
Exercise 12: Pulse!

Task 1: Again, and Again, and Again. . .

In this task, the goal is to show that once a single synchronized pulse is generated
by the main state machine from the lecture, the algorithm stabilized. This follows by
induction, once we prove that another synchronized pulse will be generated (within the
period bounds) without any correct node producing any pulse in between. Of course,
this requires some bounds on the timeouts. Throughout this exercise, we assume that
each v ∈ Vg transitions to pulse during [0, 2d].

a) Which inequality does T1 need to satisfy so that it is guaranteed that each v ∈ Vg
transitions to wait during (T1/ϑ, T1 + 2d)?

b) If the constraint from a) holds, which inequalities does Tlisten and Twait need to satisfy
so that it is guaranteed that each v ∈ Vg transitions to input 1 during (T1/ϑ, T1+3d)?

c) If the above two constraints are satisfied, which inequality does Twait need to satisfy
so that it is guaranteed that each v ∈ Vg transitions to run 1 during ((T1+T2)/ϑ, T1+
T2 + 3d)?

d) If the resulting consensus instance is correctly working, argue that another synchro-
nized pulse satisfying the period bounds given in the lecture is generated.

e) Provide (minimal) constraints under which the resulting consensus instance is guar-
anteed to be executed correctly.

Task 2: NEXT!

In this task, we modify the self-stabilizing pulse synchronization algorithm from the
lecture such that it provides the interface required to make the Lynch-Welch algorithm
self-stabilizing using the technique from the lecture.

a) Add an intermediate state to the auxilliary state machine that “delays” an output
of 1 by the consensus routine. The transitions to pulse and to listen are triggered
when one of the following three events occurs: (i) the NEXT signal is triggered, (ii)
Guard G4 is satisfied, or (iii) a timeout of O((1 + (ϑ− 1)R)d) expires. Explain why
the modified algorithm stabilizes regardless of the NEXT signals, provided suitable
timeout assignments can be found. How are the constraints on the timeouts affected
(no details necessary)?

b) Argue that the self-stabilizing pulse synchronization algorithm can be made to work
in its modified form, i.e., if the original algorithm had a suitable assignment of
timeouts and ϑ−1 is sufficiently small, so does the modified algorithm. (Handwaving
is ok, no formal proof required.)

c) In the terminology of Section 9.1, determine σh, B1, B2, and B3 for the modified
algorithm.

d) Arguing as in Task 1 of exercise sheet 9, show that one can choose timeouts so that
the machinery from Section 9.1 works and T,S(1) ∈ O(σh). Here, you will have to
choose T larger than in the lecture. You may assume that ϑ−1 is a sufficiently small
constant. What is the resulting skew bound after stabilization? (Hint: T will only
increase by a constant factor, which will not cause any real trouble; deal with this in
the very end. First, recall that it’s not necessary to choose B3 = αB2 = α2B1. It’s
good enough to ensure that B1 beats an O(σh + d) term, which T2 in the modified
algorithm will have to do anyway, and choose B3 = αB2 for some α ∈ 1 +O(ϑ− 1).)



e*) The result is not actually a good solution to the original problem, as the Lynch-
Welch algorithm now ends up having a bad skew of Ω(d). However, this issue can
be resolved by further modifying how the pulses are generated. Can you see the
solution?


