
Lecture 8

Metastability-Containing
Sorting

Last week we saw how to obtain an MC implementation of a node’s logic for the
Lynch-Welch algorithm. However, for this to matter, we need low-depth circuits
performing the computations. Otherwise, we would lose the speed advantage
gained from forgoing synchronizers, meaning that all that work is for nothing!
Hence, our task today is to construct low-depth sorting networks— which, as
we have seen, means to construct low-depth comparators.

Before constructing the circuits, we need to fix an encoding. We already
decided that we (need) to use a Gray code, but not which one. One of the
simplest, if not most natural, Gray codes turns out to be well-suited for our
purposes.

Definition 8.1 (Binary Reflected Gray Code). B-bit Binary Reflected Gray
Code (BCRG) GB : [2B] ! {0, 1}

B
is defined recursively by

G1(0) = 0

G1(1) = 1

8B > 1 8x 2 [2B�1] : GB(x) = 0GB�1(x)

8B > 1 8x 2 [2B] \ [2B�1] : GB(x) = 1GB�1(2
B

� 1 � x) .

GB is one-to-one, so we denote by DB its inverse, the decoding function. In the

following, we will write D(g) instead of DB(g), as B can be inferred from the

length of the decoded string g.

We know that we won’t have to handle arbitrary metastable strings, as
metastability is only introduced by a TDC up-count being interrupted.

Definition 8.2 (Valid Strings). The set valid B-bit strings is defined as

VB := {GB(x) | x 2 [2B]} [{GB(x) ⇤ GB(x + 1) | x 2 [2B
� 1]} .

We define a total order G on VB according to the encoded values. The total

order is given by the transitive closure of the partial order

8g, h 2 VB \ {0, 1}
B : g < h , D(g) < D(h)

8x 2 [2B
� 1] : G(x) < G(x) ⇤ G(x + 1) < G(x + 1) .

79

80 LECTURE 8. METASTABILITY-CONTAINING SORTING

0 0000 4 0110 8 1100 12 1010

0-1 000M 4-5 011M 8-9 110M 12-13 101M

1 0001 5 0111 9 1101 13 1011

1-2 00M1 5-6 01M1 9-10 11M1 13-14 10M1

2 0011 6 0101 10 1111 14 1001

2-3 001M 6-7 010M 10-11 111M 14-15 100M

3 0010 7 0100 11 1110 15 1000

3-4 0M10 7-8 M100 11-12 1M10 --- ---

Table 8.1: Valid 4-bit strings.

Denote by maxG and minG the maximum and minimum w.r.t. to G.

Table 8.1 list VB according to B . Our goal is to compute maxG and minG

for given valid strings g, h 2 VB . As you have shown in an exercise, for inputs
that are valid strings the above definitions of maxG and minG coincides with
the metastable closure of their restrictions to stable values, i.e.,

maxG{g, h} = ⇤
g�g0

2{0,1}
B

h�h0
2{0,1}

B

maxG(g0, h0) .

Thus, we need to figure out how to implement the closure of these (restricted)
operators, at least for inputs that are valid strings.

8.1 4-valued Comparison of BRGC Strings

Our first step is to break down the task of determining maxG into smaller pieces.
One way of doing this is to see how a (simple) state machine can perform the

g0,i�1 = h0,i�1

par(g0,i�1) = 0

[00]

Init

g0,i�1 = h0,i�1

par(g0,i�1) = 1

[11]

g <G h

[01]

g >G h

[10]

11

00

10

01

true true

11

10

01

00

Figure 8.1: Finite state automaton determining which of two Gray code inputs
g, h 2 {0, 1}

B is larger. In each step, the machine receives gihi as input. State
encoding is given in square brackets.

8.1. 4-VALUED COMPARISON OF BRGC STRINGS 81

required computation. Our state machine is fed the input bits one pair at a time,
see Figure 8.1, to determine which of the strings (if any) is larger; one then needs
to determine the output accordingly. As we are dealing with Gray code, we do
not have a 3-valued comparison to make (larger, smaller, or equal, non-trivially
recursing only on state equal), but rather a 4-valued one: the possible states
are larger, smaller, equal with even parity (standard recursion), and equal with
odd parity (recurse with flipped meanings of larger and smaller).

It is straightforward to see that the state machine operates correctly on
stable inputs. But what happens for unstable inputs? This is the reason why
the state machine also specifies how to encode its states. We want that if at
some point the state machine is not yet decided and one of the inputs is M (but
the other not), the metastable closure of the state transition function yields a
new “state” whose stabilizations correspond to the results of the comparisons
if we had stabilized the inputs first. To formalize this, let us first fix some
notation.

Definition 8.3 (Transition Operator). Given state s 2 {0, 1}
2
of the state

machine in Figure 8.1 and inputs b 2 {0, 1}
2
, denote by s ⇧ b the resulting state

of the state machine, i.e.:

meaning of state ⇧ 00 01 11 10

equal, par = 0 00 00 01 11 10

<G 01 01 01 01 01

equal, par = 1 11 11 10 00 01

>G 10 10 10 10 10

Note that ⇧ is associative and 00 ⇧ b = b, so the state of the machine after

processing the input completely is ⇧(g, h) := ⇧B
i=1 gihi := g1h1 ⇧ g2h2 ⇧ . . . ⇧

gBhB, where the order in which the ⇧ operations are executed is arbitrary.

Lemma 8.4. For g, h 2 {0, 1}
B
,

⇧(g, h) =

8
>>><

>>>:

00 if g = h and par(g) = 0

11 if g = h and par g = 1

01 if g <G h

10 if g >B h .

Proof. We proof this by induction on B. For B = 1, we readily see that the
state machine transitions to the correct state. For B > 1, observe that if the
machine is in state 01 or 10 before processing the last pair of bits, by induction
hypothesis g1...B�1 6= h1...B�1 and the machine has already decided correctly.
If g1...B�1 = h1...B�1, the parity of g1...B�1 correctly kept track of whether the
remaining (trivial, 1-bit) code is listed in default order (parity 0, current state
00) or reversed (parity 1, current state 11). Checking the state transitions of the
machine, we see that the machine correctly which string is larger if gB 6= hB ,
and correctly adjusts the parity if gB = hB .

The state machine will have to be implemented by some circuit. From The-
orem 6.6, we know that we can implement ⇧M, the metastable closure of ⇧.
Conveniently, this operator turns out to be associative as well.

82 LECTURE 8. METASTABILITY-CONTAINING SORTING

Lemma 8.5. ⇧M is associative.

Proof. While an elegant proof would be desirable, all we know is how to do this
by a case distinction. This is not very practical by hand (38 cases!), so it has
been checked by machine only.

This means that we can apply the same notation as for ⇧ to ⇧M with impunity,
i.e.,

⇧M
(g, h) :=

�
⇧M

�B

i=1
gihi := g1h1 ⇧M g2h2 ⇧M . . . ⇧M gBhB .

In order to show that we can decompose (⇧)
M

into repeatedly applying ⇧M (by
Lemma 8.5 in arbitrary order!), we need the following helper lemma.

Lemma 8.6. For g, h 2 VB and any (⇧)
M

(g, h) � s0
2 {0, 1}

2
, there are

g � g0
2 {0, 1}

B
and h � h0

2 {0, 1}
B

such that s0 = ⇧(g0, h0).

Proof. If g, h 2 {0, 1}
B , the statement is trivially true. W.l.o.g., assume that

g 2 VB \ {0, 1}
B (if this holds only for h, reason symmetrically). Denote by d

the distance of g and h in the total order on VB (i.e., their distance in the list
given in Table 8.1). If d > 2, Lemma 8.4 shows that for all stabilizations of g
and h, the state machine outputs the same stable value; in this case, again the
statement is trivially true.

If d = 2 or d = 1, checking all possibilities (again, this is easiest using the
table) and using Lemma 8.4 we see that the di↵erent stabilizations result in
outpus (i) 00 and 01, (ii) 01 or 11, (iii) 11 or 10, or (iv) 10 or 00. Either way,
the claim of the lemma holds: we have exactly one metastable state bit in the
end, and both respective outputs can be also generated by stabilizing the inputs
first.

The final case is d = 0, i.e., g = h. In this case, any output can be gen-
erated depending on how we choose to stabilize the unstable bits in g and h,
respectively, and (⇧)

M
(g, h) = MM.

We can now prove the key result that implementing the metastable closure
of the statemachine’s transition function is su�cient to implement the closure
of the comparison.

Theorem 8.7. Let g, h 2 VB. Then, for any j 2 {1, . . . , B},

(⇧)
M

(g1...j , h1...j) = ⇧M
(g1...j , h1...j) .

Proof. The recursive definition of BRGC and valid strings (see Definitions 8.1
and 8.2) ensure that prefixes of valid strings are valid strings, hence it is su�cient
to consider the special case that j = B. We prove the claim by induction on B,
where the base case of B = 1 is trivial. For the step from B � 1 2 N to B, the
induction hypothesis yields that

s := (⇧)
M

(g1...B�1, h1...B�1) = ⇧M
(g1...B�1, h1...B�1) .

By Lemma 8.6, for any s � s0
2 {0, 1}

2, there are g1...B�1 � g0

1...B�1 2 {0, 1}
B�1

8.2. DETERMINING THE OUTPUT BITS 83

and h1...B�1 � h0

1...B�1 2 {0, 1}
B�1 so that s0 = ⇧(g1...B�1h1...B�1). Thus,

(⇧)
M

(g, h) = ⇤
g�g0

2{0,1}
B

h�h0
2{0,1}

B

⇧(g0h0)

= ⇤
g1...B�1�g0

1...B�12{0,1}
B�1

h1...B�1�h0
1...B�12{0,1}

B�1

gB�g0
B2{0,1}

hB�h0
B2{0,1}

(⇧(g1...B�1h1...B�1) ⇧ gBhB)

= ⇤
s�s0

2{0,1}
2

gB�g0
B2{0,1}

hB�h0
B2{0,1}

(s0
⇧ g0

Bh0

B)

= s ⇧M gBhB

= ⇧M
(g, h) .

Remarks:

• Lemma 8.6 can be generalized to arbitrary operators so long as only a
single bit becomes metastable: In this case, we have two stabilizations of
the output, meaning there must be two stabilizations of the input yielding
di↵erent values.

• However, as soon as two output bits become metastable, this simple rela-
tion may break down. For instance, already making two copies of the Xor

of two bits showcases this issue. Stabilizations of the inputs always result
in identical output bits, but e.g. input 1M yields output MM, which may
also stabilize to 01 and 10.

• We cannot always reliably decide which of the inputs to our comparator is
larger, even if they are not equal. This means that computing the output
is not as easy as in the binary world.

8.2 Determining the Output Bits

For stable strings, determining the output would now be straightforward. Com-
pute s = ⇧(g, h), and then, e.g., pick g if s1 = 1 (implying g �G h) and h
otherwise (implying g G h). By now, you already guess that we cannot simply
use a standard MUX for this task, but need to use a MUXM. Alas, we still run
into trouble with this approach.

Example 8.8. Consider 1-bit inputs g = M and h = 1, i.e., s = M1. Then

CMUX(g, h, s1) = CMUX(M, 1,M) = M, yet maxG{g, h} = h = 1.

One can try around, but the problem persists. The issue is that we cannot
reliably decide which value is larger, so the inputs need to “help” with masking
metastability. For a single bit, of course all we need to do is to feed the inputs
to an Or gate. However, when looking at longer codes, the parity comes into
play. So let us see what we get if we combine the state

s(i�1) := ⇧M
(g1...i�1, h1...i�1)

84 LECTURE 8. METASTABILITY-CONTAINING SORTING

of the state machine before processing the ith bits (where s(0) := 00) with the ith

bits themselves to determine the ith bit of the output. Taking into account the
meaning of the state bits, for stable inputs this results in the following mapping
out : (s, gihi) 7! maxG{g, h}i minG{g, h}i.

meaning of state s(i�1) maxG{g, h}i minG{g, h}i

equal, par = 0 00 max{gi, hi} min{gi, hi}

<G 10 gi hi

equal, par = 1 11 min{gi, hi} max{gi, hi}

>G 01 hi gi

meaning of state out 00 01 11 10

equal, par = 0 00 00 10 11 10
<G 01 00 10 11 01

equal, par = 1 11 00 01 11 01
>G 10 00 01 11 10

Note that out has 4 input bits, so the circuit implementing outM guaran-
teed by Theorem 6.6 has constant size. However, this is useful only if indeed
outM(s(i�1), gihi) = maxG{g, h}i minG{g, h}i all g, h 2 VB and i 2 {1, . . . , B}.
Proving this is simplified by the following observation on the structure of valid
strings.

Observation 8.9. If for a valid string g 2 {0, 1}
B

it holds that gi = M for

some i < B, then gi+1...B = 10B�i�1
, i.e., gi+1...B is the codeword for the largest

value that (B � i)-bit Gray code can encode.

Theorem 8.10. Given valid inputs g, h 2 VB, for all i 2 {1, . . . , B} it holds

that outM(s(i�1), gihi) = maxG{g, h}i minG{g, h}i.

Proof. Observe that outM(s(i�1), gihi) does not depend on bits i + 1, . . . , B.
As g1...i, h1...i are valid i-bit strings, we may thus w.l.o.g. assume that B = i.
For symmetry reasons, it su�ces to show the claim for the first output bit

outM(s(B�1)
M

, gBhB)1 only; the other cases are analogous.
Using Lemma 8.4, Definition 8.1, and the definition of out, it is straight-

forward to verify that the claim holds for stable g, h 2 {0, 1}
B . Our task is to

prove this equality also for the case where g or h contain a metastable bit. By
Theorem 8.7, we have that s(B�1) = (⇧)M(g1...B�1, h1...B�1).

Let j be the minimum index such that gj = M or hj = M. Again, for
symmetry reasons, we may assume w.l.o.g. that gj = M; the case hj = M is
symmetric. If g1...j�1 6= h1...j�1, applying Lemma 8.4 shows that either (i)
s(i�1) = 01 (g <G h) or (ii) s(i�1) = 10 (g >G h). Assume (i); (ii) is treated
analogously. As the state 01 is absorbing, it follows that s(B�1) = 01, regardless
of the further bits of g and h. As out(01, gBhB)1 = hB for all gBhB 2 {0, 1}

2,
we conclude that outM(s(B�1), gBhB)1 = hB , as desired.

Hence, suppose that g1...j�1 = h1...j�1 for the remainder of the proof. We
consider the case that par(g1...j�1) = 0 first, i.e., s(j�1) = 00 = s(0). By
Definitions 8.1 and 8.2, gj...B , hj...B 2 VB�j+1, so we may w.l.o.g. assume j = 1
in the following. If B = 1,

outM(s(B�1)
M

, gBhB)1 = outM(00,MhB)1 =

(
1 if h1 = 1

M otherwise,

8.2. DETERMINING THE OUTPUT BITS 85

which equals maxG{g, h}B (we simply have a 1-bit code). If B > 1, Observa-
tion 8.9 yields that g2...B = 10 . . . 0. We distinguish several cases.
h1 = M: Then also h2...B = 10 . . . 0. Therefore gB = hB , out(s, gBhB)1 = gB =

hB for any s 2 {0, 1}
2, and

outM(s(B�1)
M

, gBhB)1 = gB = hB = maxG{g, h}B .

h1 = 1 and B = 2: Thus, g <G h, i.e., we need to output hB = maxG{g, h}B .
Consider the two stabilizations of g, i.e., 01 and 11. If the first bit of g
is resolved to 0, we would end up with s(B�1) = s(1) = 01, regardless of
further bits. If it is resolved to 1, then s(1) = 11. Thus,

outM(s(B�1), gBhB)1 = outM(01, 1hB)1 ⇤ outM(11, 1hB)1

= ⇤
hB�h0

B2{0,1}

{h0

B , min{1, h0

B}}

= ⇤
hB�h0

B2{0,1}

{h0

B} = hB .

h1 = 1 and B > 2: Again, hB = maxG{g, h}B . Consider the two stabilizations
of g, i.e., 010 . . . 0 and 110 . . . 0. If the first bit of g is stabilized to 0,
we end up with s(B�1) = s(1) = 01, as 01 is an absorbing state. If it
is stabilized to 1, then s(1) = 11. As g2...B = 10 . . . 0, for any h � h0

2

{0, 1}
B , the state machine will end up in either state 00 (if h0

2...B = 10 . . . 0)
or state 01. Overall, we get that (i) s(B�1) = 01, (ii) s(B�1) = 00 ⇤

01 = 0M and h2...B = 1 . . . 0, or (iii) s(B�1) = 0M and h2...B = 1 . . . 0M

(cf. Table 8.1). If (i) applies, out(s(B�1)
M

, gBhB)1 = hB . If (ii) applies,
outM(s(B�1), gBhB)1 = gB = hB . If (iii) applies, then

outM(s(B�1), gBhB)1 = outM(00, 0M)1 ⇤ outM(01, 0M)1

= 0 ⇤ 1 ⇤ 0 ⇤ 1 = M = hB .

h1 = 0: This case is symmetric to the previous two: depending on how g is
resolved, we end up with s(1) = 10 or s(1) = 00, and need to output gB .
Reasoning analogously, we see that indeed outM(s(B�1), gBhB)1 = gB .

It remains to consider par(g1,...,j�1) = 1. Then s(j�1) = 11. Noting that
this reverses the roles of max and min, we reason analogously to the case of
par(g1,...,j�1) = 0.

Remarks:

• We have decomposed the task of computing the output into computing
s(i), i 2 [B], and applying outM.

• We have decomposed computing s(i) into applying ⇧M i � 1 times.

• As outM and ⇧M can be implemented by constant-sized circuits, we get
a circuit of asymptotically optimal size O(B) computing maxG{g, h} and
minG{g, h}.

• However, our main goal was to find a circuit of low depth performing this
computation. Applying ⇧M would yield a circuit of depth ⌦(B)!

• This is where we shamelessly exploit the associativity of ⇧M.

86 LECTURE 8. METASTABILITY-CONTAINING SORTING

8.3 Parallel Prefix Computation

As ⇧M is associative, s(B�1) is computed by any binary tree for which the
leaves are the inputs gihi, i 2 {1, . . . , B � 1}, and whose inner nodes are ⇧M

(sub)circuits. Using a balanced tree then results in depth dlog(B�1)e. However,
we need to compute all s(i), i 2 [B]. We could simply use B trees, whose total
number of inner nodes would be

B�1X

i=0

i =
(B � 1)B

2
2 ⇥(B2) ,

still resulting in a circuit of the same depth. We can do much better!

Theorem 8.11. Given a circuit C implementing an associative operator � : D⇥

D ! D and inputs gi 2 D, i 2 [2b] for some b 2 N, there is a circuit of size

O(2b
|C|) and depth O(bd(C)) outputting for each i 2 [2b]\{0} the value

Ji
j=0 gi

(where
J0

0 gi = g0).

Proof. Our circuit will have two stages. The first stage (see Figure 8.2) is a
balanced binary tree whose leaves are the 2b inputs and whose non-leaf nodes
are copies of C. Each node receives as input the outputs of its two children.
Enumerating the leaves in DFS order, leaf i 2 [2b] “outputs” its assigned input
value gi. By induction on decreasing depth in the tree, we get that each node
outputs (

J
)imax

j=imin
gi, where imin and imax are the smallest and largest leaf in

the subtree of the node, respectively.
The second stage (see Figure 8.3) of the circuit receives all the computed

values as input and computes all
Ji

j=0 gi, i 2 [2b], using a recursive scheme.
We can describe the recursion again as a binary tree, with a one-to-one cor-
respondence of nodes to the ones from the first stage. However, now outputs
flow from non-leaf nodes to their children as inputs. For notational convenience,
introduce the special symbol ✏ /2 D with the semantics ✏�s = s for all s 2 D[✏,
i.e., ✏ means “do nothing” (clearly, the extended operator remains associative).
Moreover, denote for each non-leaf node by its left child the one traversed first
in the DFS tour and refer to the other as right child. Provide to each node two
inputs: the output o of the “left” (see figure) child node in the first stage and
the output p of its parent, where the root receives ✏ as second input. With this
notation, each non-leaf node now outputs p to its left child and p�o to its right
child. Finally, the leaf i outputs p � gi.

We claim that i outputs
Ji

j=0 gi. We prove the claim by induction on
the depth of the tree. It is trivial for a tree of depth 0, hence assume it is
correct for depth d 2 N0 and consider a tree of depth d + 1. Applying the
induction hypothesis to the left child of the root, we see that leaf i 2 [2b�1]
outputs ✏ �

Ji
j=0 gi =

Ji
j=0 gi; note that we exploited that (the extended) �

is associative here. Applying the induction hypothesis to the right child, we see

that leaf i 2 [2b] \ [2b�1] outputs (
J2b�1

�1
j=0 gi) � (

Ji
j=2b�1 gi) =

Ji
j=0 gi.

Apart from wires, our construction has at each non-leaf node of each of the
two trees one copy of C, plus a copy of C at each leaf in the second tree, for a
total of 3 ·2b

�2 2 O(2b) copies of |C|. The depth of both trees is b. The claims
on size and depth of the circuit follow.

8.3. PARALLEL PREFIX COMPUTATION 87

g8g1 g2 g3 g4 g5 g6 g7

�
2
1gi �

4
3gi �

6
5gi

�
4
1gi

Figure 8.2: First stage of the construction in Theorem 8.11. Each tree node
outputs the result of applying the operator to all leaves in its subtree. The
output of the root and nodes reached from it by only “going to the right” are
not needed; the nodes are there to show the tree structure.

�
8
1gi�

5
1gi

✏

✏

✏

�
6
1gi �

7
1gi�

4
1gi�

3
1gi�

2
1gi�

1
1gi

�
4
1gi �

5
1gi �

6
1gi �

7
1gi�

3
1gi�

2
1gi

�
2
1gi �

4
1gi �

6
1gi g7g5

�
6
5gi�

4
1gi

�
4
1gi

g3g1

g1

�
2
1gi

Figure 8.3: Second stage of the construction in Theorem 8.11. Using the outputs
of the first stage, the nodes forward their input to left and the operator applied
to the input from their parent and the one from the previous stage.

88 LECTURE 8. METASTABILITY-CONTAINING SORTING

Corollary 8.12. There is a comparator circuit of size O(B) and depth O(log B)
for valid strings (see Figure 8.4).

Proof. By Theorem 6.6, there are circuits of constant size and depth that im-
plement ⇧M and outM. We apply Theorem 8.11 to the circuit for ⇧M and inputs
gihi, i 2 {1, . . . , B � 1} (for b = dlog Be, simply ignoring the unneeded inputs
and outputs to the circuit), yielding a circuit of size O(B) and depth O(log B)
computing outputs s(i�1), i 2 [B] \ {0}. As s(0) = 00 is a constant, we do
not need a circuit to compute it. We then feed for i 2 {1, . . . , B} the inputs
s(i�1) and gihi to a copy of the circuit implementing outM, yielding the correct
outputs. This adds O(B) to the size and increases the depth by a constant.

Bibliographic Notes

There’s almost nothing to add to the references given for the previous lecture.
For the Parallel Prefix Computation (PPC) framework, see [LF80].

g h

s(0) s(1)

outM

max0 min0 minBmaxB

s(B�1)

h0

g0

outM outM
g1

h1 hB�1

gB�1

max1 min1

Figure 8.4: The gray code comparator.

Bibliography

[LF80] Richard E Ladner and Michael J Fischer. Parallel Prefix Computation.
Journal of the ACM (JACM), 27(4):831–838, 1980.

