
3
Quadratic Lower Bounds for Sequence Similarity

Version: 172

In this chapter, we show how to derive quadratic-time conditional
lower bounds for sequence similarity measures, using the example of
the classic Longest Common Subsequence problem.

3.1 Sequence Comparison

Sequences come in very different flavors: strings, geometrical curves,
time-series data, etc. On all of these types, a typical task is to com-
pare them. Applications include spelling correction and differential
file comparison (strings), map-matching GPS trajectories (geometri-
cal curves), clustering audio sequences (time-series), genome assembly
(DNA sequences), and many more. For these applications, a number
of natural sequence similarity1 measures exist: for strings, we have 1 Or, equivalently, dissimilarity

measures like the edit distance, longest common subsequence, local
alignment; for polygonal curves, we have the Fréchet distance; for
time-series data, we have dynamic-time warping; etc.

Most of these sequence similarity measures have in common that
they can be computed in time O(n2) where n denotes the length of
the two input sequences. For many practical applications, this is in-
deed acceptable: E.g., it is rarely noticeable that computing the diff

of two files might take quadratic time on worst case instances. For
other applications like comparing genome sequences of two biological
species, however, input lengths can easily range in the billions, making
quadratic-time algorithms infeasibly slow. This often leads practition-
ers to use heuristics instead, such as the BLAST tool2 in bioinformatics. 2 Stephen F. Altschul, Warren Gish, Webb

Miller, Eugene W. Myers, and David J.
Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):
403 – 410, 1990

Ideally, we would like to justify why for many sequence similarity
measures, quadratic-time algorithms seem to be best possible:

Can we find out what makes a similarity measure hard?

Fortunately, we can attack this question using the tools of fine-
grained complexity. In particular, after first results for local alignment3, 3 Amir Abboud, Virginia Vassilevska

Williams, and Oren Weimann. Con-
sequences of faster alignment of se-
quences. In ICALP’14, pages 39–51, 2014

a number of OVH-based lower bounds have been shown for similarity

2 fine-grained complexity theory

measures that optimize a global alignment: This line of research was
initiated by Bringmann’s quadratic conditional lower bound for the
Fréchet distance4. Following this work, a breakthrough result by Back-

4 Karl Bringmann. Why walking the
dog takes time: Frechet distance has no
strongly subquadratic algorithms unless
SETH fails. In FOCS’14, pages 661–670,
2014

urs and Indyk5 gave such a lower bound for the edit distance. Indepen- 5 Arturs Backurs and Piotr Indyk. Edit
distance cannot be computed in strongly
subquadratic time (unless SETH is false).
In STOC’15, pages 51–58, 2015

dent works by Abboud et al.6 and Bringmann and Künnemann7 then

6 Amir Abboud, Arturs Backurs, and Vir-
ginia Vassilevska Williams. Tight hard-
ness results for LCS and other sequence
similarity measures. In FOCS’15, pages
59–78, 2015

7 Karl Bringmann and Marvin Künne-
mann. Quadratic conditional lower
bounds for string problems and dynamic
time warping. In FOCS’15, pages 79–97,
2015

extended these results to further similarity measures including Longest
Common Subsequence, Dynamic-Time Warping, and a generalization of
the Edit Distance.

In this chapter, we show how to derive such lower bounds using
the example of the longest common subsequence problem. Here, we
give a simplified version of the proof of Bringmann and Künnemann;
stronger results can be obtained by more careful constructions.

3.2 Longest Common Subsequence (LCS)

Note that in contrast to a substring, a
subsequence of x does not need to be
contiguous in x.

We call a string z a subsequence of a string x, if z can be obtained by
deleting arbitrary characters from x. A common subsequence of two
strings x and y is a string that is a subsequence of both x and y.

Problem 3.1.
Longest Common Subsequence problem (LCS)
Given: Strings x and y of length at most n
Determine: Length of the longest common subsequence of x and y.

D I F F I C U L T I E S

I N D U S T R I E S
Figure 3.1: Example for an optimal LCS
alignment.

Let us denote the length of a longest common subsequence of x
and y by L(x, y). We can compute the value L(x, y) by a simple
dynamic-programming algorithm8 in time O(n2): We build a table T 8 Robert A. Wagner and Michael J. Fis-

cher. The string-to-string correction
problem. J. ACM, 21(1):168–173, 1974

defined by T[i, j] = L(x[1 . . . i], y[1 . . . j]). It is not difficult to see that

Notation: for a string x and and i ≥ 0,
x[1..i] denotes the prefix of the first i
characters of x.

T[i, j] =

T[i− 1, j− 1] + 1 if x[i] = y[j],

max{T[i− 1, j], T[i, j− 1]} if x[i] 6= x[j].

Thus, each entry T[i, j] can be computed in time O(1), given the pre-
ceding entries T[i − 1, j], T[i, j − 1], T[i − 1, j − 1]. This allows us to
compute L(x, y) = T[|x|, |y|] in time O(|x| · |y|) = O(n2). This run-
ning time has been slightly improved toO(n2(

log log n
log n)2) by Masek and

Paterson9, but for worst-case instances nothing faster is known. 9 William J. Masek and Mike Paterson.
A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–
31, 1980

The main result of this chapter is that the simple LCS algorithm
given above is close to optimal under the OV hypothesis.

Theorem 3.2. Assuming OVH, there is no O(n2−ε)-time LCS algorithm for
any ε > 0.

We prove the theorem by giving a reduction that transforms an OV
instance A, B into strings x, y and an integer τ such that A, B contains
an orthogonal pair if and only if L(x, y) ≥ τ. The reduction satisfies
the following bounds:

quadratic lower bounds for sequence similarity, version: 172 3

OV

• n vectors

• d dimensions

time O(nd2)−−−−−−−→

LCS

• strings x, y of length O(nd2)

We then obtain the conditional lower bound as follows: Assume that
there is a O(n2−ε)-time algorithm for LCS. Then for any OV instance,
we can run the reduction in time O(nd2) to produce the correspond-
ing x, y and τ. Using the LCS algorithm, we can compute L(x, y) in
time O((nd2)2−ε) = O(n2−εpoly(d)), which allows us to decide the
OV instance in time O(nd2 + n2−εpoly(d)) = O(n2−εpoly(d)), which
would refute OVH.

It remains to give the reduction, which we develop in the following
few subsections. The general idea is to reformulate, piece by piece, the
definition of the OV problem using strings and their longest common
subsequences.

To prepare this, we introduce the following view of the LCS prob-
lem: Given strings x, y, we call a sequence (i1, j1), . . . , (i`, j`) with x[ik] =
y[ik] for all k ∈ [`] an alignment of x and y. An optimal alignment is
an alignment of longest possible length `. Note that for an optimal
alignment (i1, j1), . . . , (i`, j`), the string x[i1] . . . x[i`] = y[j1] . . . y[j`] is
an LCS of x and y. For any k, we say that x[ik] is aligned to y[jk].
In particular, in the example of Figure 3.1, the blue lines indicate the
aligned characters.

Note: There might be more than one
optimal alignment (or even LCS) for x
and y. However, we often speak of
the optimal alignment (or the LCS) of x
and y to denote an arbitrary, fixed opti-
mal alignment (or LCS).

Coordinate Gadgets

Let us first represent coordinates of vectors by strings, called coordi-
nate gadgets. The essential property is that the LCS of two coordinate
gadgets expresses the product of the corresponding coordinates.

Lemma 3.3. There are strings CA(0), CA(1), CB(0), CB(1) ∈ {0, 1}3 such
that for all s, t ∈ {0, 1}, we have

L(CA(s), CB(t)) = 2(1− s · t) =

2 if s · t = 0,

0 otherwise.

Proof. The following strings satisfy the desired condition:

CA(0) := 001, CB(0) := 011,

CA(1) := 111, CB(1) := 000.

Indeed, CA(1) = 111 and CB(1) = 000 share no characters, while
all other combinations CA(s), CB(t) (where s · t = 0) have an LCS of
length 2: the LCS of CA(0) = 001 and CB(1) = 000 is 00, the LCS of
CA(1) = 111 and CB(0) = 011 is 11, and finally, the LCS of CA(0) =

001 and CB(0) = 011 is 01.

4 fine-grained complexity theory

Vector Gadgets

Given the coordinate gadgets, we turn to representing vectors by strings,
called vector gadgets. The essential property is that the LCS of two vec-
tor gadgets expresses the inner product of the corresponding vectors.

Lemma 3.4. There are VA, VB : {0, 1}d → {0, 1, 2}3d2
, computable in time

O(d2), such that for all vectors a, b ∈ {0, 1}d, we have

L(VA(a), VB(b)) = αd − 2
d

∑
k=1

a[k] · b[k]

= αd if 〈a, b〉 = 0,

≤ αd − 2, otherwise,

where αd := 3d2 − d is a fixed value.

Proof. We construct the vector gadgets as follows:

VA(a) := CA(a[1]) 23d CA(a[2]) 23d . . . 23d CA(a[d]),

VB(b) := CB(b[1]) 23d CB(b[2]) 23d . . . 23d CB(b[d]),

We only need to show that

Notation: For a string x and a natu-
ral number n ∈ N, we write xn for
the n-fold repetition of x, i.e., the string
x x . . . x︸ ︷︷ ︸

n times

L(VA(a), VB(b)) = 3d(d− 1) +
d

∑
k=1

L(CA(a[k]), CB(b[k])), (3.1)

since Lemma 3.3 then shows that

L(VA(a), VB(b)) = 3d(d− 1) +
d

∑
k=1

2(1− a[k] · b[k])

= 3d2 − d− 2
d

∑
k=1

a[k]b[k],

as desired.

We first prove the lower bound of (3.1). We obtain a common sub-
sequence of VA(a) and VB(b) by concatenating, for k = 1, . . . , d −
1, an LCS of CA(a[k]) and CB(b[k]) and the string 23d, and finally
concatenating an LCS of CA(a[d]) and CB(b[d]). This subsequence
consists of d − 1 blocks of 2s of length 3d, as well as the sum of
L(CA(a[k]), CB(b[k])) for k = 1, . . . , d, which yields L(VA(a), VB(b)) ≥
3d(d− 1) + ∑d

k=1 L(CA(a[k]), CB(b[k])).

It remains to prove the upper bound. Note that if the LCS of VA(a)
and VB(b) never aligns a character of CA(a[i]) with some charac-
ter of CB(b[j]) with i 6= j, then the LCS of VA(a) and VB(b) cannot
be larger than 3d(d − 1) + ∑d

k=1 L(CA(a[k]), CB(b[k])): there are only
3d(d− 1)-many 2s and each CA(a[k]) can contribute at most a length
of L(CA(a[k]), CB(b[k])) to the LCS.

quadratic lower bounds for sequence similarity, version: 172 5

Otherwise, i.e., if there are i 6= j such that some character of CA(a[i])
is aligned to some character of CB(b[j]), the LCS is even smaller: First
observe that at least one block of 2s is not aligned to any other block
of 2s. Indeed, if i < j, then there are only i− 1 blocks of 2s preceding
CA(a[i]) in VA(a), so at least one of the j − 1 > i − 1 blocks of 2s
preceding CB(b[j]) in VB(b) cannot be aligned to any block of 2s in
VA(a). Thus, even if we align all characters of all CA(a[k]), k ∈ [d]
perfectly, the LCS still has a length of at most

3d(d− 2) +
d

∑
k=1
|CA(a[k])| = 3d(d− 2) + 3d = 3d(d− 1).

This is smaller then the desired upper bound of (3.1), and we are fin-
ished.

Normalized Vector Gadgets

For technical reasons that become apparent later, we need an adap-
tation of vector gadgets that we call normalized vector gadgets. The
essential property is that the LCS of two normalized vector gadgets
attains one of two values: a large one if the corresponding vectors are
orthogonal, a small one if they are not orthogonal.

Lemma 3.5. There are NA, NB : {0, 1}d → {0, 1, 2, 3}6d2−d−2, computable
in time O(d2), such that for all vectors a, b ∈ {0, 1}d, we have

L(NA(a), NB(b)) =

βd + 2 if 〈a, b〉 = 0,

βd, otherwise,

where βd := αd − 2 = 3d2 − d− 2 is a fixed value.

Proof. We construct the normalized vector gadgets as follows

NA(a) := VA(a) 3αd−2,

NB(b) := 3αd−2 VB(b).

We only need to show that

L(NA(a), NB(b)) = max{L(VA(a), VB(b)), αd − 2}, (3.2)

since the claim then follows from Lemma 3.4: If 〈a, b〉 = 0, then
L(VA(a), VB(b)) = αd and thus L(NA(a), NB(b)) = αd = βd + 2. Oth-
erwise, we have L(VA(a), VB(b)) ≤ αd − 2, so that L(NA(a), NB(b)) =
αd − 2 = βd, as desired.

We distinguish two cases: If the LCS of NA(a) and NB(b) contains at
least one 3, then it must in fact be the string 3αd−2: no other characters

6 fine-grained complexity theory

can be aligned, as all non-3s precede the 3s in NA(a), while in NB(b),
all non-3s succeed the 3s.

Otherwise, i.e., if the LCS of NA(a) and NB(b) contains no 3, then it
is the LCS of VA(a) and VB(b). Thus, we obtain as LCS of NA(a), NB(b)
the longer string of 3αd−2 and the LCS of VA(a), VB(b), concluding the
proof of (3.2).

OR-Gadget

Finally, it remains to represent sets of vectors as strings whose LCS
expresses whether or not the sets contain an orthogonal pair. Crucially,
we need the possibility that in principle, any pair of normalized vector
gadgets could be aligned in an optimal alignment.

Lemma 3.6. Given vector sets A, B ⊆ {0, 1}d of size n, in time O(nd2), we
can construct strings x, y and an integer τ such that

L(x, y) ≥ τ if and only if A, B contains an orthogonal pair.

Proof. We write A = {a0, . . . , an−1}, B = {b0, . . . , bn−1} and set γ :=
6d2 − d− 2. We define

x :=NA(a0) 4γ NA(a1) 4γ . . . NA(an−1) 4γ NA(a0) 4γ NA(a1) 4γ . . . 4γ NA(an−1)

y := 4nγ NB(b0) 4γ NB(b1) 4γ . . . NB(bn−1) 4nγ.

Intuitively, the LCS of x and y chooses an offset ∆ such that we align
each NB(bj) with a partner NA(aj+∆ mod n).

We set τ := (2n − 1)γ + nβd + 2 and consider first the case that
there exists ī, j̄ such that aī, b j̄ are orthogonal. We need to show that
L(x, y) ≥ τ.

First, we observe that

L(x, y) ≥ (2n− 1)γ + max
∆∈{0,...,n−1}

n−1

∑
j=0

L(NA(aj+∆ mod n), NB(bj)). (3.3)

Indeed, for any ∆ = 0, . . . , n − 1, we obtain an LCS as follows: we
align the first ∆ blocks of 4s in x to the first ∆γ ≤ nγ characters in y.
Then, we optimally align, for each j = 0, . . . , n− 1, each NB(bj) with
the corresponding N(aj+∆ mod n)

10, as well as all the blocks of 4s in- 10 Note that by our 0-based indexing and
since x has two repetitions of the nor-
malized vector gadgets for a0, . . . , an−1,
the use of j + ∆ mod n correctly handles
the alignment of those NB(bj) for which
∆ + j ≥ n.

between. Finally, we align the remaining (n − ∆) blocks of 4 in x
to the last (n − ∆)γ ≤ nγ many 4s in y. This yields an LCS that
includes ∆ + (n− 1) + n− ∆ = 2n− 1 blocks of 4s, and the LCS’s of
NA(aj+∆ mod n) and NB(bj) for all j ∈ {0, . . . , n− 1}, which proves (3.3),
as ∆ was chosen arbitrarily.

quadratic lower bounds for sequence similarity, version: 172 7

(a) ∆ = 0

(b) ∆ = 2

Figure 3.2: Example for optimal align-
ments of strings x, y.

Let us choose ∆ := ī− j̄ mod n. Since j̄ + ∆ mod n = ī mod n = ī,
it follows that the sum ∑n−1

j=0 L(NA(aj+∆ mod n), NB(bj)) contains the
summand L(NA(aī), NB(b j̄)) ≥ βd + 2 by Lemma 3.5. Each of the
other n − 1 summands has a value of at least βd by Lemma 3.5.11 11 Note that this precisely the point

where we need the normalization of the
vector gadgets. If we were working with
the simple vector gadgets, a large value
for a single pair might be insignificantly
small compared to potentially very small
values for all other pairs participating in
the sum.

Thus, for the case that there exists an orthogonal pair, (3.3) yields the
lower bound

L(x, y) ≥ (2n− 1)γ + (n− 1)βd + (βd + 2) = τ.

It remains to show that L(x, y) < τ if there is no orthogonal pair.
Note that x has (2n − 1)γ many 4s, so any LCS of x and y can con-
tain at most as many 4s. So, we assume that the 4s have a contribu-
tion of (2n− 1)γ to the LCS. Let us further consider the contribution
of the NB(bj)’s to the longest common subsequence: If no character
of NB(bj) is aligned to any character of some NA(ai), then NB(bj)

has a contribution of 0. If the characters of NB(bj) are aligned only
to characters of a single NA(ai), then NB(bj) has a contribution of
L(NA(ai), NB(bj)) ≤ βb by Lemma 3.5 (where we use that ai, bj are
not orthogonal). Finally, if there are characters of NB(bj) that are
aligned to characters of at least two NA(ai)’s, then we can bound its
contribution by |NB(bj)| − γ = 0: NB(bj) can contribute at most its
length |NB(bj)| = γ, but if some character of NB(bj) is aligned to
some NA(ai), and another character of NB(bj) is aligned to some other
NA(ai′), then we cannot align any 4s between NA(ai) and NA(ai′), so
we lose at least γ many 4s (reducing the contribution of the 4s corre-
spondingly). In all cases, the contributions of NB(bj) is bounded by βd,
and the total length of the LCS, for the case that there is no orthogonal
pair, is at most

(2n− 1)γ + nβd = τ − 2 < τ.

8 fine-grained complexity theory

Note that the previous lemma proves the reduction that we claimed
for Theorem 3.2, thus concluding our conditional lower bound for LCS.

3.3* Extensions of the result

We have given a proof that solving LCS on strings over an alphabet
of size 5 cannot be done in strongly quadratic time, assuming OVH.
In fact, using more careful constructions12, one can show that this 12 Karl Bringmann and Marvin Kün-

nemann. Quadratic conditional lower
bounds for string problems and dynamic
time warping. In FOCS’15, pages 79–97,
2015

lower bound already holds on an alphabet of size 2 – note that this
is optimal, since computing the LCS of strings over alphabet size 1 is
trivial.

To achieve the lower bound, it is technically useful to generalize
the essential tasks in the reduction above (constructing vector gadget,
normalized vector gadgets, and the OR gadget) to an abstract task
– essentially, optimizing over certain kinds of alignments. Formaliz-
ing this task as a construction called alignment gadget, one can show
that for any similarity measure admitting such an alignment gadget,
we immediately obtain an OVH-based quadratic lower bound. Since
Longest Common Subsequence, Dynamic Time-Warping, and a gen-
eralization of the Edit Distance admit such an alignment gadget, we
obtain quadratic lower bounds for all of them.

Let us discuss further extensions of the result.
Lower Order Improvements

Due to the above conditional lower bound, we do not expect O(n2−ε)-
time algorithms for LCS. However, a slightly subquadratic algorithm,
running in time O(n2 · (log log n

log n)2), exists. How much could this al-
gorithm be improved? Could we possibly shave off arbitrarily many
logarithmic factors?

Abboud et al.13 show that this is an immensely difficult task, as an 13 Amir Abboud, Thomas Dueholm
Hansen, Virginia Vassilevska Williams,
and Ryan Williams. Simulating branch-
ing programs with edit distance and
friends: or: a polylog shaved is a
lower bound made. In STOC’16, pages
375–388, 2016

O(n2/ log1000 n) algorithm for LCS would imply circuit lower bounds
that are beyond the current state of the art. In fact, they obtain this re-
sult by basing the quadratic hardness of LCS on a weaker assumption
than SETH, specifically, a variant of it concerning the satisfiability of
branching programs. Subsequent work14 obtains more detailed lower 14 Amir Abboud and Karl Bringmann.

Tighter connections between formula-sat
and shaving logs. In ICALP’18, pages
8:1–8:18, 2018

bounds.

Multivariate Analysis

A practical application of LCS is comparing two versions of a file:
Viewing each line of a file as a character of a string, the LCS of two
files corresponds to their similarity, and all lines not occurring in the
LCS are essentially lines that have been edited between the versions.

Given this relevance, it is not surprising that algorithmic work has
attempted to find fast LCS algorithms even despite its apparent quadratic

quadratic lower bounds for sequence similarity, version: 172 9

time hardness. A particular approach is to exploit input parameters:
Let us characterize an LCS input not only by its input size (the total
length of the input strings), but also by distinguishing the following
parameters: (here, we assume that x is the longer input string, i.e.,
|x| ≥ |y|):

• the length n = |x| of the longer string,

• the length m = |y| of the shorter string,

• the length L = L(x, y) of the LCS of x, y,

• the size of the alphabet Σ of x, y,

• the number δ := m− L of characters we need to delete in the shorter
string to obtain the LCS,

• the number ∆ := n− L of characters we need to delete in the longer
string to obtain the LCS.

• the number of matching pairs15 M, 15 A matching pair is a pair (i, j) such
that x[i] = y[j].• the number of dominant pairs16 d.
16 A dominant pair is a certain type of
matching pair. Specifically, it is a match-
ing pair (i, j) such that in the dynamic
programming table T, we have T[i, j] >
T[i− 1, j] and T[i, j] > T[i, j− 1].

In practical instances, one would expect certain parameters to be
small. This holds in particular for δ and ∆ (as we typically compare
files with a large LCS L); one can make a similar case for the parameter
d ≤ M. Fortunately, there are fast algorithms making use of these
parameters: we have algorithms running in time Õ(n + mδ)17, Õ(n + 17 Daniel S. Hirschberg. Algorithms for

the longest common subsequence prob-
lem. J. ACM, 24(4):664–675, 1977

δ∆)18 and Õ(n+ d) 19. In the worst case, these algorithms require time
18 Sun Wu, Udi Manber, Gene Myers,
and Webb Miller. An O(NP) sequence
comparison algorithm. Inf. Process. Lett.,
35(6):317–323, 1990

19 Alberto Apostolico. Improving the
worst-case performance of the hunt-
szymanski strategy for the longest com-
mon subsequence of two strings. Inf. Pro-
cess. Lett., 23(2):63–69, 1986

Ω(n2), i.e., they do not break the OVH barrier. On practical instances,
however, these algorithms can be much faster. Surprisingly, we can
show that the combination of these three algorithms is essentially best
possible under OVH20.

20 Karl Bringmann and Marvin Künne-
mann. Multivariate fine-grained com-
plexity of longest common subsequence.
In SODA’18, pages 1216–1235, 2018

Theorem 3.7. Assuming OVH, the optimal running time (measured in
terms of the parameters n, m, L, δ, ∆, M, and d) for LCS over constant-sized
alphabets is (n + min{δ∆, δm, d})1±o(1).

How to prove such lower bounds (taking into account more than
one input parameter) will be the topic of a future chapter.

Further results

Further hardness results include a nk−o(1)-time conditional lower bound21

21 Amir Abboud, Arturs Backurs, and
Virginia Vassilevska Williams. Tight
hardness results for LCS and other se-
quence similarity measures. In FOCS’15,
pages 59–78, 2015for computing the LCS of k strings x1, . . . , xk. Tight conditional lower

bounds can also be achieved for computing the LCS of grammar com-
pressed strings22. Furthermore, there are fine-grained complexity anal-

22 Amir Abboud, Arturs Backurs, Karl
Bringmann, and Marvin Künnemann.
Fine-grained complexity of analyzing
compressed data: Quantifying improve-
ments over decompress-and-solve. In
FOCS’17, pages 192–203, 2017

yses of variants of LCS such as the Longest Common Increasing Sub-
sequence23 and a weighted version of LCS24. Further work discusses

23 Lech Duraj, Marvin Künnemann, and
Adam Polak. Tight conditional lower
bounds for longest common increasing
subsequence. In (IPEC’17), pages 15:1–
15:13, 2017

24 Karl Bringmann and Bhaskar Ray
Chaudhury. Sketching, streaming, and
fine-grained complexity of (weighted)
LCS. In FSTTCS’18, pages 40:1–40:16,
2018

approximation hardness of LCS-related problems, which will be dis-
cussed in a future chapter.

Bibliography

Version: 172

Amir Abboud and Karl Bringmann. Tighter connections between
formula-sat and shaving logs. In ICALP’18, pages 8:1–8:18, 2018.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann.
Consequences of faster alignment of sequences. In ICALP’14, pages
39–51, 2014.

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams.
Tight hardness results for LCS and other sequence similarity mea-
sures. In FOCS’15, pages 59–78, 2015.

Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska
Williams, and Ryan Williams. Simulating branching programs with
edit distance and friends: or: a polylog shaved is a lower bound
made. In STOC’16, pages 375–388, 2016.

Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künne-
mann. Fine-grained complexity of analyzing compressed data: Quan-
tifying improvements over decompress-and-solve. In FOCS’17, pages
192–203, 2017.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403 – 410, 1990.

Alberto Apostolico. Improving the worst-case performance of the
hunt-szymanski strategy for the longest common subsequence of two
strings. Inf. Process. Lett., 23(2):63–69, 1986.

Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in
strongly subquadratic time (unless SETH is false). In STOC’15, pages
51–58, 2015.

Karl Bringmann. Why walking the dog takes time: Frechet dis-
tance has no strongly subquadratic algorithms unless SETH fails. In
FOCS’14, pages 661–670, 2014.

12 fine-grained complexity theory

Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, streaming,
and fine-grained complexity of (weighted) LCS. In FSTTCS’18, pages
40:1–40:16, 2018.

Karl Bringmann and Marvin Künnemann. Quadratic conditional
lower bounds for string problems and dynamic time warping. In
FOCS’15, pages 79–97, 2015.

Karl Bringmann and Marvin Künnemann. Multivariate fine-grained
complexity of longest common subsequence. In SODA’18, pages
1216–1235, 2018.

Lech Duraj, Marvin Künnemann, and Adam Polak. Tight condi-
tional lower bounds for longest common increasing subsequence. In
(IPEC’17), pages 15:1–15:13, 2017.

Daniel S. Hirschberg. Algorithms for the longest common subse-
quence problem. J. ACM, 24(4):664–675, 1977.

William J. Masek and Mike Paterson. A faster algorithm computing
string edit distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

Robert A. Wagner and Michael J. Fischer. The string-to-string correc-
tion problem. J. ACM, 21(1):168–173, 1974.

Sun Wu, Udi Manber, Gene Myers, and Webb Miller. An O(NP) se-
quence comparison algorithm. Inf. Process. Lett., 35(6):317–323, 1990.

	Quadratic Lower Bounds for Sequence Similarity, Version: 172
	Sequence Comparison
	Longest Common Subsequence (LCS)
	Extensions of the result

	Bibliography, Version: 172

