
Lecture 4

Fault-Tolerant Clock

Synchronization

In the previous lectures, we assumed that the world is a happy place without
any kind of faults. This is not a realistic assumption in large-scale systems, and
it is an issue in high reliability systems as well. After all, if the system clock
fails, there may be no further computations at all!

As, in general, it is di�cult to predict what kind of faults may happen, again
we assume a worst-case model: Failing nodes may behave in any conceivable
manner, including collusion, predicting the future, sending conflicting informa-
tion to di↵erent nodes, or even pretending to be correct nodes (for a while). In
other words, the system should still function no matter what kind of faults may
occur. This may be overly pessimistic in the sense that “real” faults might have
a very hard time to produce such behavior. However, if we can handle all of
these possibilities, we’re on the safe side in that we do not have to study what
kind of faults may actually happen and verify the resulting fault model(s) for
each and every system we build.

Definition 4.1 (Byzantine Faults). A Byzantine faulty node may behave arbi-

trarily, i.e., it does not follow any algorithm described by the system designer.

The set of faulty nodes is (initially) unknown to the other nodes. In other words,

the algorithm must be designed in such a way that it works correctly regardless

of which nodes are faulty. “Working correctly” here means that all requirements

and guarantees on clocks, skews, etc. need only be satisfied by the set Vg of nodes

that are not faulty.

Unsurprisingly, such a strong fault model results in limitations on what can
be achieved. For instance, if more than half of the nodes in the system are
faulty, there is no way to achieve any kind of synchronization. In fact, even if
half of the neighbors of some node are faulty, this is impossible. The intuition
is simple: Split the neighborhood of some node v in two sets A and B and
consider two executions, EA and EB , such that A is faulty in EA and B is faulty
in EB . Given that A is faulty in EA, B and v need to stay synchronized in EA,
regardless of what the nodes in A do. However, the same applies to EB with
the roles of A and B reversed. However, A and B can have di↵erent opinions
on the time, and v has no way of figuring out which set to trust.

37

38 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

In fact, it turns out that the number f of faulty nodes must satisfy 3f < n

or no solution is possible (without cryptographic assumptions); we show this
later. Motivated by the above considerations, we also confine ourselves to G

being a complete graph: each node is connected to each other node, i.e., each
pair of nodes can communicate directly.

4.1 The Pulse Synchronization Problem

Let’s study a simpler version of the clock synchronization problem, which we call
pulse synchronization. Instead of outputting a logical clock at all times, nodes
merely need to jointly generate roughly synchronized pulses whose frequency is
bounded from above and below.

Definition 4.2 (Pulse Synchronization). Each (non-faulty) node is to generate

each pulse i 2 N exactly once. Denoting by pv,i the time when node v generates

pulse i, we require that there are S, Pmin, Pmax 2 R+
so that

• maxi2N,v,w2Vg{|pv,i � pw,i|}  S (skew)

• mini2N{minv2Vg{pv,i+1}�maxv2Vg{pv,i}} � Pmin (minimum period)

• maxi2N{maxv2Vg{pv,i+1}�minv2Vg{pv,i}}  Pmax (maximum period)

Remarks:

• The idea is to interpret the pulses as the “ticks” of a common clock.

• Ideally, S is as small as possible, while Pmin and Pmax are as close to each
other as possible and can be scaled freely.

• Due to the lower bound from Lecture 1, we have that S � u/2.

• Clearly, we cannot expect better than Pmax � #Pmin, i.e., matching the
quality of the hardware clocks. Also, Pmax � Pmin � S.

• Because D = 1, the problem would be trivial without faults. For instance,
the Max Algorithm would achieve skew u + (# � 1)(d + T), and pulses
could be triggered every ⇥(G) local time.

• The di�culty lies in preventing the faulty nodes from dividing the correctly
functioning nodes into unsynchronized subsets.

4.2 A Variant of the Srikanth-Toueg Algorithm

One of our design goals here is to keep the algorithm extremely simple. To this
end, we decide that

• Nodes will communicate by broadcast (i.e., sending the same information
to all other nodes, for simplicity including themselves) only. Note that
faulty nodes do not need to stick to this rule!

• Messages are going to be very short. In fact, there is only a single type
of message, carrying the information that a node transitioned to state
propose.

4.2. A VARIANT OF THE SRIKANTH-TOUEG ALGORITHM 39

• Nodes will store, for each node, whether they received such a message.
On some state transitions, they will reset these memory flags to 0 (i.e., no
message received yet).

• Not accounting for the memory flags, each node runs a state machine with
a constant number of states.

• Transitions in this state machine are triggered by expressions involving (i)
the own state, (ii) thresholds for the number of memory flags that are 1,
and (iii) timeouts. A timeout means that a node waits for a certain amount
of local time after entering a state before considering a timeout expired,
i.e., evaluating the respective expression to true. The only exception is
the starting state reset, from which nodes transition to start when the
local clock reaches H0, where we assume that maxv2Vg{Hv(0)} < H0.

The algorithm, from the perspective of a node, is depicted in Figure 4.1. The
idea is to repeat the following cycle:

• At the beginning of an iteration, all nodes transition to state ready (or,
initially, start) within a bounded time span. This resets the flags.

G1

G3

G2

Guard Condition

G4

G5 hT3i expires or > f PROPOSE flags set

hT1i expires or > f PROPOSE flags set

hT2i expires

� n � f PROPOSE flags set

Hv(t) = H0

RESET START PROPOSE READY

PULSE

Propose

Propose

G3

G2G1 G5

G4

Figure 4.1: State machine of a node in the pulse synchronisation algorithm.
State transitions occur when the condition of the guard in the respective edge
is satisfied (gray boxes). All transition guards involve checking whether a local
timer expires or a node has received propose messages from su�ciently many
di↵erent nodes. The only communication is that a node broadcasts to all nodes
(including itself) when it transitions to propose. The notation hT i evaluates
to true when T time units have passed on the local clock since the transition to
the current state. The boxes labeled propose indicates that a node clears its
propose memory flags when transitioning from reset to start and pulse to
ready. That is, the node forgets who it has “seen” in propose at some point
in the previous iteration. All nodes initialize their state machine to state reset,
which they leave at the time t when Hv(t) = H0. Whenever a node transitions
to state pulse, it generates a pulse. The constraints imposed on the timeouts
are listed in Inequalities (4.1)–(4.4).

40 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

• Nodes wait in this state until they are sure that all correct nodes reached
it. Then, when a local timeout expires, they transition to propose.

• When it looks like all correct nodes (may) have arrived there, they transi-
tion to pulse. As the faulty nodes may never send a message, this means
to wait for n� f nodes having announced to be in propose.

• However, faulty nodes may also sent propose messages, meaning that
the threshold is reached despite some nodes still waiting in ready for
their timeouts to expire. To “pull” such stragglers along, nodes will also
transition to propose if more than f of their memory flags are set. This
is proof that at least one correct node transitioned to propose due to its
timeout expiring, so no “early” transitions are caused by this rule.

• Thus, if any node hits the n�f threshold, no more than d time later each
node will hit the f + 1 threshold. Another d time later all nodes hit the
n� f threshold, i.e., the algorithm has skew 2d.

• The nodes wait in pulse su�ciently long to ensure that no propose mes-
sages are in transit any more before transitioning to ready and starting
the next iteration.

For this reasoning to work out, a number of timing constraints need to be
satisfied:

H0 > max
v2Vg

{Hv(0)} (4.1)

T1

#
� H0 (4.2)

T2

#
� 3d (4.3)

T3

#
�

✓
1�

1

#

◆
T2 + 2d (4.4)

Lemma 4.3. Suppose 3f < n and the above constraints are satisfied. Moreover,

assume that each v 2 Vg transitions to start (ready) at a time tv 2 [t��, t],
no such node transitions to propose during (t � � � d, tv), and T1 � #�
(T3 � #�). Then there is a time t

0
2 (t�� + T1/#, t + T1 � d) (t

0
2 (t�� +

T3/#, t+T3�d)) such that each v 2 Vg transitions to pulse during [t0, t0 +2d).

Proof. We perform the proof for the case of start and T1; the other case is
analogous. Denote by tp the smallest time larger than t � � � d when some
v 2 Vg transitions to propose (such a time exists, as T1 will expire if a node
does not transition to propose before this happens). By assumption and the
definition of tp, no v 2 Vg transitions to propose during (t���d, tp), implying
that no node receives a message from any such node during [t��, tp]. As v 2 Vg

clears its memory flags when transitioning to ready at time tv � t � �, this
implies that the node(s) from Vg that transition to propose at time tp do so
because T1 expired. As hardware clocks run at most at rate # and for each
v 2 Vg it holds that tv � t��, it follows that

tp � t�� +
T1

#
� t .

4.2. A VARIANT OF THE SRIKANTH-TOUEG ALGORITHM 41

Thus, at time tp � t, each v 2 Vg has reached state ready and will not reset
its memory flags again without transitioning to pulse first.

From this observation we can infer that each v 2 Vg will transition to pulse:
Each v 2 Vg transitions to propose during [tp, t+T1], as it does so at the latest
at time tv +T1  t+T1 due to T1 expiring. Thus, by time t+T1 +d each v 2 Vg

received the respective messages and, as |Vg| � n� f , transitioned to pulse.
It remains to show that all correct nodes transition to pulse within 2d time.

Let t
0 be the minimum time after tp when some v 2 Vg transitions to pulse. If

t
0
� t + T1� d, the claim is immediate from the above observations. Otherwise,

note that out of the n � f of v’s flags that are true, at least n � 2f > f

correspond to nodes in Vg. The messages causing them to be set have been sent
at or after time tp, as we already established that any flags that were raised
earlier have been cleared before time t  tp. Their senders have broadcasted
their transition to propose to all nodes, so any w 2 Vg has more than f flags
raised by time t

0 + d, where d accounts for the potentially di↵erent travelling
times of the respective messages. Hence, each w 2 Vg transitions to propose
before time t

0 + d, the respective messages are received before time t
0 +2d, and,

as |Vg| � n� f , each w 2 Vg transitions to pulse during [t0, t0 + 2d).

Theorem 4.4. Suppose that 3f < n and the above constraints are satisfied.

Then the algorithm given in Figure 4.1 solves the pulse synchronization problem

with S = 2d, Pmin = (T2 + T3)/#� 2d and Pmax = T2 + T3 + 3d.

Proof. We prove the claim by induction on the pulse number. For each pulse,
we invoke Lemma 4.3. The first time, we use that all nodes start with hardware
clock values in the range [0, H0) by (4.1). As hardware clocks run at least at rate
1, thus all nodes transition to state start by time H0. By (4.2), the lemma can
be applied with t = � = H0, yielding times pv,1, v 2 Vg, satisfying the claimed
skew bound of 2d.

For the induction step from i to i + 1, (4.3) yields that v 2 Vg transitions to
ready no earlier than time

pv,i +
T2

#
� max

w2Vg

{pw,i} +
T2

#
� 2d � max

w2Vg

{pw,i} + d

and no later than time

pv,i + T2  max
w2Vg

{pw,i} + T2 .

Thus, by (4.4) we can apply Lemma 4.3 with t = maxw2Vg{pw,i} + T2 and
� = (1� 1/#)T2 + 2d, yielding pulse times pv,i+1, v 2 Vg, satisfying the stated
skew bound.

It remains to show that minv2Vg{pv,i+1}�maxv2Vg{pv,i} � (T2 +T3)/#�2d

and maxv2Vg{pv,i+1}�minv2Vg{pv,i}  T2 + T3 + 3d. By Lemma 4.3,

pv,i+1 2

✓
t�� +

T3

#
, t + T3 + d

◆

=

✓
max
w2Vg

{pw,i} +
T2 + T3

#
� 2d, max

w2Vg

{pw,i} + T2 + T3 + d

◆
.

Thus, the first bound is satisfied. The second follows as well, as we have already
shown that maxw2Vg{pw,i}  minw2Vg{pw,i} + 2d.

42 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

Remarks:

• The skew bound of 2d can be improved to d+u by a more careful analysis;
you’ll show this as an exercise.

• By making T2 + T3 large, the ratio Pmax/Pmin can be brought arbitrarily
close to #.

• On the other hand, we can go for the minimal choice T2 = 3#d and
T3 = (3#

2
� #)d, yielding Pmin = 3#d and Pmax = (3#

2 + 2# + 2)d.

4.3 Impossibility of Synchronization for 3f � n

If 3f � n, the faulty nodes can force correct nodes to lose synchronization in
some executions. We will use indistinguishability again, but this time there will
always be some correct nodes who can see a di↵erence. The issue is that they
cannot prove to the other correct nodes that it’s not them who are faulty.

We partition the node set into three sets A, B, C ⇢ V so that |A|, |B|, |C| 

f . We will construct a sequence of executions showing that either synchroniza-
tion is lost in some execution (i.e., any finite skew bound S is violated) or the
algorithm cannot guarantee bounds on the period. In each execution, one of
the sets consists entirely of faulty nodes. In each of the other sets, the hardware
clocks of all nodes will be identical. The same holds for the faulty set, but the

HA(t) HB(t) HC(t)

E0 ⇢t ⇢
2
t

 arbitrary
t!

E1 ⇢
2
t

 ⇢
3
t

⇢t
t!

E2
 ⇢

3
t

⇢t ⇢
2
t

! t

E3 ⇢t ⇢
2
t

 ⇢
3
t

t!

E4 ⇢
2
t

 ⇢
3
t

⇢t
t!

E5
 ⇢

3
t

⇢t ⇢
2
t

! t

E6 ⇢t ⇢
2
t

 ⇢
3
t

t!

.

Table 4.1: Hardware clock speeds in the di↵erent executions for the di↵erent
sets. The red entries indicate faulty sets, simulating a clock speed of ⇢

3
t to

the set “to the left” and t to the set “to the right.” For k 2 N0, execution
pairs (E3k, E3k+1) are indistinguishable to nodes in A, pairs (E3k+1, E3k+2) are
indistinguishable to nodes in C, and pairs (E3k+2, E3k+3) are indistinguishable
to nodes in B. That is, in Ei faulty nodes mimic the behavior they have in Ei�1

to the set left of them, and that from Ei+1 to the set to the right.

4.3. IMPOSSIBILITY OF SYNCHRONIZATION FOR 3F � N 43

nodes there play both sides di↵erently: to one set, they make their clocks ap-
pear to be very slow, to the other they make them appear fast. All clock rates
(actual or simulated) will lie between 1 and ⇢

3, where ⇢ > 1 is small enough so
that ⇢

3
 # and d  ⇢

3(d � u); this way, message delays can be chosen such
that messages arrive at the same local times without violating message delay
bounds.

Note that for each pair of consecutive executions, the executions are indis-
tinguishable to the set that is correct in both of them and a factor of ⇢ > 1
lies between the speeds of hardware clocks. This means that the pulses are
generated at a by factor ⇢ higher speed. However, as the skew bounds are
to be satisfied, this means that also the set of correct nodes that knows that
something is di↵erent will have to generate pulses faster. This means that in
execution Ei, pulses are generated at an amortized rate of (at least) ⇢

i
Pmin. For

i > log⇢ Pmax/Pmin, this is a contradiction.

Lemma 4.5. Suppose 3f � n. Then, for any algorithm A, there exists ⇢ > 1
and a sequence of executions Ei, i 2 N0, with the properties stated in Table 4.1.

Proof. Choose ⇢ := min
n

#,
d

d�u

o1/3
. We construct the entire sequence concur-

rently, where we advance real time in execution Ei at speed ⇢
�i. All correct

nodes run A, which specifies the local times at which these nodes send messages
as well as their content. We maintain the invariant that the constructed parts
of the executions satisfy the stated properties. In particular, this defines the
hardware clocks of correct nodes at all times. Any message a node v (faulty or
not) sends at time t to some node w is received at local time Hw(t) + d. By
the choice of ⇢, this means that all hardware clock rates (of correct nodes) and
message delays are within the required bounds, i.e., all constructed executions
are feasible.

We need to specify the messages sent by faulty nodes in a way that achieves
the desired indistinguishability. To this end, consider the set of faulty nodes in
execution Ei, i 2 N0. If in execution Ei+1 such a node v sends a message to
some w in the “right” set (i.e., B is right of A, C of B, and A of C) at time

t = H
(Ei)
v (t)/⇢, it sends the same message in Ei at time t. Thus, it is received

at local time
H

(Ei)
w (t) + d = ⇢t + d = H

Ei+1
w (t) + d .

Similarly, consider the set of faulty nodes in execution Ei, i 2 N. If in execution
Ei�1 a node v from this set sends a message to some w in the “left” set (i.e., A

is left of B, B of C, and C or A) at time t = H
(Ei�1)
v (t)/⇢

2, it sends the same
message in Ei at time t/⇢

3. Thus, it is received at local time

H
(Ei)
w

✓
t

⇢3

◆
+ d =

t

⇢
+ d = H

(Ei�1)
w (t) + d .

Together, this implies that for k 2 N0, execution pairs (E3k, E3k+1) are indis-
tinguishable to nodes in A, pairs (E3k+1, E3k+2) are indistinguishable to nodes
in C, and pairs (E3k+2, E3k+3) are indistinguishable to nodes in B, as claimed.
Note that it does not matter which messages are sent from the nodes in C to
nodes in B in execution E0; for example, we can rule that they send no messages
to nodes in B at all.

44 LECTURE 4. FAULT-TOLERANT CLOCK SYNCHRONIZATION

It might seem as if the proof were complete. However, each execution is
defined in terms of others, so it is not entirely clear that the above assignment
is possible. This is where we use the aforementioned approach of “constructing
execution Ei at speed ⇢

�i.” Think of each faulty node as simulating two virtual
nodes, one for messages sent “to the left,” which has local time ⇢

3
t at time

t, and one for messages sent “to the right,” which has local time t at time t.
This way, there is a one-to-one correspondence between the virtual nodes of a
faulty node v in execution Ei and the corresponding nodes in executions Ei�1

and Ei+1, respectively (up to the case i = 0, where the “left” virtual nodes do
not send messages). If a faulty node v needs to send a message in execution
Ei, the respective virtual node sends the message at the same local time as
v sends the message in execution Ei�1 (left) or Ei+1 (right). In terms of real
time, there is exactly a factor of ⇢: if v is faulty in Ei and wants to determine
the behavior of its virtual node corresponding to Ei�1 up to time t, it needs
to simulate Ei�1 up to time ⇢t; similarly, when doing the same for its virtual
node corresponding to Ei+1, it needs to simulate Ei+1 up to time t/⇢. Thus,
when simulating all executions concurrently, where Ei progresses at rate ⇢

�i,
at all times the behavior of faulty nodes according to the above scheme can be
determined. This completes the proof.

Theorem 4.6. Pulse synchronization is impossible if 3f � n.

Proof. Assume for contradiction that there is an algorithm solving pulse syn-
chronization. We apply Lemma 4.5, yielding a sequence of executions Ei with
the properties stated in Table 4.1. We will show that pulses are generated ar-
bitrarily fast, contradicting the minimum period requirement. We show this
by induction on i, where the induction hypothesis is that there is some v 2 Vg

satisfying that

p
(Ei)
v,j � p

(Ei)
v,1  (j � 1)⇢�i

Pmax + 2iS

for all j 2 N0, where ⇢ > 1 is given by Lemma 4.5. This is trivial for the base
case i = 0 by the maximum period requirement.

For the induction step from i to i+1, let v 2 Vg be a node with p
(Ei)
v,j �p

(Ei)
v,1 

(j � 1)⇢�i
Pmax + 2iS for all j 2 N0. Let w 2 Vg be a node that is correct in

both Ei and Ei+1. By the skew bound,

p
(Ei)
w,j � p

(Ei)
w,1  p

(Ei)
v,j � p

(Ei)
v,1 + 2S  (j � 1)⇢�i

Pmax + 2(i + 1)S

for all j 2 N0. By Lemma 4.5, w cannot distinguish between Ei and Ei+1.

Because H
(Ei+1)
w (t/⇢) = ⇢t = H

(Ei+1)
w (t), we conclude that p

(Ei+1)
w,j = ⇢

�1
p
(Ei)
w,j for

all j 2 N0. Hence,

p
(Ei+1)
w,j � p

(Ei+1)
w,1  ⇢

�1
⇣
p
(Ei)
w,j � p

(Ei)
w,1

⌘
 (j � 1)⇢�(i+1)

Pmax + 2(i + 1)S

for all j 2 N0, completing the induction step.
Now choose i 2 N large enough so that ⇢

�i
Pmax < Pmin and let v 2 Vg be a

node to which the claim applies in Ei. Choosing j � 1 > 2iS(Pmin � ⇢
�i

Pmax),
it follows that

p
(Ei)
v,j � p

(Ei)
v,1  (j � 1)⇢�i

Pmax + 2iS < (j � 1)Pmin .

Hence, the minimum period bound is violated, as there must be some index

j
0
2 {1, . . . , j � 1} for which p

(Ei)
v,j0+1 � p

(Ei)
v,j0 < Pmin.

BIBLIOGRAPHY 45

Bibliographic Notes

The algorithm presented in this lecture is a variant of the Srikanth-Toueg algo-
rithm [ST87]. An actual implementation in hardware [FS12] (of another variant)
was performed in the DARTS project. In a form close to the one presented here,
it was first given in [DFL+15], a survey on fault-tolerant clocking methods for
hardware. In all of these cases, the main di↵erence to the original is getting rid
of communicating the “tick” number explicitly. The impossibility of achieving
synchronization if f � n/3 was first shown in [DHS86]. Conceptually, the un-
derlying argument is related to the impossibility of consensus in synchronous
systems with f � n/3 Byzantine faults [PSL80].

Concerning the skew bound, we know that u/2 skew cannot be avoided from
the first lecture. Moreover, (1 � 1/#)d/2 skew cannot be avoided either, as it
takes d time to communicate. Note that the upper bound of 2d shown here
only holds on the real time between corresponding ticks; if we derive continuous
logical clocks, we get at least an additional ⌦((#�1)d) contribution to the skew
from the hardware clock drift in between ticks, so there is no contradiction.
We’ll push the skew down to a matching O(u + (#� 1)d) in the next lecture.

Bibliography

[DFL+15] Danny Dolev, Matthias Függer, Christoph Lenzen, Ulrich Schmid,
and Andreas Steininger. Fault-tolerant Distributed Systems in Hard-
ware. Bulletin of the EATCS, 116, 2015.

[DHS86] Danny Dolev, Joseph Y. Halpern, and H.Raymond Strong. On the
Possibility and Impossibility of Achieving Clock Synchronization.
Journal of Computer and System Sciences, 32(2):230–250, 1986.

[FS12] Matthias Függer and Ulrich Schmid. Reconciling fault-tolerant dis-
tributed computing and systems-on-chip. Distributed Computing,
24(6):323–355, 2012.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the
Presence of Faults. J. ACM, 27(2):228–234, 1980.

[ST87] T. K. Srikanth and Sam Toueg. Optimal Clock Synchronization. J.

ACM, 34(3):626–645, 1987.

https://ti.tuwien.ac.at/ecs/research/projects/darts/

