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In this course we design several randomized algorithms, which re-
quires basic knowledge of randomness and the analysis of random
variables. In this section we give a short overview of the necessary
concepts, omitting some proofs.

Recall that our machine model is the random access machine. For
randomized algorithms, we assume access to a method rand()
that returns a random bit. Sometimes we also assume access to a
method rand(n), which returns a random number in {1, . . . , n}.

To formally argue about randomized algorithms, we need to define
an underlying probability space.

Definition A.1. A (finite) probability space consists of a finite set of out-
comes Ω as well as a probability measure Pr : Ω → [0, 1] satisfying

∑
x∈Ω

Pr[x] = 1.

The function Pr is also called a distribution. The uniform distribution
over Ω is the measure Pr with Pr[x] = 1/|Ω| for all x ∈ Ω.

Note that after k calls to rand(), the probability space is the
uniform distribution over Ω = {0, 1}k , since every k-bit string is
generated with the same probability. More generally, after calls
rand(n1), . . ., rand(nk ) the probability space is the uniform
distribution over {1, . . . , n1} × . . . × {1, . . . , nk}.

Definition A.2. An event is a set E ⊆ Ω. The probability of event E is
Pr[E ] = ∑x∈E Pr[x].

For example, for Ω = {0, 1}k , an event would be that an even num-
ber of generated bits are 1, i.e., E = {x ∈ {0, 1}k | ∑k

j=1 xi is even}.
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For the uniform distribution over {0, 1}k , this event has probability 1
2 .

A probability space D = (Ω, Pr) is also sometimes called a distri-
bution. For an event E , instead of Pr[E ] we often write

Pr
x∼D

[x ∈ E ],

in order to stress that D is the underlying distribution and that x is
the only source of randomness. Here, x ∼ D means that x is drawn at
random with distribution D (i.e., x attains any y ∈ Ω with probabil-
ity Pr[y]).

All randomized algorithm that we design in this course are of
the following form. The only source of randomness are calls to
rand() (in particular, the input to the algorithm is assumed to
be worst-case, not random). For any instance I , let E I be the
event that the algorithm correctly solves I . Let In be the set of
instances of size n. The success probability pn of the algorithm
is the minimum over all inputs I of size n of the probability that
the algorithm correctly solves I , i.e., pn = min I∈In Pr[E I ]. We
always ensure that the success probability is at least 2

3 . Typically,
we even want to succeed with high probability, meaning that
pn ≥ 1 − 1

n . See Lemma A.11 below for how to boost a success
probability from 2

3 to 1 − 1
n .

Lemma A.3 (Union Bound). For any events E , E ′ we have Pr[E ∪ E ′ ] ≤
Pr[E ] + Pr[E ′ ].

Proof. We have

∑
x∈E∪E

Pr[x] ≤ ∑
x∈E

Pr[x] + ∑
x∈E ′

Pr[x],

since each element x ∈ (E \ E ′) ∪ (E ′ \ E ) is counted once on the left
and once on the right and each element x ∈ E ∩ E ′ is counted once on
the left and twice on the right.

In the analysis of randomized algorithms, we typically consider
error events, in which certain desired properties do not hold. We
want to show that the combined probability of all error events
is small, in order to show that the algorithm has a large success
probability. To this end, it often suffices to bound the probability
of each single error event, and then to use the union bound to get
an upper bound on the probability that any error event occurs.
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Definition A.4. A random variable is a function X : Ω → N. We denote N = {0, 1, 2, . . .}.
The expectation of random variable X is

Ex[X] := ∑
x∈Ω

X(x) · Pr[x].

For instance, the number of times we have to flip a coin until we see
heads is a random variable. Its expectation is 2.

Lemma A.5. For n ∈ N we use ‘X = n’ as shorthand notation for the
event {x ∈ Ω | X(x) = n}, similarly for ‘X ≥ n’. With this notation, the
expectation satisfies the following identities:

Ex[X] =
∞

∑
n=0

n · Pr[X = n] =
∞

∑
n=1

Pr[X ≥ n].

The following is a very useful property of expectations.

Lemma A.6 (Linearity of Expectation). For any random variables X, Y
and constants α, β ∈N we have Ex[α · X + β ·Y] = α · Ex[X] + β · Ex[Y].

Proof. We have

Ex[αX + βY] = ∑
x∈Ω

(αX(x) + βY(x))Pr[x]

= α ∑
x∈Ω

X(x)Pr[x] + β ∑
x∈Ω

Y(x)Pr[x]

= αEx[X] + βEx[Y].

We often want to bound the probability that a random variable at-
tains a very large value. Markov’s inequality yields a basic bound of
this kind.

Lemma A.7 (Markov Inequality). For any random variable X : Ω → N

and any t > 0 we have

Pr[X ≥ t] ≤ Ex[X]

t
.

Proof. This follows from

Ex[X] =
∞

∑
n=1

Pr[X ≥ n] ≥
t

∑
n=1

Pr[X ≥ n] ≥
t

∑
n=1

Pr[X ≥ t] = t ·Pr[X ≥ t].

Definition A.8. Two events E , E ′ are called independent if Pr[E ∩ E ′] =
Pr[E ] · Pr[E ′].

Two random variables X, Y are called independent if for any x, y ∈N the
events X ≤ x and Y ≤ y are independent.
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The outcomes of different calls to rand() are assumed to be in-
dependent. In particular, running the same algorithm twice (with
fresh randomness) yields independent outcomes.

Definition A.9. An indicator random variable (or short indicator vari-
able) is a random variable I : Ω→ {0, 1}. We have Ex[I] = Pr[I = 1].

In other words, an indicator variable is a random variable that never
takes values greater than 1. Note that an indicator variable I is essen-
tially the same as the event I = 1 (one could say that I indicates the
event I = 1). In fact, indicator variables and events are two notations
for the same objects. However, it is sometimes useful to work with in-
dicator variables, since this enables statements such as the following.

Lemma A.10 (Chernoff Bound). Let I1, . . . , In be independent indicator
variables and let X := ∑n

j=1 Ij. Then for all t > 0 we have

Pr[X ≥ Ex[X] + t] ≤ exp
(
−2t2

n

)
.

By symmetry, the same holds for Pr[X ≤ Ex[X]− t].

The Chernoff bound is a very strong concentration inequality; we
omit its proof. Many variations with different error bounds as well
as generalization that try to relax the independence assumption are
known. We will often use the following corollary.

Lemma A.11 (Boosting). Let I1, . . . , In be independent indicator variables
with Ex[Ij] ≥ 2

3 for all j. Then the majority of I1, . . . , In is 1 with probability
at least 1− exp(− n

20 ).

Proof. By linearity of expectation, for X := ∑n
j=1 Ij we have

Ex[X] = Ex[I1] + . . . + Ex[In] ≥
2n
3

.

Observe that the majority is different from 1 only if X ≤ n
2 . This

happens only if X − Ex[X] ≤ n
2 −

2n
3 = − n

6 . The Chernoff bound with
t := n

6 now yields a bound of exp(− 2n
36 ) ≤ exp(− n

20 ).

We typically use boosting as follows. Suppose that we have a
randomized algorithm with success probability at least 2

3 . Run
this algorithm 20 ln(1/δ) times and use majority vote among all
outcomes. Then the resulting success probability is at least 1−
exp(− 20 ln(1/δ)

20 ) = 1− δ. This success probability can be made
arbitrarily close to 1 by picking an appropriate δ. In particular, we
obtain a with-high-probability guarantee by picking δ = 1

n , and
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this only requires O(log n) repetitions of the original algorithm.
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