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Exercise 1

In the lecture we introduced the Orthogonal Vectors Hypothesis:

OVH: Given two sets A,B ⊆ {0, 1}d such that |A| = |B| = n. There is no algorithm running in time
O(n2−ε · poly(d)) (for any ε > 0) which decides whether there exists a ∈ A, b ∈ B such that a and b
are orthogonal.

a) Consider the following variant OVH′ of OVH:

OVH′: Given a set A ⊆ {0, 1}d such that |A| = n. There is no algorithm running in time
O(n2−ε · poly(d)) (for any ε > 0) which decides whether there exist a, a′ ∈ A such that a and a′

are orthogonal.

Prove that OVH′ and OVH are equivalent.

b) Consider the problem of finding the maximum inner product of elements of two sets:

MaxInnerProduct: Given two sets A,B ⊆ Rd
≥0 such that |A| = |B| = n, compute the maxi-

mum
max {〈a, b〉 | a ∈ A, b ∈ B},

where “〈·, ·〉” denotes the standard inner product of Rd
≥0.

Prove that there is no algorithm running in time O(n2−ε ·poly(d)) (for any ε > 0) for this problem
unless OVH fails.
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Exercise 2

From your algorithms classes you may know the problem of finding a string P (often called pattern) in
another string T (often called text). This well-known problem is often called Pattern Matching; there
are algorithms for this problem that run in time O(|P |+ |T |)1.

Instead of finding a single pattern string P , we are now interested in finding any substring of T that
can be generated by a given regular expression. Formally, consider the following problem:

RegExPatternMatching: Given a regular expression R of size m, and a text T of size n, determine
if any substring P of T can be derived from R.

a) Prove that there is no algorithm running in time O((mn)1−ε) (for any ε > 0) for RegExPat-
ternMatching unless OVH fails.

As it turns out, for specific classes of regular expressions, there are faster algorithms to solve this
problem. Consider homogeneous regular expressions:

A regular expression R is called homogeneous of type “o1o2 . . . ol” (where oi ∈ {◦, ∗,+, |}) if there exist
a1, . . . , ap, characters or homogeneous regular expressions of type o2 . . . ol, such that R = o1(a1, . . . , ap).

For example, the regular expression [(a ◦ b ◦ c) | b | (a ◦ b)]∗ is homogeneous of type “∗ | ◦”, the regular
expression (a∗) | (b+) is not homogeneous.

b) Give an O(m + n) time algorithm for RegExPatternMatching where the regular expression
is homogeneous of type “◦” or of type “∗ ◦”.

c) Prove that there is no O((mn)1−ε) algorithm (for any ε > 0) for RegExPatternMatching
where the regular expression is homogeneous of type “| ◦ |” unless OVH fails.
Prove the same result for homogeneous regular expressions of type “| ◦ ∗”.

?) (Bonus) Prove the result from c) for homogeneous regular expressions of type “◦ ∗”.

1See for example Knuth, Morris, and Pratt’s algorithm.


