
Karl Bringmann and Marvin Künnemann Summer 2019

Fine-Grained Complexity Theory, Exercise Sheet Zero
www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine-complexity/

Please subscribe to our mailing list under

https: // lists. mpi-inf. mpg. de/ listinfo/ finegrained19

if you haven’t done so yet. Further, if you plan to take the exam, please write an email (using the mail registered
on the mailing list) containing your name and matriculation number to Philip (wellnitz@ mpi-inf. mpg. de).

Exercise 1

In the lecture we introduced the Orthogonal Vectors Hypothesis:

OVH: Given two sets A,B ⊆ {0, 1}d such that |A| = |B| = n. There is no algorithm running in time
O(n2−ε · poly(d)) (for any ε > 0) which decides whether there exists a ∈ A, b ∈ B such that a and b
are orthogonal.

a) Consider the following variant OVH′ of OVH:

OVH′: Given a set A ⊆ {0, 1}d such that |A| = n. There is no algorithm running in time
O(n2−ε · poly(d)) (for any ε > 0) which decides whether there exist a, a′ ∈ A such that a and a′

are orthogonal.

Prove that OVH′ and OVH are equivalent.

b) Consider the problem of finding the maximum inner product of elements of two sets:

MaxInnerProduct: Given two sets A,B ⊆ Rd
≥0 such that |A| = |B| = n, compute the maxi-

mum
max {〈a, b〉 | a ∈ A, b ∈ B},

where “〈·, ·〉” denotes the standard inner product of Rd
≥0.

Prove that there is no algorithm running in time O(n2−ε ·poly(d)) (for any ε > 0) for this problem
unless OVH fails.

www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer19/fine- complexity/
https://lists.mpi-inf.mpg.de/listinfo/finegrained19
wellnitz@mpi-inf.mpg.de

Exercise 2

From your algorithms classes you may know the problem of finding a string P (often called pattern) in
another string T (often called text). This well-known problem is often called Pattern Matching; there
are algorithms for this problem that run in time O(|P |+ |T |)1.

Instead of finding a single pattern string P , we are now interested in finding any substring of T that
can be generated by a given regular expression. Formally, consider the following problem:

RegExPatternMatching: Given a regular expression R of size m, and a text T of size n, determine
if any substring P of T can be derived from R.

a) Prove that there is no algorithm running in time O((mn)1−ε) (for any ε > 0) for RegExPat-
ternMatching unless OVH fails.

As it turns out, for specific classes of regular expressions, there are faster algorithms to solve this
problem. Consider homogeneous regular expressions:

A regular expression R is called homogeneous of type “o1o2 . . . ol” (where oi ∈ {◦, ∗,+, |}) if there exist
a1, . . . , ap, characters or homogeneous regular expressions of type o2 . . . ol, such that R = o1(a1, . . . , ap).

For example, the regular expression [(a ◦ b ◦ c) | b | (a ◦ b)]∗ is homogeneous of type “∗ | ◦”, the regular
expression (a∗) | (b+) is not homogeneous.

b) Give an O(m + n) time algorithm for RegExPatternMatching where the regular expression
is homogeneous of type “◦” or of type “∗ ◦”.

c) Prove that there is no O((mn)1−ε) algorithm (for any ε > 0) for RegExPatternMatching
where the regular expression is homogeneous of type “| ◦ |” unless OVH fails.
Prove the same result for homogeneous regular expressions of type “| ◦ ∗”.

?) (Bonus) Prove the result from c) for homogeneous regular expressions of type “◦ ∗”.

1See for example Knuth, Morris, and Pratt’s algorithm.

