
Lecture 7

Metastability-Containing

Control Loops

Like any clock synchronization algorithm (and many other distributed algo-
rithms), one may view the Lynch-Welch algorithm as a (distributed) control

loop. Basically, a control loop is seeking to adjust some (measurable) variable.
To this end, it repeatedly or continually takes measurements and applies accord-
ing adjustments, which naturally implies a mechanism to influence the variable
of interest (see Figure 7.4). As measurements and corrections may be inaccu-
rate, and the variable is also subject to influence by some external factors, the
control loop must react su�ciently quickly and accurately to maintain a desired
state against such unwanted “disturbances.”

More concretely, for clock synchronization, the variable is the vector of cor-
rect nodes’ clock values, the regulation is performed by adjusting the clocks,
the external influence is given by drifting clocks, and clock drifts and uncer-
tainty in message delays makes measurements of clock di↵erences inaccurate.
Two important aspects of control loops is whether they are operating on a con-
tinuous or discrete variable and whether the control is applied continuously or
in time-discrete steps. An example for the answer being continuous in both
cases is the gradient clock synchronization algorithm: logical clocks are contin-
uous functions, and the GCS algorithm adjusts their rates. In contrast, pulse
synchronization algorithms are an example for continuous variables (pulses can
occur at any real time), but discrete time steps (for each i 2 N, each correct
node generates exactly one pulse event).

Remarks:

• Note that the discretization is, of course, an abstraction in itself. It is
implemented in a physical — and thus, neglecting quantum mechanics,
continuous — world.

• If algorithms perform complicated message exchanges and computations,
seeing them as control loops is usually not useful. However, the Srikanth-
Toueg and Lynch-Welch algorithms can be readily interpreted as dis-
tributed control loops.

• The corrections are not applied instantaneously. It takes time to take
measurements, compute a correction, and apply it. This contributes to

67

68 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

computation

take measurementadjustment for each v 2 V

S
f+1
v + S

n�f
v

2

environmental inputs
(new pulses, affected by HW rates)

disturbance

Figure 7.1: The whole network as a control loop.

the quality of control; in extreme cases, the control loop fails to produce
anything close to the ideal behavior of the system.

• A lot of theory on control loops assumes very simple feedback mechanisms,
like adjustments that are linear in the measured di↵erence to the desired
state of the system. This is not the case for our algorithms: the necessity
to limit the influence of Byzantine nodes results in non-linear responses
to the measurements in both algorithms.

• So why are we talking about control loops if we can’t use the existing
theory? In part to explain the lecture’s title, and in part to clarify where
metastability-containing circuits come into play.

7.1 Metastability in Control Loops

In the Lynch-Welch algorithm, we adjust continuous variables (when to generate
pulses) for each round of the algorithm. The abstraction of rounds simplifies
matters for us. Even better, each node in the system does this independently
from the others, in the sense that we can interpret the algorithm at node v 2 Vg

as a control loop in which all the other nodes are simply part of the environment,
see Figure 7.2. But how do we actually decide how to adjust he clocks? After
all, computers cannot actually use real values in computations. There are,
essentially, two solutions:

1. Use an analog computation, in which values are represented by continuously-
valued physical variables, like the charge of a capacitor or the amount of
water in a bucket. (Of course, even these are discrete variables, but they
are so fine-grained that it doesn’t matter.)

2. Take discrete measurements, which is done by time-to-digital converters

(TDCs). Considering the rounding error as additional contribution to �,
one then can compute a corresponding adjustment to when the next pulse
occurs, just as in the analog case.

Both approaches have their pros and cons. Analog solutions typically require
specialized components, can be bulky, and require more work for adapting them
to di↵erent technologies. However, they can avoid metastability altogether,
as they never try to map values from a continuous to a discrete range. On

7.2. FIRST TRY: BINARY COUNTERS 69

the other hand, using synchronizers (i.e., time), it is straightforward to resolve
metastability su�ciently reliably.

So, why not always go for the simpler, second option? The problem is that
time is critical in many control loops. Recall that the Lynch-Welch algorithm
guarantees a skew of O(u+(1� 1/#)T), where T is the (nominal) duration of a
round. We can choose T 2 O(d), but d includes not only communication delays,
but also computation. Thus, if we spend Ts time on synchronization, this adds
(# � 1)Ts to the skew. On a chip, it may very well be the case that Ts becomes
the larger part of T , resulting in (# � 1)Ts being the dominant contribution to
the skew (unless local clocks are good enough). Hence, our goal for today is to
remove the synchronization delay, despite sticking with the second approach!

receive messages
S

f+1
v + S

n�f
v

2

own pulse

adjust the logical clock by

sort and select S
(n�f)
v , S

(f+1)
v

and compute
S

(n�f)
v + S

(f+1)
v

2
�

TDCs

Figure 7.2: The system from the point of view of a single node —also a control
loop.

7.2 First Try: Binary Counters

We need to break down the measurements and computations performed by a
node executing the Lynch-Welch algorithm and implement each steps in a way
that keeps (potential) metastability in check (see Figure 7.3). At each v 2 Vg,
in each round we need to

1. Send a message to each other node #S time after the (local) start of the
round.

2. Receive the other nodes’ messages and derive measurements of the di↵er-
ence in local time, resulting in the (unordered multi)set Sv.

3. Determine S
(f+1)
v and S

(n�f)
v .

4. Adjust v’s local clock by (S(f+1)
v + S

(n�f)
v)/2.

The first task is a no-brainer; we simply send the respective message #S local
time after the time t when Lv(t) mod T = S. The analysis shows that this time
is unique (so the messages are indeed sent only once) and this does not require
to keep track of unbounded clock values, which would be an annoying problem
due to our machines having only finite memory.

The second task requires some more thought. Again, we do not want to keep
track of unbounded values. Recall that Lemma 5.9 asks us to set

�v
w := Lv(t) � (r � 1)T � (#2

� 1)S � #d ,

70 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

select S
(n�f)
v , S

(f+1)
v and

compute
S

(n�f)
v + S

(f+1)
v

2

inputs:
disturbance

messages, etc

digital
metastability-containing

controlTDCs

Figure 7.3: Control flow of a single node. The gray area uses digital logic and
needs to contain metastability.

where t is the time when v 2 Vg receives the message for round r from w 2 Vg.
We also saw that all rounds are executed correctly (assuming we can implement
the correct behavior of the nodes!), i.e., t 2 [pv,r, ⌧v,r]. This is good news, as we
know that Lv(pv,r) = (r�1)T +S and Lv(⌧v,r) = (r�1)T +(#2 +#+1)S +#d.
Thus, we can simply start a counter at time pv,r and stop it at time t (when the
message is received), where we know that the maximum (local) time di↵erence
which we the counter must be able to represent is (#2 + #)S + #d. Here, the
counter is driven by the local clock and stopped by the arriving message. Thus,
if the counter value at time t is c and the local time between consecutive up-
counts of the counter is g, we have that

Lv(t) 2 [Lv(pv,r) + cg, Lv(pv,r) + (c + 1)g]

= [(r � 1)T + S + cg, (r � 1)T + S + (c + 1)g] .

Corollary 7.1. Let v 2 Vg start a counter driven by its local clock at time

pv,r that is stopped when receiving a message from node w 2 Vg. If round r

of the Lynch-Welch algorithm is executed correctly and the local time between

up-counts of the counter is g, setting

�w
v := cg � #

2
S � #d

yields an estimate satisfying � u + (# � 1)d + 2(#2
� #)S + g. Moreover,

c ((#2 + #)S + #d)/g.

Pretty straightforward, so all we need now is a fast counter, i.e., one for
which g is su�ciently small to not matter much, right? The answer to that is
an emphatic no! We have neglected that there is no guaranteed timing relation
between the counter’s up-counts and when the arrival of the message from w

stops the counter. Here is a simple argument why this must potentially argue
in metastability.

Lemma 7.2. Assume that a counter is driven by a free-running clock source,

started at time 0, and stopped at an arbitrary time ⌧ 2 (0, tmax] (where tmax � g

and the counter increments every g time). Let s(⌧, t) be the k 2 N bits stored

in the counter’s registers at an time t > tmax for a given ⌧ . If this state is a

continuous function of ⌧ (w.r.t. to the standard topologies on R and {0, 1}
k
),

then we cannot have that s(⌧, t) 2 {0, 1}
k
for all ⌧ .

Proof. Assume for contradiction that for any ⌧ , s(⌧, t) 2 {0, 1}
k. As tmax � g,

this implies that there are choices 0 `0 6= r0 tmax so that s(`0, t) 6= s(r0, t).

7.2. FIRST TRY: BINARY COUNTERS 71

Now we apply the technique of nested intervals. For i 2 N, set ⌧ := (`i�1 +
ri�1)/2. Clearly, s(⌧, t) 6= s(`i�1, t) or s(⌧, t) 6= s(ri�1, t). In the former case,
set `i := `i�1 and ri := ⌧ , otherwise `i := ⌧ and ri := ri�1. We have that

• The sequence (`i)i2N is increasing and upper bounded by ri for any i 2 N,
hence it converges to some value `

⇤
 infi2N{ri}.

• The sequence (ri)i2N is decreasing and lower bounded by `i for any i 2 N,
hence it converges to some value r

⇤
� supi2N{`i}.

• We have that `
⇤ = r

⇤, as limi!1(ri � `i) = 0.

• By continuity of s(·, t), we have that s(`⇤
, t) = limi!1 s(`i, t). As {0, 1}

k

is a discrete space, this means that there is some i` 2 N so that s(`i, t) =
s(`⇤

, t) for all i � i`.

• Likewise, there is some ir so that s(ri, t) = s(r⇤
, t) for all i � ir.

• We have that s(`i, t) 6= s(ri, t) for all i 2 N0 by construction.

Altogether, we arrive at the contradiction that, for any i � max{i`, ir}, it holds
that s(`i, t) 6= s(ri, t) = s(r⇤

, t) = s(`⇤
, t) = s(`i, t).

Remarks:

• If you are puzzled by the lemma requiring the “standard topologies,” don’t
worry about it. On R, this simply means the open and closed sets you
know. On {0, 1}

k, just intersect the open and closed sets in Rk with {0, 1}
k

to get the open and closed sets, respectively. As a ball of radius smaller
than 1 around a point in {0, 1}

k just contains the point, this means that
any convergent series becomes constant at some point. This is what we
used in the proof.

• These choices of topologies actually make sense. Any physical circuit will
respond to continuous changes of its input with continuous changes of
the output. However, we want stable and clearly distinguishable values
in our registers. This means to consider clearly separated regions of the
state space: The “0-region” of a register’s (physical) state space should be
clearly separated from its “1-region.” This separation means that a small
change cannot make the register “jump” from the 0- to the 1-region —
which is reflected by the discrete topology on {0, 1}.

• By inserting M as a third value covering the “gap” between 0 and 1, we
can properly reflect that circuits cannot do this job. In the topology, this
is reflected by the fact that no matter how small a ball becomes, it doesn’t
separate the 0- and the M-region of the register’s state space. We defined
that M stands for any state that is not in the 0- or the 1-region!

Does this mean we’re in trouble? In the previous lecture we saw that we can
deal with metastability to some extent. Unfortunately, following conventional
wisdom won’t work here.

72 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

Corollary 7.3. Consider the same setting as in Lemma 7.2. If the counter

uses standard binary encoding and tmax is large enough for it to count up to 2b
,

b 2 N0, then we can force the counter register holding the (b+1)-least significant
bit to be M at any time t > tmax.

Proof. We use essentially the same argument, but we start from more specific
times `0 and r0. As the counter can count up to 2b, we can choose `0 and r0

such that s(`0, t) = 0 . . . 01 . . . 1 and s(r0, t) = 0 . . . 010 . . . 0, where we wrote
the least significant bits to the right and in each case the identical bits to the
right are k many. This follows from the fact that the counter increment from
2b�1 to 2b must change the register states between these two (stable) states.
Now we can construct our nested intervals by performing our case distinction
according to the (k + 1)th bit (counting from the least significant one). By the
same arguments as before, we obtain a time at which the bit cannot be stable
and therefore must be M.

Remarks:

• Unless one is very careful when implementing the counter, things actually
get worse: we may end up with state 0 . . . 0M . . .M. In case the full range
of the counter is utilized, we may face a memory state of M . . .M!

• Think about this for a second. We started with being uncertain whether
an up-count of the counter took place or not, because the counter was
stopped in the middle of an increment. But we lost all information about
the relative timing of the start of the counter and the stop signal!

• Even if the counter was particularly cleverly implemented, Corollary 7.3
shows that we might end up with very wrong encoded values.

• The problem here lies with the encoding. When containing metastability,
the encoding matters!

7.3 Second Try: Unary “Counters”

We need to look for an encoding without such flaws. A very simple solution
is to use a unary encoding. In a B-bit unary code, k 2 [B + 1] is represented
by 1k0B�k. A unary code “counter” is implemented by a delay line, which
consists of a sequence of B bu↵ers of uniform delay g, where we connect to
each stage the set input of a register (which is initialized to 0). The counter is
stopped by latching all registers on occurence of the stop signal. When g is large
enough to guarantee that only a single register is unstable (transitioning) at any
given point, at most one register ends up in a metastable state when stopping
the counter. This is a sensible measure in most cases, as otherwise even after
stabilization we may end up with a stored string like 11101000. Basically, we
can’t make the measurement more accurate than imposed by the speed at which
registers can be set.

Alright, we measured time di↵erences in terms of unary encodings, v 2 Vg

has for each w 2 Vg stored a time di↵erence in unary, i.e., a B-bit string of the
form 1 . . . 10 . . . 0 or, possibly, 1 . . . 1M0 . . . 0. We refer to these strings as s

w
v ,

and can easily translate them to the measured time di↵erence by multiplication

7.3. SECOND TRY: UNARY “COUNTERS” 73

with g (up to an error of up to roughly g), where M can be interpreted either
way.

Our next step is to determine which of these strings represent S
(f+1)
v and

S
(n�f)
v , respectively. One way of doing this is to sort the strings. For this to be

meaningful, we need to give a total order on the potential input strings. The
only sensible order is in accordance with the time measured.

Definition 7.4 (Total Order of Inputs for Unary Encoding). Consider the set

of strings

UB := {1k0B�k
| k 2 [B + 1]} [{1k

M0B�k�1
| k 2 [B]} .

For x, y 2 UB,

x U y ,

8
>>><

>>>:

k k
0

for x = 1k0B�k
and y = 1k0

0B�k0

k k
0

for x = 1k0B�k
and y = 1k0

M0B�k0
�1

k k
0

for x = 1k
M0B�k�1

and y = 1k0
M0B�k0

�1

k < k
0

for x = 1k
M0B�k�1

and y = 1k0
0B�k0

�1
.

A crucial observation is that this order is also sensible in another regard:
When resolving metastability, a string does not “pass” any stable strings in the
order. We can apply the results from the previous lecture to see that sorting
according to this order is indeed possible with a circuit.

Lemma 7.5. Given n strings from UB, there is a circuit sorting them according

to the order from Definition 7.4.

Proof. We claim that the metastable closure of the function sorting the stable
inputs sorts according to the order from Definition 7.4. The statement of the
lemma then follows from Theorem 6.6.

To see this, sort a fixed set of input strings in accordance with the order
and consider the i

th output string. If it is stable, observe that picking arbitrary
stabilizations for the other strings and sorting accordingly will not change the
string in position i, as stabilizing a string 1k

M0B�k�1 does not move it “past”
any stable string in the order. On the other hand, if the string is not stable,
i.e., 1k

M0B�k�1 for some k 2 [B], observe that stabilizing all input strings by
replacing M with 0 results in the sorted sequence having 1k0B�k on position i

in the sorted list (as nothing moves past stable strings). Likewise, stabilizing
all input strings by replacing M with 1 results in the sorted sequence having
1k+10B�k�1 in position i, so bit k + 1 of the i

th output must be M. Any other
stabilization will result in either 1k0B�k or 1k+10B�k�1 on position i. The claim
follows, completing the proof.

However, using the construction from Theorem 6.6 would result in a circuit
of exponential size, so let’s be more clever. In absence of metastability, sorting
networks are simple and fast solutions to compute what we need.

Definition 7.6 (Sorting Network). An n-input sorting network consists of n

parallel wires oriented from left to right and a number of comparators (cf. Fig-

ure ??). Each comparator connects two of the wires, by a straight connection

orthogonal to the wires. Moreover, no two of the comparators connect to the

same point on a wire.

74 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

4

2

3

1

1

2

3

4

4

2

2

3

1

1

4

3

3

2

Figure 7.4: A sorting network with for inputs. Each comparator performs a
compare and (if necessary) swap operation of its two inputs. The outputs are
shown for the input sequence (4, 3, 2, 1), whose order needs to be reversed.

A sorting network is fed an input from a totally ordered set to the start of

each wire. Each comparator takes the two inputs provided by to it, outputting

the larger input to the top wire and the smaller input to the bottom wire. A

correct sorting network guarantees that for any choice of inputs, the outputs are

the sequence resulting from ordering the inputs descendingly from top to bottom.

Sorting networks are understood very well. Constructions that are simulta-
neously (asymptotically) optimal both with respect to size — the total number
of comparators —and depth —the maximum number of comparators “through”
which a value passes— are known. Conveniently, sorting networks are correct if
and only if the correctly sort 0s and 1s, so it su�ces if we can figure out how to
implement a comparator that correctly sorts two values according to our chosen
order.

Lemma 7.7. A correct comparator implementation for unary encoding is given

by the bit-wise Or for the upper and the bit-wise And for the lower output.

Proof. Follows from the behavior of the basic gates and a case distinction.

With sorting in place, we can determine S
(f+1)
v and S

(n�f)
v ; refer to the en-

codings of these values as s
(f+1)
v and s

(n�f)
v , respectively. It remains to perform

the last step, the phase correction. One solution would be an analog control
of the oscillator that serves as the local clock of v. Unfortunately, such an ap-
proach is too slow or too inaccurate in practice; either would defeat the purpose
of our approach. A fast “digital” solution is to have the local clock drive a
counter that basically counts modulo T (where T is represented as a multiple of
the time for a counter increment) and adjust this counter. Unfortunately, this
is unsafe when the adjustment values su↵er from potential metastability: The
counter registers could become metastable, causing all kinds of problems.

Of course, we could wait for stabilization first and then apply the correc-
tions to such a counter. But in that case we wouldn’t have to jump through all
these hoops in the first place— if we’re not able to apply the computed phase
correction right away, we could have waited for stabilization before computing
it, without losing time and saving us a lot of trouble. There is something else
we can do, however. We can use the unary encoded values in a delay line to
shift the clock in a safe way despite metastability. Of course, we cannot have a

7.3. SECOND TRY: UNARY “COUNTERS” 75

delay line for each round of the Lynch-Welch algorithm (that would be infinite
memory again!), but we can use a few in a round-robin fashion. The one which
was written the longest time ago then has stabilized with su�ciently large prob-
ability to risk transferring the respective phase shift into our counter —while
being used to shift the clock, the registers of the delay line have simultaneously
operated as a synchronizer! See Figure 7.5 for an overview of the circuit.

delay line
r mod 3 = 0

delay line
r mod 3 = 1

delay line
r mod 3 = 2

phase shifter

clkin

Counter mod 3

select and addTDCs

Counter mod 3

~

clock

MUX

DEMUX

Figure 7.5: Rough overview of a circuit using a (non-containing) phase shifter
and several delay lines to perform the phase shifts required by the Lynch-Welch
algorithm. The delay lines are used in a round-robin fashion. In between two
consecutive clock pulses, the current value held by the delay line which is to
be rewritten yet is provided to the phase shifter as input, it adjusts its internal
counter accordingly (making the phase shift permanent), and the registers of the
delay element are latched to the current output of the computational logic. All
this needs to be performed in the right order and be complete before the next
pulse propragates through the phase shifter and the delay lines; the complete
design requires additional circuitry ensuring this and a corresponding timing
analysis.

There’s still a catch: As we may have a metastable register in the delay line,
the respective And gate will output a bad signal when the clock flank arrives.
This would be remedied shortly after, when the delayed clock signal reaches the
next stage (with a stable 0 in the register), as then the Or will have a stable
input. The solution is a high-threshold inverter, which switches from output
1 to output 0 at a higher voltage threshold, thus “masking” the bad medium
voltage. Figure 7.6 shows how the resulting delay lines look like.

Remarks:

• This works, but is still ine�cient. Unary encodings are exponentially
larger than binary encodings!

• Let’s do better, using an encoding without redundancy that also changes
only a single bit on each up-count!

76 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

011 M

unshifted clock

high threshold inverter

Figure 7.6: Straightforward delay line implementation. The high-threshold in-
verter at the output ensures that metastability is “masked,” e↵ectively trans-
forming it into a (potentially) late, but clean transition. As a metastable register
may stabilize at any time (and to either value), this may result in any delay
between what we would get for a stable 0 or 1 in the register, respectively.

7.4 Third Try: Gray Codes

Unary encoding worked, but results in large circuits. A B-bit unary encod-
ing can represent only B + 1 di↵erent values, while a binary encoding has 2B

codewords. Binary encoding causes trouble, because a bit that may become
metastable due to an interrupted up-count makes a huge di↵erence with respect
to the encoded value. We need a code where each up-count changes exactly one
bit.

Definition 7.8 (Gray Code). A B-bit Gray code G : [2B] ! {0, 1}
B

maps its

range [2B] one-to-one to {0, 1}
B
, with the property that for x, x + 1 2 [2B], the

resulting codewords di↵er in a single bit.

Transforming unary encoding to Gray code is easy, even in face of metasta-
bility. However, we need some notation.

Definition 7.9. For x, y 2 {0, 1,M}
k
, k 2 N, set

(x ⇤ y)i :=

8
><

>:

1 if xi = yi = 1

0 if xi = yi = 0

M else.

It is easy to see that x ⇤ y is the largest common predecessor of x and y with
respect to �, i.e., x ⇤ y � x, x ⇤ y � y, and if z 2 {0, 1,M}

k satisfies z � x and
z � y, then z � x ⇤ y. In other words, x ⇤ y is the “most stable” string so that
both x and y are stabilizations of it.

Lemma 7.10. Let s 2 U2B�1 for some B 2 N. If s 2 U2B�1\{0, 1}
2B

�1
, denote

the encoded number by x 2 [2B]. For s 2 U2B�1 \ {0, 1}
2B

�1
, let x, x + 1 2 [2B]

7.4. THIRD TRY: GRAY CODES 77

denote the numbers encoded by the stabilizations of s. For any fixed Gray code

G, there is a circuit of size O(2B) and depth at most O(B) that computes

G(x) if s 2 U2B�1 \ {0, 1}
2B

�1

G(x) ⇤ G(x + 1) if s 2 U2B�1 \ {0, 1}
2B

�1
.

from input s.

Proof. For bit i of the code, consider the subset of [2B + 1] \ {0}, for which an
up-count to the respective value changes bit i. We connect all corresponding
registers by a tree of (2-input) Xor gates. Such a Xor tree implements an
Xor with more inputs, i.e., it keeps track of the number of times the i

th bit
changed. Accordingly, depending on whether the i

th bit is 0 or 1 in the first bit,
this circuit generates the correct output or its conjugate for stable values; in
the latter case, we simply add a Not gate. The i

th output bit can only become
M if some input to the respective Xor tree is M. However, in this case, the
respective output bit transitions on the up-count corresponding to the register
holding the respective bit of the unary encoding, so the output bit ought to be
M.

Concerning the complexity, the total number of Xor gates needed is 2B
�

1 � B (the number of input bits minus the number of output bits), plus up
to B Not gates. By balancing the Xor trees, their depth becomes bounded
by the logarithm of their size (rounded up). If no Xor gates are available,
we can implement them by constant-sized subcircuits composed of basic gates,
increasing size and depth of the circuit by constant factors only.

Remarks:

• This is promising: G(x) ⇤ G(x + 1) has only a single metastable bit, as
G(x) and G(x + 1) di↵er only in a single bit.

• This means that there are exactly two stabilizations of G(x) ⇤ G(x + 1),
namely G(x) and G(x + 1). We did not lose information, and Theo-
rem 6.6 shows that we can convert the Gray code back to unary, even
with metastability!

• The circuit for this provided by the Theorem 6.6 will have exponential
size, but this time this doesn’t matter as much, as the output already has
exponential size by itself! One can still do better (you will do so in one of
the exercises).

• For this to pay of, we now need very e�cient circuits for sorting Gray
codes, including strings of the form G(x) ⇤ G(x + 1). Ordering G(x)

G(x)⇤G(x+1) G(x+1) and arguing analogously to Lemma 7.5, we know
that we can design suitable comparators in principle, which then can be
used in sorting networks. In the next lecture, we will find asymptotically
optimal comparator circuits for a simple, convenient Gray code.

Bibliographic Notes

The concept of implementing Lynch-Welch using metastability-containing logic
was proposed in [FFL18], where it was shown to be feasible. However, the un-
derlying construction was generic (as in Theorem 6.6), resulting in large circuits.

78 LECTURE 7. METASTABILITY-CONTAINING CONTROL LOOPS

Such circuits would incur computational delays negating the advantage of not
requiring synchronizers. In [FKLP17], TDCs are given that can directly output
Binary Reflected Gray Code (BRGC) with the same guarantees as provided by
Lemma 7.10. This further reduces the depth and size of circuits for follow-up
computations, as the conversion circuit can be skipped. Various comparators
for such BRGC values have been proposed in [BLM18, BLM17, LM16]; we will
discuss the currently best one next lecture. The idea for using the computed
phase shifts in delay lines until they have stabilized with su�cient probability
is, essentially, applied to a di↵erent problem in [FKLW18].

Asymptotically optimal sorting networks were given in [AKS83]. For a proof
that sorting networks are correct if and only if they correctly sort 0-1 inputs,
see [Knu98].

Bibliography

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n)
Sorting Network. In 15th Symposium on Theory of Computing

(STOC), 1983.

[BLM17] Johannes Bund, Christoph Lenzen, and Moti Medina. Near-Optimal
Metastability-Containing Sorting Networks. In Design, Automation,

and Test in Europe (DATE), 2017.

[BLM18] Johannes Bund, Christoph Lenzen, and Moti Medina. Optimal
Metastability-Containing Sorting Networks. In Design, Automation

and Test in Europe (DATE), 2018. To appear. Preliminary version
available at https://arxiv.org/abs/1801.07549.

[FFL18] Stephan Friedrichs, Matthias Függer, and Christoph Lenzen.
Metastability-Containing Circuits. IEEE Transactions on Comput-

ers, 2018. To appear, online first.

[FKLP17] Matthias Függer, Attila Kinali, Christoph Lenzen, and Thomas
Polzer. Metastability-Aware Memory-E�cient Time-to-Digital Con-
verters. In Symposium on Asynchronous Circuits and Systems

(ASYNC), 2017.

[FKLW18] Matthias Függer, Attila Kinali, Christoph Lenzen, and Ben Wieder-
hake. Fast All-Digital Clock Frequency Adaptation Circuit for Volt-
age Droop Tolerance. In Symposium on Asynchronous Circuits

and Systems (ASYNC), 2018. To appear. Preprint available at
https://people.mpi-inf.mpg.de/⇠clenzen/pubs/FKLW18droop.pdf.

[Knu98] Donald E. Knuth. The Art of Computer Programming Vol. 3: Sort-

ing and Searching. Addison-Wesley, 1998.

[LM16] Christoph Lenzen and Moti Medina. E�cient Metastability-
Containing Gray Code 2-Sort. In Symposium on Asynchronous Cir-

cuits and Systems (ASYNC), 2016.

