
1
Introduction to Fine-Grained Complexity Theory

Version: 180

1.1 Overview over the course

Motivation

Suppose you are an algorithms & complexity theory researcher who
is approached by a practitioner, desperate to solve problem A. How
can you help her? If you manage to come up with a polynomial-time
algorithm, this would be a good starting point for her. However, if
you fail to find a polynomial-time algorithm, but can prove A to be
NP-hard, this is still a good outcome for her: it is likely to convince
her to relax the problem1 to a new formulation B instead of solving A. 1 She could, e.g., find a more specific for-

mulation, or resort to approximation, or
try to identify small input parameters
(cf. fixed-parameter tractability), or she
might feel justified to use heuristics.

NP

NP-C P ?

Figure 1.1: Is there an analogue for the
class of NP-complete problems inside P?

Now suppose you indeed manage to find a polynomial-time algo-
rithm for the relaxed problem B – say, it runs in quadratic time –, but it

performs infeasibly slow on her input data (think of modern, BIG
data applications). Could there still be a fast, e.g., (near-)linear time
algorithm? Obviously, to rule out this possibility, you cannot use NP-
hardness (after all, your quadratic-time algorithm proves A to be in
P). But if you neither manage to find a (near-)linear time algorithm,
nor can come up with a justification for this, both of you will be un-
happy: She receives no advice what to do (should she relax the prob-
lem? Should she try harder to find a fast algorithm?) and you will be
embarrassed that you could not help her.

The question arises: can we find tools to distinguish whether A
has only algorithms with a high polynomial running time like O(nc)

with a large c or whether it admits a solution running in near-linear
time Õ(n)? Notation: Õ(T) denotes a running time

TpolylogT.

Can we find an analogue of NP-hardness within P?

2 fine-grained complexity theory

This course: We study barriers for improving over specific running
times. In particular, we investigate approaches how to prove, given
some problem of interest B, lower bounds for the best possible poly-
nomial running time O(nc) for B – note that these will always rely on
some plausible hardness assumption. Along the way, we will learn
advanced algorithmic tools that give the fastest currently known algo-
rithms for fundamental problems in this field.

Methods

Our general approach to establish fine-grained hardness results is
to prove conditional lower bounds2: Consider a problem of interest 2 Why don’t we prove unconditional

lower bounds? The simple reason is:
We don’t know how. E.g., current tech-
niques cannot even show that 3-SAT has
no quadratic time algorithms.

B for which the fastest algorithm we know runs in time O(nd). To ex-
plain its hardness, we take another problem C, solvable in some (other)
running time O(nc). We should be reasonably confident to conjecture
that C cannot be solved significantly faster, i.e., that no O(nc−ε)-time
algorithm exists for any constant ε > 0. We then relate C to B in such
a way that an O(nd−ε)-time algorithm for B (for any ε > 0) would
give an O(nc−ε′)-time algorithm for C (for some ε′ > 0).3 Thus, if the 3 We give a formal definition of such

fine-grained reductions later in the
course. A first example is given below.

conjecture for C is true, we obtain a tight lower bound for problem B.

Fundamental problems

Let us give some examples for fundamental problems that can be used
to derive conditional lower bounds (these are candidates for taking the
role of problem C). The list below gives the main conjectures that we
will use throughout this course.

Problem 1.1.
All-Pairs-Shortest-Paths (APSP)
Given: A weighted graph G on n nodes.
Determine: The distance between any pair of nodes u, v in G.
Conjecture: No O(n3−ε)-time algorithm exists.

Problem 1.2.
3-SUM
Given: A list of n integers a1, . . . , an.
Determine: Is there a triplet i, j, k such that ai + aj + ak = 0?
Conjecture: No O(n2−ε)-time algorithm exists.

introduction to fine-grained complexity theory, version: 180 3

CNF-SAT is actually an example with
a conjectured exponential-time lower
bound. Interestingly, we will see that it
also explains a number of hardness re-
sults in the polynomial-time regime.

Problem 1.3.
CNF-Satisfiability (CNF-SAT)
Given: A Boolean formula φ in conjunctive normal form (CNF),

with N variables and M clauses.
Determine: Is there a satisfying assignment for φ?
Conjecture: No O((2− ε)Npoly(M))-time algorithm exists.

The orthogonal vectors problem has a
close connection with CNF-SAT, which
we highlight in an upcoming lecture.Problem 1.4.

Orthogonal Vectors (OV)
Given: sets A, B ⊆ {0, 1}d of size n
Determine: Is there an orthogonal pair a ∈ A, b ∈ B?
Conjecture: No O(n2−εpoly(d))-time algorithm exists.

1.2 Our types of reductions

How do we relate problems C and B to each other? The simplest type
of such a fine-grained reduction is the following:

Such a reduction maps, in time r(n), any size-n instance I of problem
C to an equivalent size-s(n) instance J of problem B, i.e.,

I is a YES-instance for C ⇐⇒ J is a YES instance for B.

By this reduction, any T(n)-time algorithm for B yields a O(r(n) +
T(s(n)))-time algorithm for C: we first run the reduction to produce J
and then use the T(n)-time algorithm for B to solve J. Thus, if some
conjecture rules out an O(r(n) + T(s(n)))-time algorithm for C, we
obtain the conditional lower bound that no T(n)-time algorithm for B
exists (under this conjecture).

We will also regard reductions mapping to multiple instances of B:

...

4 fine-grained complexity theory

Here, the reduction may use the answers to instances J1, . . . , Jk in
an arbitrary way to determine the answer for instance I of C quickly.
By such a reduction, similar to above, any T(n)-time algorithm for
B yields a O(r(n) + ∑k

i=1 T(si(n)))-time algorithm for C, which again
may be used to derive a conditional lower bound.

1.3 Some Conditional Lower Bounds

A classic textbook example for dynamic programming is the longest
common subsequence (LCS) problem. For strings of length n, it yields
a simple O(n2)-time algorithm. Surprisingly, substantial improve-
ments over this simple approach are unlikely: Assuming the conjec-
ture for OV (or CNF-SAT), we will prove that there is no O(n2−ε)-time
algorithm.

p a s s e n g e r
m a n a g e r

Figure 1.2: Longest Common Subse-
quence example.

Another example is the following: Suppose you are given a n ×
n matrix with integer entries. Your aim is to choose a submatrix
(spanned by consecutive rows and coloumns) with the maximum sum
of weights. It is not too difficult to see that you can solve this problem
in time O(n3) (→ exc.). Surprisingly, as we shall see later in the course,
a substantially faster algorithm (running in time O(n3−ε)) exists if and
only if a substantially faster algorithm exists for APSP!

We will encounter the 3SUM conjecture as particularly prevalent in
computational geometry. Here, it can be shown to imply quadratic-
time lower bounds for problems such as determining whether in a set
of n points in the plane, we find a triplet of points lying on a common
line.

Finally, consider Subset Sum: Given a set S of n non-negative inte-
gers and a target t, the task is to determine whether some subset of S
sums up to t. Until recently, the state of the art used to be an O(nt) dy-
namic programming algorithm. Notably, recent results in fine-grained
complexity give both an Õ(t)-time algorithm and a matching lower
bound of t1−o(1) (based on the complexity of satisfiability).

In Figure 1.3, we give a glimpse (far from comprehensive!) into the
web of reductions that is currently emerging within P.

introduction to fine-grained complexity theory, version: 180 5

OV

Fréchet
Edit

LCS

APSP

SubsetSum

CNF-SAT

3SUM

Similarity Measures Radius
Betweenness
Centrality...

Centrality Measures

...

Geometric Problems
Collinearity

Negative
Triangle

Motion
Planning

...

NFA
acceptance

Figure 1.3: A (partial) web of reduc-
tions: Conditional lower bounds from
OV, APSP, 3SUM (and SAT).1.4 A first example: OV and NFA acceptance

We introduce one of the most important problems for the hardness of
quadratic-time problems. a, b ∈ {0, 1}d are orthogonal

iff 〈a, b〉 = 0
iff ∑d

k=1 a[k] · b[k] = 0
iff ∀k ∈ [d]: a[k] = 0 or b[k] = 0.
Notation: Here, [d] := {1, . . . , d}, and
a[k] refers to the k-th coordinate of vec-
tor a.

Problem 1.5.
Orthogonal Vectors (OV)
Given: sets A, B ⊆ {0, 1}d of size n
Determine: Is there an orthogonal pair a ∈ A, b ∈ B?

Baseline Algorithms:

• trivial enumeration of pairs: O(n2d)

• slightly more difficult: O(nd2d) (→ exc.)

These algorithms do not violate the following hypothesis.

Hypothesis 1.6 (OV-Hypothesis (OVH)). For no ε > 0, there exists an
O(n2−εpoly(d))-time algorithm for OV.

Outlook: We will discuss what range
of dimensions make OV “hard” in more
detail in future chapters.

Influence of d: We are particularly interested in the regime of d
for which the known OV algorithms have a quadratic running
time in the input:

1. d = no(1): Thus, the input size is 2nd = O(nd) = n1+o(1).
(Otherwise, the first algorithm is faster than quadratic in 2nd)

2. d = ω(log n): If, e.g., d = 1
2 log n, then the second algorithm

solves OV in subquadratic time O(n 3
2).

A helpful regime to think of is d = Θ(log2 n).

6 fine-grained complexity theory

We will show that OV implies a quadratic time lower bound for
NFA acceptance problem. Recall that a nondeterministic finite au-
tomaton (NFA) M is a directed graph with a designated initial node s
and a set of accepting nodes T, where each edges receive a label from
an alphabet Σ. We say that M accepts a string x over Σ if there is a
walk in the graph from s to some accepting node t ∈ T such that the
i-th edge in the walk is labelled with x[i].

start

Figure 1.4: Example of an NFA over Σ =
{0, 1}, accepting bit strings with at least
two consecutive 0’s. The accepting state
is indicated by double circles. Duplicate
edges with different labels are displayed
as a single edge with multiple labels.

Problem 1.7.
NFA acceptance
Given: NFA M, string x
Determine: Does M accept x?

Algorithm: NFA acceptance is solvable in time O(|M| · |x|), where
|M| denotes the size4 of M and |x| denotes the length of x. To see 4 The size of M is the number of its states

plus transitions.this, use dynamic programming: compute a table T[i] with i ∈ [|x|] as
follows:

T[i]− set of states reachable in M when reading the prefix x[1..i]

By letting T[0] consist of the initial node(s) of M, we can compute T[i]
from T[i− 1] by determining all states q such that some q′ ∈ T[i− 1]
has a transition from q′ to q labelled x[i]. This can be done in time
O(|M|) per i.

Given the simplicity of this algorithm, you might ask whether some
faster algorithm exists. Surprisingly, no polynomially faster algorithm
exists if the OV hypothesis is true.

Theorem 1.8 (Impagliazzo). If the OV hypothesis is true, then for no ε > 0,
NFA acceptance can be solved in time O((|x| · |M|)1−ε).

Proof. We give a linear-time reduction that takes an OV instance A, B
of n vectors in {0, 1}d and produces an equivalent NFA acceptance
instance with an NFA M of size O(nd) and a string x of length O(nd).
Pictorially, we depict such a reduction as follows:

OV

• n vectors

• d dimensions

time O(nd)−−−−−−→

NFA acceptance

• NFA size O(nd)

• string length O(nd)

Such a reduction shows that an O((|M| · |x|)1−ε)-time algorithm
for NFA acceptance would give an OV algorithm that runs in time

O(((nd)(nd))1−ε) = O(n2−2ε · d2−2ε)) = O(n2−ε′poly(d)),

introduction to fine-grained complexity theory, version: 180 7

where ε′ = 2ε. This would refute the OV hypothesis!

We develop the reduction as specified above in two steps.

Step 1: Vector Orthogonality For any vector a ∈ {0, 1}d, we define a
NFA M(a) representing a as follows:

start

Figure 1.5: Vector NFA construction.

The following claim follows immediately from the construction of M(a).

Claim 1.9. For any b ∈ {0, 1}d, M(a) accepts the string b[1] b[2] . . . b[d] if
and only if a, b are orthogonal.

Step 2: Final string construction Given the vector sets A = {a1, . . . , an},
B = {b1, . . . , bn}, we construct the following machine M representing
all vectors in A as in Figure 4

...

start

...

...

Figure 1.6: Final NFA construction.

Finally, we define the string x as

x := # b1[1] . . . b1[d] # b2[1] . . . b2[d] # . . . # bn[1] . . . bn[d] #.

Claim 1.10. M accepts x if and only if there is an orthogonal pair ai ∈ A,
bj ∈ B.

Indeed, for any orthogonal pair ai, bj, an accepting path in M is
given by staying in the initial state for the prefix

#b1[1] . . . b1[d]# . . . #bj−1[1] . . . bj−1[d],

then using the #-transition to the initial state of M(ai), traversing it
(which is possible by Claim 1.9 of a, b) until the accepting state of

8 fine-grained complexity theory

M(ai), and completing the traversal of M by #-traversing to the ac-
cepting state and staying there for the remaining suffix of x.

Conversely, it is easy to verify that any accepting path in M must
traverse some M(ai) from its initial to its accepting state. By Claim 1.9,
this requires that some substring of x represents an orthogonal vector
to ai. By construction of x, this is only possible if B contains a vector
bj that is orthogonal to ai.

Note the previous claim shows that M and x yield an NFA accep-
tance instance that is equivalent to the OV instance A, B. By construc-
tion, M has size O(nd) and x consists of O(nd) characters. Further-
more, M and x can be computed in time O(|M|+ |x|) = O(nd). Thus,
as proven above, an O((|M| · |x|)1−ε)-time NFA acceptance algorithm
would refute the OV hypothesis.

1.5 Machine model

A big advantage of complexity classes like P and NP is that their def-
inition is robust against the choice of the computational model: Any
computational model that is polynomial-time equivalent to a single-
tape deterministic Turing machine gives rise to the same classes. For
our fine-grained questions, however, the polynomial-time differences
matter. Thus, we need to be more careful in our choice of computa-
tional model.5 5 As an example, single-tape Turing ma-

chines require quadratic time to detect
palindromes – a task that we would as-
sume to be solved by any realistic model
of computation in linear time.

Our model is the random-access machine (RAM). Its storage is divided
into cells. The content of a cell is sometimes called a word. It is assumed
that each cell can store a Θ(log n)-bit number. The CPU may store a
constant number of words. It can perform all “standard” operations
on one or two words (i.e., arbitrary arithmetic or logical operations) in
time O(1). Here, it has random access to all words.

1.6 Advantages and Drawbacks

As illustrated above, to obtain fine-grained running time lower bounds
(in particular, to classify polynomial-time problems), conditional lower
bounds provide a useful tool. Analogously to NP-hardness, they give
convincing criteria to abandon the search for a faster algorithm: E.g.,
before searching for a subquadratic NFA acceptance algorithm, you
might as well first try to refute the conjecture for OV – if you don’t
think you have the necessary tools for this, then you should give up
on NFA acceptance and rather relax the problem or regard alternatives
instead.

introduction to fine-grained complexity theory, version: 180 9

What if the conjectures turn out to be false? Aren’t we relying
crucially on these conjectures? Interestingly, several advantages of the
above approach are somewhat independent of whether these conjec-
tures eventually turn out to be true or false:

1. Even if a conjecture C eventually turns out to be false, a conditional
lower bound based on C still shows that any algorithm breaking
this lower bound needs techniques that are strong enough to break C.
In particular, if we believe that C is a barrier for current techniques,
or if we search for algorithms that avoid an “algorithmic hammer”
that seems necessary to break C, these lower bounds are highly
informative.

2. While a conjecture might be refuted, the uncovered relationship
persists, potentially giving further insights. E.g., even if the best
algorithm for OV would be subquadratic, but still superlinear, say
O(ncpoly(d)) with 1 < c < 2, then NFA acceptance would not have
an algorithm running in near-linear time Õ(|M|+ |x|).

3. Sometimes, the lack of (higher) conditional lower bounds inspires
algorithmic improvements! There are examples in the literature where
the quest for tight lower bounds in fact suggested a route to obtain
faster algorithms.

4. A web of conditional lower bounds structures the search for faster
algorithms. It seems more likely to be successful if we attack the
conjecture on which a lower bound is based, rather than the lower
bound itself.

We (Karl and Marvin) remain agnostic about whether the above
conjectures for OV, 3SUM, APSP and CNF-SAT hold. Rather, we view
them as important hypotheses: If they turn out to be true, they give a
very detailed picture of the complexity of polynomial-time problems.
But even if they are eventually refuted, conditional lower bounds based
on them seem likely to reveal fundamental structures within P (and in
fact, may even help in their refutation). Terminology: From now on, we typi-

cally call our hardness assumptions hy-
potheses rather than conjectures, to stress
that we do not fundamentally conjecture
all of them to be correct.1.7 Structure of this course

The main part of this course concerns our main hypotheses: the OV
hypothesis and the Strong Exponential Time Hypothesis for SAT, the
3SUM hypothesis, and the APSP hypothesis. In each of these cases,
we discuss both the fastest known algorithm for the underlying prob-
lem, as well as how to prove conditional lower bounds based on this
assumption.

10 fine-grained complexity theory

Later in the course, we turn towards (partial) relationships between
these problems, non-standard hardness assumptions, hardness of ap-
proximation and other settings of computation (including nondeter-
minsm and dynamic algorithms).

The aim of this course is to learn (1) how to prove conditional lower
bounds, (2) algorithmic techniques to obtain the fastest known algo-
rithms for fundamental problems, and (3) an understanding of the
complexity landscape of polynomial-time problems.

	Introduction to Fine-Grained Complexity Theory, Version: 180
	Overview over the course
	Our types of reductions
	Some Conditional Lower Bounds
	A first example: OV and NFA acceptance
	Machine model
	Advantages and Drawbacks
	Structure of this course

