two things can happen. The first is that the construction succeeds.
Note that we may assume that u0

/4 > (#0
� 1)d0, as otherwise u/4 < (#� 1)d,

i.e., nothing is to show. Thus, the construction shows a lower bound of

✓
u
0

4
� (#0

� 1)d0
◆
logd�e D >

✓
u

8
�

(#� 1)d

2

◆
logdµ/(#0�1)e D

2 ⌦
⇣⇣

u

4
� (#� 1)d

⌘
logµ/(#�1) D

⌘
.

As

logµ/(#�1) D =
logD

logµ� log(#� 1)

=
logD

log(logD � log(#� 1))� log(#� 1)

2 ⌦

✓
logD

log logD � log(#� 1

◆

= ⌦
⇣
log(logD)/(#�1) D

⌘
,

the claim follows in this case.
On the other hand, if the construction fails, there is an index i < imax for

which (3.1) does not hold—this is the only place where we make use of the fact
that logical clocks do not run faster than rate µ. Thus,

L
(E(i))
w (ti+1)� L

(E(i))
w (ti) > µ(ti+1 � ti)

34 LECTURE 3. LOWER BOUND ON THE LOCAL SKEW

for some i < imax. Recall that in the construction, d(v, w) = b
imax�i

� b and

ti+1 � ti = d+

✓
u

2(#� 1)
� d

◆
d(v, w)

b
>

u

2(#� 1)
� d >

u

4(#� 1)
�

u

4
.

Hence, there must be a time t � ti so that

L
(E(i))
w

⇣
t+

u

4

⌘
� L

(E(i))
w (t) >

µu

4
.

Let x 2 Nw be arbitrary. By Lemma 3.3, we can construct an execution Ew so
that

L
(Ew)
w (t) = L

(E(i))
w

⇣
t+

u

4

⌘
> L

(E(i))
w (t) +

µu

4

and L
(Ew)
x (t) = L

(E(i))
x (t). Thus, in at least one of the executions, the local skew

exceeds
µu

8
=

u

8
log1/(#�1) D .

We conclude this chapter with the promised intuition regarding the influence
of D on the base of the logarithm. Consider a path of length k with a skew of
exactly ↵ per hop, for a total of ↵k between its endpoints. Now suppose that an
algorithm cleverly uses a large logical clock rate, perfectly reducing the skew at
the same rate between any pair of neighbors. Consider the point in time when
the skew has been reduced to, say, ↵ � u/8 per hop. The node in the middle
of the path has increased its logical clock at half the rate of the endpoint that’s
catching up—and the nodes in between have been even faster! Denoting this
rate by r, slipping in hardware clock skew at rate # � 1 means adding logical
clock skew at rate at least r(# � 1)/2. So, even if it takes factor r less time to
reduce the skew to, say ↵ � u/8 per hop than it would for µ = 1, it also takes
factor r/2 less time to build up additional skew. We would end up with the
same result!

Remarks:

• Unfortunately, molding this idea into a proof is challenging, and the result
is not pretty.

• The D in the base of the logarithm is of little importance unless clocks are
of poor quality. A standard quartz oscillator guarantees that #�1 10�5.
Even a gigantic diameter of 105 would not a↵ect the bound by more than
a factor 2 for such clocks!

• The assumption that # 2 in Theorem 3.4 is an artifact of the proof.
However, hardware clocks that are this inaccurate hardly deserve the name
“clock,” so this corner case is not of interest.

• Overall, the GCS algorithm from the previous lecture appears to be opti-
mal or very close to optimal for essentially all choices of parameters.

• Don’t fall into the trap of forgetting that relaxing the model enables better
solutions! For instance, if it is not important that clocks make progress
at all times (or most of the time), constant local skew can be achieved
(buzzword: ↵-synchronizer)!

BIBLIOGRAPHY 35

Bibliographic Notes

There is not much to add to the notes for the previous lecture. The semi-
nal paper by Fan and Lynch [FL06] introducing the problem provided Theo-
rem 3.4. Meier and Thiele show that essentially the same lower bound arises
from bounded communication rates, without uncertainty (i.e., u = 0) [?]. The-
orem 3.1 follows [LLW10], which also tightens the lower bound for unbounded
clock rates by removing the D from the base of the logarithm. In the dynamic
setting, one can show bounds on how quickly an edge can be incorporated into
the subgraph of edges that satisfy the skew bounds, and asymptotic optimality
can be achieved simultaneously with other guarantees [KLO11, KLLO10].

Bibliography

[FL06] Rui Fan and Nancy Lynch. Gradient Clock Synchronization. Dis-

tributed Computing, 18(4):255–266, 2006.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. CoRR, abs/1005.2894, 2010.

[KLO11] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient
Clock Synchronization in Dynamic Networks. Theory Comput. Syst.,
49(4):781–816, 2011.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. J. ACM, 57(2):8:1–8:42, 2010.

