
Lecture 5

Synchronizing by

Approximate Agreement

In the previous lecture, we’ve seen how to achieve a skew of O(d) in a system
of n fully connected nodes with f < n/3 Byzantine faults. We’ve also seen that
we can’t do any better in terms of the number of faults that can be tolerated.
So let’s ask our usual question: Is this skew bound (asymptotically) optimal or
can we do better? Already in a fault-free system, we know that we can’t beat
⌦(u + (#� 1)d). But can this bound be attained in the presence of faults?

5.1 Approximate Agreement

The answer is provided by leveraging techniques for the task of approximate

agreement. For this problem, we assume the (convenient) abstraction of a syn-
chronously operating system.

Definition 5.1 (Synchronous Execution). A synchronous execution proceeds in

synchronous rounds. At the start of the execution, each node receives an input

(whose type depends on the task at hand). In each round,

1. nodes perform local computations,

2. send messages to their neighbors in the network graph,

3. receive the messages of their neighbors, and (optionally)

4. may compute an output value and terminate (i.e., stop executing the other

steps in future rounds).

Note that a synchronous execution of a deterministic algorithm is fully
determined by the input values and the (arbitrary) messages sent by faulty
nodes. The key performance measures are the round complexity —the number
of rounds until all nodes terminated — and the maximum size of messages (sent
by correct nodes).

This model provides a very clean abstraction for describing the tool we would
like to use.

47

48 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

Definition 5.2 (Approximate Agreement). Each node v 2 V is given an input

value rv 2 R. Given a constant " > 0, the task is to generate output values

ov 2 R so that

agreement: maxv,w2Vg{ov � ow} ",

validity: 8v 2 Vg : minw2Vg{rw} ow maxw2Vg{rw}, and

termination: each v 2 Vg determines its output ov and terminates within a

finite number of rounds.

Remarks:

• The synchronous model is a highly useful abstraction in distributed com-
puting. With known upper bounds L on local skew, � on logical clock
rates, and d on message delays, it is straightforward to simulate. Assum-
ing that maxv2Vg{Lv(0)} = L, nodes send their messages for round r 2 N
at the time t when Lv(t) = L + (r � 1)�(d + L). Thus, all messages for
round r are received before the ones for round r + 1 need to be sent.

• If the round number is not to be sent along with the message or for some
other reason it’s important that messages for round r + 1 must not arrive
anywhere before round r is complete at all nodes, one may add an addi-
tional �S at the beginning of the round before messages are sent. We will
use this in our algorithm!

• Recall that d accounts for local computations, not only the time messages
are in transit. Thus, involved calculations a↵ect the time the simulation
takes via d!

• Lower bounds on the progress of logical clocks are needed for guaranteeing
progress. The better the lower bound, the earlier the simulation completes
(i.e., all nodes terminate).

• Without faults, synchronizers provide elegant solutions that work even if
d is unknown. However, synchronizers wait for proof that all other nodes
finished their current round before proceeding. Even a single crash fault
(a node not sending any messages any more) would halt the entire system!

• Once we solved approximate agreement in this abstract model, we will
employ it to agree on when the nodes should generate clock pulses, i.e.,
solve the pulse synchronization problem with it.

• The simulation of the synchronous algorithm and maintaining a small skew
will go hand in hand!

Solving Approximate Agreement

Definition 5.3 (Diameters of Vectors). Denote by ~r the |Vg|-dimensional vec-

tor of correct nodes’ inputs, i.e., (~r)v = rv for v 2 Vg. Denote by r
(k)

,

k 2 {1, . . . , |Vg|}, the k
th

entry when ordering the entries of ~r ascendingly.

5.1. APPROXIMATE AGREEMENT 49

Algorithm 5.1: Approximate agreement step at node v 2 Vg (with
synchronous message exchange).

1 // node v is given input value rv;
2 broadcast rv to all nodes (including self);
3 receive brwv from each node w (brwv := rv if no message with correct type

of content from w received);
4 Sv {brwv | w 2 V };

5 ov
S

(f+1)
v + S

(n�f)
v

2
;

6 return ov;

The diameter k~r k of ~r is the di↵erence between the maximum and minimum

components of ~r. Formally,

k~r k := r
(|Vg|)

� r
(1) = max

r2Vg

{rv}� min
v2Vg

{rv} .

We will use the same notation for other values, e.g. ~o, o
(k)

, k~o k, etc.

For simplicity, we assume that |Vg| = n� f in the following; all statements
can be adapted by replacing n � f with |Vg| where appropriate. As usual, we
require that 3f < n.

Intuitively, Algorithm 5.1 discards the smallest and largest f values each to
ensure that values from faulty nodes cannot cause outputs to lie outside the
range spanned by the correct nodes’ values. Afterwards, ov is determined as
the midpoint of the interval spanned by the remaining values. Since f < n/3,
i.e., n� f � 2f + 1, the median of correct nodes’ values is part of all intervals
computed by correct nodes. From this, it is easy to see that k~o k k~r k/2. We
now prove these properties.

Lemma 5.4.

8v 2 Vg : r
(1)
 ov r

(n�f)
.

Proof. As there are at most f faulty nodes, for v 2 Vg we have that

S
(f+1)
v � min

w2Vg

{brwv} = r
(1)

.

Analogously, S
(n�f)
v r

(n�f). We conclude that

r
(1)
 S

(f+1)
v

S
(f+1)
v + S

(n�f)
v

2
= ov S

(n�f)
v r

(n�f)
.

Lemma 5.5. k~o k k~r k/2.

Proof. Since f < n/3, we have that n� f � 2f + 1. Hence, for all v 2 Vg,

r
(1)
 S

(f+1)
v r

(f+1)
 S

(2f+1)
v S

(n�f)
v r

(n�f)
.

50 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

For any v, w 2 Vg, it follows that

ov � ow =
S

(f+1)
v � S

(f+1)
w + S

(n�f)
v � S

(n�f)
w

2

r
(f+1)

� r
(1) + r

(n�f)
� r

(f+1)

2
=

r
(n�f)

� r
(1)

2

=
k~r k

2
.

As v, w 2 Vg were arbitrary, this yields k~o k k~r k/2.

Applying this approach inductively yields a straightforward algorithm pro-
vided an upper bound R � r

(|Vg|)
� r

(1) is known.

Theorem 5.6 (Approximate Agreement). Applying Algorithm 5.1 iteratively

(using the output of one step as input to the next) for dlog(R/")e steps solves

approximate agreement.

Proof. Applying Lemma 5.5 inductively shows agreement. Applying Lemma 5.4
inductively shows validity. By construction, all nodes terminate after dlog(R/")e
synchronous rounds.

Modifications for the Pulse Synchronization Problem

In our setting, we will not be able to guarantee exact communication of clock
values. Accordingly, we slightly modify the communication model. More specif-
ically, at certain times, nodes will need estimates of each other’s logical clock
values. Node v will use its estimate of w’s clock value as approximation of the
“input” rw of w 2 V . Thus, instead of receiving brwv = rw from w 2 V , v will
receive

rw � � < brwv rw .

As shifting the values brwv in Algorithm 5.1 by less than � will a↵ect the outputs
by less than �, we obtain the following corollary to Lemmas 5.4 and 5.5. See
Figure 5.1 for a visualization.

Corollary 5.7. With the above modification to the communication model, Al-

gorithm 5.1 guarantees

(i) 8v 2 Vg : r
(1)
� � < ov r

(n�f)
and

(ii) k~o k k~r k/2 + �.

Remarks:

• Now all we need to do is to gather estimates, use Algorithm 5.1 to deter-
mine adjustments to the logical clocks, and iterate.

• Trivia: When I suggested to Danny Dolev that one could make use of ap-
proximate agreement as the basis for a clock synchronization algorithm, he
told me that this was precisely the motivation for introducing the problem
and pointed me towards the paper implementing this approach. He and
his co-authors were merely about three decades and a brilliant abstraction
ahead of me!

5.2. A VARIANT OF THE LYNCH-WELCH ALGORITHM 51

S
f+1
v S

n�f
v

yv =
S

f+1
v + S

n�f
v

2

yw =
S

f+1
w + S

n�f
w

2

||~x|| + 2�

S
n�f
wS

f+1
w

||~y||
||~x||

2
+ �

median

w

v

Figure 5.1: An execution of Algorithm 5.1 at nodes v and w of a system con-
sisting of n = 4 nodes. There is a single faulty node and its values are indicated
in red. Note that the ranges spanned by the values received from non-faulty
nodes are almost identical; the di↵erence originates in the perturbations of up
to �.

5.2 A Variant of the Lynch-Welch Algorithm

The algorithm is now constructed as follows. Assuming some bound H �

maxv2Vg{Hv(0)} on the skew at initialization, nodes generate their first pulse
at local time H. This marks the (local) start of the first round. Then they wait
until they can be sure that all nodes have generated their pulse. At the respec-
tive hardware time, they transmit an empty message — no content is needed, as
the local time when the message is sent is hardwired into the algorithm. Then

Algorithm 5.2: Lynch-Welch pulse synchronization algorithm, code
for node v 2 Vg. S denotes a (to-be-determined) upper bound on k~prk

for each r 2 N and T is the nominal round duration.

1 // Hw(0) 2 [0, S) for all w 2 V

2 set Lv(0) := Hv(0)
3 increase Lv at rate hv at all times
4 generate pulse 1 at the time pv,1 with Lv(pv,1) = S;
5 foreach round r 2 N do
6 wait until local time (r � 1)T + (# + 1)S;// all nodes are in round r

7 broadcast empty message to all nodes (including self);
8 wait until time ⌧v,r when Lv(⌧v,r) = (r � 1)T + (#2 + # + 1)S + #d;

// correct nodes’ messages arrived
9 for each node w 2 V do

10 // abbreviate pr := maxw2Vg{pw,r} (unknown to the node!)
11 compute �v

w 2 (Lv(pr)� Lw(pr)� �, Lv(pr)� Lw(pr)]
12 Sv {�v

w | w 2 V } (as multiset, i.e., values may repeat)

13 Lv(⌧v,r) Lv(⌧v,r) +
⇣
S

(f+1)
v + S

(n�f)
v

⌘
/2

14 generate pulse r + 1 at the time pv,r+1 with Lv(pv,r+1) = S + rT

52 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

nodes wait until the local time when all such messages from correct nodes are
certainly received and compute their estimates of the relative clock di↵erences
to other nodes. Finally, they apply Algorithm 5.1 to compute an adjustment to
the (local) starting time of the next round. This ensures bounded skew for the
next pulse and thus also the starting times of the next round. From there, the
process is iterated.

Algorithm 5.1 is phrased in a parametrized fashion suitable for the analysis.
This means that we assume a skew bound of S to hold on initialization, an
error bound � on the logical clock estimates nodes compute of each other, and
a nominal round duration of T . We then determine valid choices for these
parameters from the analysis, where we need to determine � depending on how
the estimates are computed.

“Rounds” of the algorithm simulate the synchronous operation assumed in
the approximate agreement problem, where each iteration of the loop simulates
one synchronous round. For this to work as intended, two requirements need to
be met in each round:

(i) Messages sent by correct nodes are received at all correct nodes after
starting the round and before they compute their clock adjustment, i.e.,
during [pv,r, ⌧v,r].

(ii) T is large enough to ensure that the clock adjustment makes no logical
clock “jump” past Lv(pv,r+1) = S + rT , skipping a pulse.

If these properties are satisfied in round r, we will say that round r is executed

correctly. We will show that this holds for all r 2 N inductively, where the
induction hypothesis is that k~prk S; this simulatenously shows that the algo-
rithm has a small skew! For r = 1, this is immediate from our assumption on
the initial hardware clock values.

Lemma 5.8. Suppose that T/# � (#2+#+1)S +#d and S � 2(�+(1�1/#)T).
Moreover, assume that for r 2 N it holds that all prior rounds have been executed

correctly, and that k~prk S. Then

(i) round r is executed correctly,

(ii) k~pr+1k S, and

(iii) T/#� S pr+1 � pr T + �.

Proof. By assumption, no messages sent by correct nodes in rounds r
0
< r are

received in round r. Consider the message v 2 V sends after entering round
r. It is sent no earlier than time pv,r + S � maxw2Vg{pw,r}, as k~prk S by
assumption. It is received before time

pv,r + #S + d min
w2Vg

{pw,r} + (# + 1)S + d .

As ⌧w,r � pw,r + (# + 1)S + d for all w 2 Vg, this shows part (i) of correct
execution of round r.

5.2. A VARIANT OF THE LYNCH-WELCH ALGORITHM 53

Concerning part (ii), we apply statement (i) of Corollary 5.7, showing that
the logical clock of v 2 Vg cannot be set to a larger value than

Lv(⌧v,r) Lv(pr) +

Z ⌧v,r

pr

hv(t) dt� min
w2Vg

{�v
w}

 Lv(pr) +

Z ⌧v,r

pr

hv(t) dt + max
w2Vg

{Lw(pr)}� Lv(pr)

 max
w2Vg

{Lw(pr)} + #(⌧v,r � pr)

 max
w2Vg

{Lw(pw,r) + #(⌧v,r � pw,r)}

= (r � 1)T + S + #

✓
⌧v,r � min

w2Vg

{pw,r}

◆
.

It follows that no node can reach logical clock value rT + S earlier than time
minw2Vg{pw,r}+T/#. In particular, this is bounded from below by pr+T/#�S,
showing the lower bound of the third claim of the lemma.

On the other hand, for all v 2 Vg, we have that

⌧v,r pv,r + (#2 + #)S + #d min
w2Vg

{pw,r} + (#2 + # + 1)S + #d ,

where the second step uses that kpv,rk S. As T/# � (#2 + # + 1)S + #d,
this shows that round r is executed correctly. In particular, the times pv,r+1,
v 2 Vg, are well-defined.

By statement (i) of Corollary 5.7, we have that, at time ⌧v,r, v 2 Vg cannot
set its logical clock to a smaller value than

Lv(⌧v,r) � Lv(pr) +

Z ⌧v,r

pr

hv(t) dt + min
w2Vg

{Lw(pr)}� Lv(pr)� �

�

Z ⌧v,r

pr

hv(t) dt + min
w2Vg

{Lw(pr)}� �

=

Z ⌧v,r

pr

hv(t) dt + (r � 1)T + S � � .

As hardware clock rates are at least 1, this shows that pr+1 pr + T + �, i.e.,
the upper bound of the third claim of the lemma holds.

It remains to show the second claim, i.e., the bound on the skew. To simplify
our reasoning, pretend that the clock adjustments from round r would take place
at time pr. Denote by L

0
v(pr), v 2 Vg, the respective modified logical clocks,

which increase at the rate of the hardware clocks during round r and satisfy
L

0
v(t) = Lv(t) at times t � ⌧v,r. By the above bound, we thus have that

L
0

v(pr) = Lv(⌧v,r)�

Z ⌧v,r

pr

hv(t) dt � (r � 1)T + S � � .

Next, note that k~L(pr)k #k~prk #S by assumption. By statement (ii)
of Corollary 5.7, this implies that k~L0(pr)k #S/2 + �. Now let v, w 2 Vg

maximize pr+1,v � pr+1,w. We have that pr+1,v � pr rT + S � L
0
v(pr) and

pr+1,w � pr � (rT + S � L
0
w(pr))/# due to the bounds on the hardware clock

54 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

rates. Hence,

pr+1,v � pr+1,w L
0

w(pr)� L
0

v(pr) +

✓
1�

1

#

◆
(rT + S � L

0

w(pr))

=
L

0
w(pr)� L

0
v(pr)

#
+

✓
1�

1

#

◆
(rT + S � L

0

v(pr))

k~L

0(pr)k

#
+

✓
1�

1

#

◆
(rT + S � L

0

v(pr))

k~L

0(pr)k

#
+

✓
1�

1

#

◆
(T + �)

S

2
+

�

#
+

✓
1�

1

#

◆
(T + �)

=
S

2
+ � +

✓
1�

1

#

◆
T .

This being bounded by S is equivalent to S � 2(� + (1� 1/#)T).

Before we can prove our main theorem, we need to get a hold on �. This is
a straightforward calculation.

Lemma 5.9. Suppose round r is executed correctly and v 2 Vg receives the

message from w 2 Vg for this round at time t. Then setting

�v
w := Lv(t)� (r � 1)T � (#2 + 1)S � #d

yields an estimate satisfying � u + (#� 1)d + 2(#2
� #)S.

Proof. Denote by t the time when v receives the message from w and by ts the
time when it was sent. We have that

Lv(t)� Lw(ts) 2 (Lv(ts)� Lw(ts) + d� u, Lv(ts)� Lw(ts) + #d) .

Moreover,

|Lv(ts)� Lv(pr)� (Lw(ts)� Lw(pr))| (#� 1)(ts � pr)
�
#

2
� #

�
S .

We conclude that

Lv(t)� Lw(ts) 2

(Lv(pr)� Lw(pr) + d� u� (#2
� #)S, Lv(pr)� Lw(pr) + #d + (#2

� #)S) .

As Lw(ts) = (r � 1)T + (# + 1)S by the design of the algorithm, the claim of
the lemma follows.

Theorem 5.10. Assume that 3 + 4# � 4#
2
� 2#

3
> 0 and that estimates are

computed according to Lemma 5.9. For any choice of

T �
6#

4(u + d)

3 + 4#� 4#2 � 2#3
2 O(d) ,

set

S :=
2(u + (#� 1)d + (1� 1/#)T)

1 + 4#� 4#2
2 O

✓
u +

✓
1�

1

#

◆
T

◆
.

If maxv2V {Hv(0)} S, then Algorithm 5 solves pulse synchronization with

skew S, Pmin � T/#� S, and Pmax T + 2S.

5.2. A VARIANT OF THE LYNCH-WELCH ALGORITHM 55

Proof. Set � := u+(#� 1)d+2(#2
�#)S in accordance with Lemma 5.9. Thus,

S = 2

✓
u + (#� 1)d + 2(#2

� #)S +

✓
1�

1

#

◆
T

◆
= 2

✓
� +

✓
1�

1

#

◆
T

◆
.

Moreover,

T �
6#

4(u + d) + 2(#3
� 1)T

3 + 4#� 4#2 � 2#3 + 2(#3 � 1)
>

6#
3(u + (#� 1)d) + 2(#3

� 1)T

1 + 4#� 4#2
+ #

2
d ,

i.e.,

T

#
> (#2 + # + 1) ·

2(u + (#� 1)d) + 2(1� 1/#)T

1 + 4#� 4#2
+ #d = (#2 + # + 1)S + #d .

The claim is now shown by a straightforward induction on the pulse num-
ber, where the hypothesis includes that all previous rounds have been executed
correctly. The induction is anchored at the first pulse, which satisfies the skew
bounds due to the assumed bound on the hardware clock values at time 0.
The induction step is performed by invoking Lemma 5.8, where Lemma 5.9
shows that � is indeed a bound on the quality of estimates. We obtain that
S is a bound on the skew for all pulses and that T/# � S pr+1 � pr

T + � for each r 2 N. This implies that Pmin � (T � S)/# and, using that
maxv2Vg{pv,r}�minv2Vg{pv,r} S and � < S, that Pmax T + 2S.

Remarks:

• The theorem requires that 3 + 4# � 4#
2
� 2#

3
> 0, which is the case for

1.09. As # approaches this threshold, the skew goes to 1.

• Sending (T, #) ! (1, 1), the ratio Pmax/Pmin 2 (1 + o(1))#. However,
when sending T ! 1 while keeping # fixed, the ratio converges to a
constant c 2 1 + O(#� 1).

• If on initialization such a tight skew bound cannot be guaranteed, one can
choose T accordingly larger.

• Alternatively, one can only initially use the larger T and keep reducing
T alongside the decrease in (the worst-case bound on) the skew. You’ll
analyze this in the exercises.

• A known bound on the initial skew is necessary for executing the algo-
rithm. You’ll show this in the exercises as well.

• We haven’t clarified how nodes compute their estimates of faulty nodes’
clocks. What if these nodes send no or many messages during a round?
The answer is simple: It doesn’t matter. As the approximate agreement
algorithm works regardless of what values faulty nodes provide, choosing
any default value for nodes clearly not obeying the protocol will do.

56 LECTURE 5. SYNCHRONIZING BY APPROXIMATE AGREEMENT

Bibliographic Notes

Approximate agreement was introduced by Dolev et al. [DLP+86], actually
having the goal in mind to use it for clock synchronization. As shown by
Fekete [Fek86], the rate of convergence provided by their algorithm is close
to being asymptotically optimal, and it is asymptotically optimal if only one
round of communication per iteration is performed. He also shows that faster
convergence is possible if the (maximum) number of possible faults is smaller.

The clock synchronization protocol by Lynch and Welch [LL84] is able to
exploit this, too, to achieve faster convergence and thus slightly smaller skews.
The respective modification is straightforward and can also be applied to the
variant presented in this lecture, which follows [KL18]. The main di↵erence
to [LL84] is, just as for the Srikanth-Toueg algorithm from the previous lecture,
that no tick numbers are communicated by the algorithm. One can also adjust
clock rates (as opposed to just correcting clock o↵sets), but this requires the
additional assumption that hardware clock rates change slowly [?]. The Lynch-
Welch algorithm has already found its way into practice: it’s the synchronization
mechanism underlying industrial systems used, e.g., in cars and planes [KB03,
FAS09].

Bibliography

[DLP+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark,
and William E. Weihl. Reaching Approximate Agreement in the
Presence of Faults. J. ACM, 33(3):499–516, 1986.

[FAS09] Matthias Függer, Eric Armengaud, and Andreas Steininger. Safely
Stimulating the Clock Synchronization Algorithm in Time-Triggered
Systems - a Combined Formal & Experimental Approach. IEEE

Trans. Industrial Informatics, 5(2):132–146, 2009.

[Fek86] A. D. Fekete. Asymptotically Optimal Algorithms for Approximate
Agreement. In Proc. 5th Symposium on Principles of Distributed

Computing (PODC), pages 73–87, 1986.

[KB03] Hermann Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112–126, 2003.

[KL18] Pankaj Khanchandani and Christoph Lenzen. Self-Stabilizing Byzan-
tine Clock Synchronization with Optimal Precision. Theory of Com-

puting Systems, 2018.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 1984.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Lower Bound on the Local Skew
	Formalizing the Problem
	Averaging Protocols
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Upper Bound on the Local Skew
	GCS Algorithm
	Analysis of the GCS Algorithm

	Fault-Tolerant Clock Synchronization
	The Pulse Synchronization Problem
	A Variant of the Srikanth-Toueg Algorithm
	Impossibility of Synchronization for one Third of Faulty Nodes

	Synchronizing by Approximate Agreement
	Approximate Agreement
	A Variant of the Lynch-Welch Algorithm

	Metastability
	Kleene Logic and Circuits
	The Limits of Metastability-Containment
	Hardness of Containment
	Containing a Bounded Number of Metastable Inputs

