
Lecture 6

Metastability

In the previous lecture, we’ve seen how to handle the maximum possible number
of worst-case faults (with asymptotically optimal skew bounds!). Or have we?
There are fault models that are worse than “just” Byzantine faults. One of the
issues that may arise when dealing with low-level hardware implementations of
synchronization algorithms is metastability. Metastability occurs when a storage
element — e.g. a flip-flop — is brought into an unstable equilibrium state. Not
binary 0 or binary 1 (low or high output voltage, respectively), but somewhere
in between! With the “right” bad input, this is always possible. Figure 6.1
shows how a flip-flop’s output responds to critical input signals.

Figure 6.1: Several input (blue) and corresponding output (green) signal traces
of a flip-flop. The dotted red line marks the threshold above which the output
signal is reliably interpreted as a logical 1. The center blue line is actually not
a single one, but many only slightly di↵ering traces, which result in the various
green outputs that remain metastable for some time.

Metastability breaks our standard Boolean abstraction, resulting in “faulty”
behavior —or rather behavior that is unexpected if we neglect to account for the
potential for metastability in our model. Worse, when a metastable flip-flop’s
output is used in computations and the result is stored in another flip-flop, the
latter flip-flop may become metastable as well. So metastability can spread to

57

58 LECTURE 6. METASTABILITY

other parts of the computational logic and “infect” other storage elements.
The reason why we usually neglect metastability is because it’s dealt with by

electrical engineers. As unstable equilibrium state, the probability for sustained
metastability decreases exponentially with time. Even the tiniest deviation from
the “perfect balance” (e.g. due to thermal noise) gets amplified exponentially,
resulting in quick stabilization of the storage element to one of its stable states.
Whereever the danger of metastability exists, synchronizers are employed, i.e.,
storage elements specifically designed to resolve metastability as fast as possi-
ble, to reduce the probability of metastability su�ciently far before using the
registers’ content in computations.

Unfortunately, we want to synchronize clocks as accurately as possible,
meaning that we cannot always a↵ord to wait. Making things worse, our “worst-
case” fault model of Byzantine nodes does not take into account that Byzantine
nodes could try to “infect” correct nodes with metastability. Do we always
need to wait for synchronizers to do their job? Can we only guarantee correct
operation probabilistically?

Remarks:

• Don’t mistake the synchronizers here with Awerbuch-Sipster network syn-
chronizers. The former deal with metastability, the latter simulate a syn-
chronous network on top of an asynchronous (fault-free) one.

• Using synchronizers is perfectly fine in most applications. Only if we have
to respond very quickly (a few nanoseconds or less) to events, we need to
look for alternatives.

6.1 Kleene Logic and Circuits

In order to capture how circuits behave in face of metastability, we need to
understand how it propagates through logic gates. A very natural way of ex-
pressing worst-case behavior of standard circuits is Kleene logic. We extend
the truth tables for Boolean logic by adding a third logic value M representing
metastability and, in fact, any signal behavior that is not conform with what
we consider a stable 0 or stable 1.

And 0 1

0 0 0

1 0 1

AndM 0 1 M

0 0 0 0

1 0 1 M

M 0 M M

Or 0 1

0 0 1

1 1 1

OrM 0 1 M

0 0 1 M

1 1 1 1

M M 1 M

Table 6.1: Gate behavior under metastability corresponds to Kleene’s 3-valued
logic. A NotM gate simply maps M to M.

Note carefully that if one stable input already determines the output of a
gate, then the other input being M does not matter. This is called logical

masking, and it is the best guarantee one can hope for: when changing inputs
a↵ect the output, one can always “adjust” the input precisely to hitting the
spot where the output is neither a logical 0 nor a logical 1.

A definition that extends this desirable behavior to arbitrary Boolean func-
tions is the following.

6.1. KLEENE LOGIC AND CIRCUITS 59

Definition 6.1 (Metastable Closure). For x, y 2 {0, 1,M}
n
, we say that x � y

if and only if xi 6= M) yi = xi for all i 2 {1, . . . , n}, i.e., y is a stabilization
of x. For any Boolean f : {0, 1}

n
! {0, 1}

m
, define the metastable closure fM

of f by

(fM)i(x) :=

8
><

>:

0 if f(y) = 0 for all x � y 2 {0, 1}
n

1 if f(y) = 1 for all x � y 2 {0, 1}
n

M else.

Example 6.2 (MUXM). A multiplexer (or short MUX) selects between two

input bits based on a select bit (it’s third input). Formally,

MUX : {0, 1}
3

! {0, 1}

MUX(a, b, s) :=

(
a if s = 0

b if s = 1 .

In Figure 6.2, a standard circuit implementation of a MUX is shown—and

why it does not implement MUXM.

b = 1

a = 1

1

M
M

1

M
M

s = M

o = M

Figure 6.2: Standard MUX implementation. A black dot means that wires are
joined (while regular crossings imply no contact). An empty dot is a negation,
i.e., a Not gate. And gates are represented by the shapes that are approx-
imately half circles, while the crescent-shaped symbol stands for an Or gate.
The figure indicates in which gate inputs and outputs inputs a = 1, b = 1, and
s = M to the circuit result; note that MUXM(1, 1,M) = 1.

A metastability-containing multiplexer (or short CMUX) has MUXM as

output function, i.e.,

CMUX : {0, 1,M}
3

! {0, 1,M}

CMUX(a, b, s) := MUXM(a, b, s) =

8
><

>:

a if s = 0 or a = b = 0

b if s = 1 or a = b = 1

M else.

60 LECTURE 6. METASTABILITY

b = 1

a = 1

s = M

1

M
M

1

M
M

1

1 1

o = 1

Figure 6.3: CMUX implementation. The figure indicates in which gate inputs
and outputs inputs a = 1, b = 1, and s = M to the circuit result; the additional
And gate makes sure that the Or gate receives a stable 1 as third input if
a = b = 1, guaranteeing a stable 1 as output.

As we will see shortly, asking for implementing the metastable closure of
a Boolean function is the best we can hope for in a mathematically precise
sense. However, we first need to clarify what we mean by “implement.” It’s
exactly what one might expect (see the example above), but a somewhat wordy
formalization is necessary to correctly describe the process.

Definition 6.3 (Circuit Behavior). A combinational circuit C is described as a

directed acyclic graph (DAG), where n nodes are marked as inputs and m nodes

are marked as outputs. Input nodes have indegree 0, output nodes have inde-

gree 1, and all remaining nodes are gates. A gate implements fM : {0, 1,M}
k

!

{0, 1,M} for a Boolean function f : {0, 1}
k

! {0, 1}. The basic available gates

are OrM, AndM, NotM, and the constant gates (i.e., no-input gates that pro-

vide outputs 0 or 1, respectively). In the DAG, input nodes and gates may have

any number of outgoing edges, while output nodes have none. Gates have the

number of inputs prescribed by their gate function.

For a given input x 2 {0, 1,M}
n
, the evaluation C(x) of C on x is deter-

mined by structural induction as follows. The i
th

input node evaluates to xi.

As the circuit is described as a DAG, there must be a node for which all in-

coming edges come from nodes whose evaluation is already determined. If the

node is a gate, we apply the gate function to determine its evaluation. If it is

an ouput node, it evaluates to the evaluation of the unique node at which its

incoming edge originates. This process is iterated until all nodes’ evaluation is

determined. The output of the circuit is then given by the output nodes’ evalu-

ation. We say that C implements g : {0, 1,M}
n

! {0, 1,M}
m

if g(x) � C(x)
for all x 2 {0, 1,M}

m
, i.e., C(x) is a stabilization of g(x).

Remarks:

• The model does not allow for M to stabilize to 0 or 1. This is a worst-case
assumption —stable values are never worse than M.

• Accordingly, accepting stabilizations of the desired output from the circuit
is fine — the circuit then does better than we ask it to.

6.2. THE LIMITS OF METASTABILITY-CONTAINMENT 61

6.2 The Limits of Metastability-Containment

Theorem 6.4. Suppose for a circuit C and a Boolean function f it holds that

C(x) = f(x) for all x 2 {0, 1}
n
. Then C(x) � fM(x) for all x 2 {0, 1,M}

n
.

Proof. Assume w.l.o.g. that m = 1 (otherwise, simply repeat the reasoning for
each output bit). We need to show that C(x) = b 2 {0, 1} implies that fM(x) =
b. Hence, assume for contradiction that C(x) = b 2 {0, 1}, but fM(x) 6= b, for a
minimal circuit C with this property. Thus, there is y 2 {0, 1}

n so that x � y

and f(y) 6= b = C(x).
Consider the node connecting to the output node in C. If it is an input

node, say the i
th input node, then f(y) 6= xi = C(x). However, as y 2 {0, 1}

n,
we also have that yi = C(y) = f(y), so yi 6= xi. As also x � y, this entails that
xi = M, yielding the contradiction that b = C(x) = xi = M.

Now consider the case that the node connecting to the output node in C is
a gate. Consider the subcircuits C1, . . . , Ck computing the inputs to the gate
and denote by g the gate function. We have that g(C1(y), . . . , Ck(y)) = C(y) =
f(y) 6= C(x) = gM(C1(x), . . . , Ck(x)), where again we used that C(y) = f(y)
because y 2 {0, 1}

n.
For i 2 {1, . . . , k}, consider the Boolean function ci : {0, 1}

n
! {0, 1} given

by ci(z) = Ci(z). As C was minimal, we have that Ci(x) � (ci)M(x). As this
holds for all i and using that x � y, it follows that

C(x) = gM(C1(x), . . . , Ck(x))

� gM((c1)M(x), . . . , (ck)M(x))

� gM(c1(y), . . . , ck(y))

= g(C1(y), . . . , Ck(y)) = C(y) .

However, C(x), C(y) 2 {0, 1} and C(x) 6= C(y), implying the contradiction that
C(x) 6� C(y).

This theorem shows that we cannot do better than computing the metastable
closure. We now show that the closure can also be implemented, using a gener-
alized CMUX as key ingredient.

Lemma 6.5. Let MUX : {0, 1}
2k

⇥ {0, 1}
k

! {0, 1} be a the generalized MUX

function, i.e., MUX(x, s) = xs, where s 2 {0, 1}
k
is interpreted as (the binary

encoding of) an index. It holds that

MUXM(x, s) = b 2 {0, 1} , 8s � s
0
2 {0, 1}

k : xs0 = b

and there is a circuit of size O(2k) implementing MUXM.

Proof. Exercise.

Theorem 6.6. For any f : {0, 1}
n

! {0, 1}
m
, a circuit implementing fM exists.

Proof. W.l.o.g., assume that m = 1 (otherwise, perform the construction for
each output bit of f separately). Let f : y 7! f(y). By Lemma 6.5, we can
implement MUXM. Take such a circuit for k = n and feed it inputs xs = f(s)
and s = y, see Figure 6.4. If f(z) = b 2 {0, 1} for all y � z 2 {0, 1}

n, then
by Lemma 6.5 the resulting circuit C outputs b. Thus, fM(y) � C(y) for all
y 2 {0, 1,M}

n, i.e., C implements fM.

62 LECTURE 6. METASTABILITY

f(1)

f(2)

y1

yn

f(0)

f(2n
� 1)

f(2n
� 2)

bMUXM

Figure 6.4: We first implement MUXM : {0, 1}
2n

⇥ {0, 1,M}
n

! {0, 1,M} ac-
cording to Lemma 6.5. Then we set the input domain to be {f(0), . . . , f(2n

�

1)} ⇥ {0, 1,M}
n as depicted in the figure.

Remarks:

• By Theorem 6.4, the circuit C from Theorem 6.6 satisfies that C = fM.

• The construction has, unfortunately, exponential size in n. Can we do
better?

6.3 Hardness of Containment

Recall that for any language in NP and word x, if x is in the language, there
is a polynomially checkable proof w that this is the case. On the other hand,
if x is not in the language, no proof w will work. If we had a small circuit
implementing the metastable closure of the checker, we could exploit this to
determine membership in the language e�ciently.

Theorem 6.7. Let Vn(x, w), n 2 N, denote the family of verifier functions for

3SAT with n clauses, i.e., x encodes a 3SAT instance with n clauses, w 2 {0, 1}
n

is an assignment of these variables, and Vn(x, w) = 1 if and only if the instance

is satisfied with the assignment given by w. If there is a family of circuits Cn,

n 2 N, of size n
O(1)

such that Cn implements (Vn)M, then there is a family of

circuits of size n
O(1)

deciding 3SAT instances on n clauses.

Proof. We construct a circuit simulating (Vn)M. That is, we encode 0, 1, and M

using two bits, e.g., 00 for 0, 11 for 1, and 01 for M. Then we construct (constant-
size) circuits implementing the closure of basic gates (i.e., OrM, AndM, and
NotM) in this encoding and replace all gates in the circuit implementing (Vn)M
accordingly.

Now we use the simulating circuit as follows. For any instance x, com-
pute (Vn)M(x,M

3n) (3n is the maximum number of variables in n clauses). If
(Vn)M(x,M

3n) = 0, output 0, otherwise output 1. We claim that this circuit,

6.4. CONTAINING A BOUNDED NUMBER OF METASTABLE INPUTS63

which is of size n
O(1), decides 3SAT with n clauses. To see this, assume that x is

a “no” instance first. Then for any assignment w, it holds that Vn(x, w) = 0, im-
plying that (Vn)M(x,M

3n) = 0 and the output is correct. On the other hand, if
x is a “yes” instance, there must be at least one witness w so that Vn(x, w) = 1.
As M

3n
� w

0 for any w
0

2 {0, 1}
3n, in particular M

3n
� w. Accordingly,

(Vn)M(x,M
3n) � (Vn)M(x, w) = 1, implying that (Vn)M(x,M

3n) 6= 0 and the
output of the circuit is also correct.

Remarks:

• The same argument applies to any problem in NP, implying that any
verifier function of an NP-complete problem is unlikely to admit a small
metastability-containing implementation.

• In the simulation, it is straightforward to properly “compute” with M.
We’re not actually providing bad inputs, we’re only simulating the behav-
ior of the containing circuits in our worst-case model, which is determin-
istic!

• One can even show unconditional exponential separations between the
minimum size of non-containing and containing circuits for some explicit
functions!

• So, should we accept our fate and give up? No, we still got some tricks up
our sleeves! In many settings it’s way to pessimistic that arbitrarily many
metastable inputs can appear. We’ll find small circuits that have output
fM(x) for inputs x with few Ms.

6.4 Containing a Bounded Number of Metastable

Inputs

As the base case of our construction, we construct circuits handling only fixed
positions for the (up to) k unstable bits. We take 2k copies of a circuit computing
f . For the i

th copy, we fix the k considered bits to the binary representation of
i. Now we use a CMUX to select one of these 2k outputs, where the original k

input bits that we replaced are used as the select bits.

Lemma 6.8. Let C be a circuit implementing f : {0, 1}
n

! {0, 1} and S ✓ [n]
with |S| = k. Denote by |C| the size (i.e., number of gates) of C. Then there is a

circuit of size at most 2k(|C|+O(1)) that computes fM(x) for any x 2 {0, 1,M}

satisfying that xi = M) i 2 S.

Proof. For every assignment a 2 {0, 1}
|S| of stable values to the indices of x

that are in S, compute ga = f(x|S a), where x|S a is the bit string obtained
by replacing in x the bits at the positions S by the bits of vector a. We feed the
results and the actual input bits from indices in S into the the k-bit MUXM given
by Lemma 6.5, such that for stable values the correct output is determined. The
correctness of the construction is now immediate from the properties of MUXM.
Concerning the size bound, for each a 2 {0, 1}

|S| we can use C with some fixed
inputs to compute ga. Using the size bound for the MUX from Lemma 6.5, the
construction thus has size 2k(|C| + O(1)).

64 LECTURE 6. METASTABILITY

Using this construction as the base case, we increase the number of sets (i.e.,
possible positions of the k unstable bits) our circuits can handle.

Theorem 6.9. Let C be a circuit implementing f : {0, 1}
n

! {0, 1}. There

is a circuit of size at most (ne/k)2k(|C| + O(1)) that computes fM(x) for any

x 2 {0, 1,M} satisfying that |S| k for S := {i 2 {1, . . . , n} | xi = M}.

Proof. Choose an order of all k-bit subsets of {1, . . . , n} and let Si, i 2 {1, . . . , I},
be the i

th element. Denote by Cij , 1 i, j I, a circuit whose outputs
coincide with fM whenever all unstable bits are from Si [Sj . Set ai :=
AndM(Ci1, . . . , CiI) (AndM with fan-in I is implemented by a binary tree of
fan-in 2 AndM gates of minimum depth). We claim that o := OrM(a1, . . . , aI)
(implemented by a tree of fan-in 2 OrM gates) coincides with fM whenever there
are at most k unstable bits.

To show the claim, assume that x 2 {0, 1,M}
n is stable except at indices

from some Si 2
�[n]

k

�
. Assume first that fM(x) = 1. Thus, we get that ai =

AndM(1, . . . , 1) = 1. This implies o = 1, because the I-bit OrM has a stable 1
at one of its inputs. Next, suppose that fM(x) = 0. Then, for each 1 i

0
 I,

Ci0i(x) = 0. Hence ai0 = 0, because the I-bit AndM has a stable 0 at one of
its inputs. It follows that o = OrM(0, . . . , 0) = 0. The case that fM(x) = M is
trivial; hence the claim holds.

The above circuit contains the circuits Cij and additionally I
2

� 1 many
gates (a binary tree of AndM and OrM gates). By Lemma 6.8, each Cij can
be implemented with size 22k(|C| + O(1)), as |Si [Sj | 2k. Moreover, using
exactly all subsets of size 2k, we use at most

� n
2k

�
 (en/2k)2k di↵erent such

circuits. This results in at most

⇣
en

k

⌘2k
(|C| + O(1)) +

✓
n

k

◆2

� 1 =
⇣

en

k

⌘2k
(|C| + O(1))

gates.

Bibliographic Notes

In the context of switching networks, hazards— when changing inputs to a cir-
cuit a↵ects the output, even though the stable values are the same regardless of
the values the changing bits take — were studied even before modern computers
existed [Got49], in the context of relay networks. This early Japanese work
remained unnoticed in the western world, and Hu↵man studied the same issue,
also developing a CMUX [Huf57]. Hu↵man noted that his design principle is
su�ciently general to construct hazard-free circuits for any Boolean function.
Yoeli and Rinon formalized the connection to Kleene logic [YR64] (which Goto
also had done before!) or, more precisely, Kleene’s strong logic of indetermi-
nancy K3 [Kle52, §64]. Our worst-case model for metastability (propagation)
presented here results in the same logic, i.e., hazard-free circuits are the same as
metastability-containing circuits. In [FFL18], a more general model for clocked
circuits is presented. However, so long as only standard registers are used, the
computational power is the same as that of the combinational circuits intro-
duced in this lecture. This changes when employing masking registers, which
“mask” internal metastability to the outside world by outputting a stable value;

BIBLIOGRAPHY 65

the result is that metastability may result in late transitions only, which in the
worst case may result in M being read from the register in a single round.

The fact that metastability cannot be avoided in general is, in essence, a
topological statement: As the output of a bistable element like a flip-flop is,
due to physics, a continuous function of its input, the fact that there are two
distinct stable states necessitates at least one unstable third equilibrium state.
This was shown by Marino [?]. This impossibility holds also in the abstract
model given here — no circuit can reliably detect or resolve metastability of its
inputs [FFL18].

All of these works leave aside the complexity question, namely how large
containing circuits must be. The lower bound given here is very simple, but to
the best of our knowledge was first formalized by Ikenmeyer et al. [IKL+18],
who also show unconditional exponential separations between containing and
standard circuits based on monotone circuit complexity. The same work also
gives a construction for circuits containing k bits, which is slightly weaker than
the one given here. A number of works provides small circuits whose output
coincides with fM for specific f and certain inputs. Most notably, this is the
case for sorting [BLM18], which we will study in the next lecture.

Bibliography

[BLM18] Johannes Bund, Christoph Lenzen, and Moti Medina. Optimal
Metastability-Containing Sorting Networks. In Design, Automation

and Test in Europe (DATE), 2018. To appear. Preliminary version
available at https://arxiv.org/abs/1801.07549.

[FFL18] Stephan Friedrichs, Matthias Függer, and Christoph Lenzen.
Metastability-Containing Circuits. IEEE Transactions on Comput-

ers, 2018. To appear, online first.

[Got49] M. Goto. Application of Logical Mathematics to the Theory of Relay
Networks (in Japanese). J. Inst. Elec. Eng. of Japan, 64(726):125–
130, 1949.

[Huf57] David A. Hu↵man. The Design and Use of Hazard-Free Switching
Networks. J. ACM, 4(1):47–62, 1957.

[IKL+18] Christian Ikenmeyer, Balagopal Komarath, Christoph Lenzen,
Vladimir Lysikov, Andrey Mokhov, and Karteek Sreenivasaiah. On
the complexity of hazard-free circuits. In Symposium on the Theory

of Computing (STOC), 2018. To appear. Preprint available on arxiv:
https://arxiv.org/abs/1711.01904.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North Hol-
land, 1952.

[YR64] Michael Yoeli and Shlomo Rinon. Application of Ternary Algebra to
the Study of Static Hazards. J. ACM, 11(1):84–97, 1964.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Lower Bound on the Local Skew
	Formalizing the Problem
	Averaging Protocols
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Upper Bound on the Local Skew
	GCS Algorithm
	Analysis of the GCS Algorithm

	Fault-Tolerant Clock Synchronization
	The Pulse Synchronization Problem
	A Variant of the Srikanth-Toueg Algorithm
	Impossibility of Synchronization for one Third of Faulty Nodes

	Synchronizing by Approximate Agreement
	Approximate Agreement
	A Variant of the Lynch-Welch Algorithm

	Metastability
	Kleene Logic and Circuits
	The Limits of Metastability-Containment
	Hardness of Containment
	Containing a Bounded Number of Metastable Inputs

