
Lecture 8

Metastability-Containing
Sorting

Last week we saw how to obtain an MC implementation of a node’s logic for the
Lynch-Welch algorithm. However, for this to matter, we need low-depth circuits
performing the computations. Otherwise, we would lose the speed advantage
gained from forgoing synchronizers, meaning that all that work was for nothing!
Hence, our task today is to construct low-depth sorting networks— which, as
we have seen, means to construct low-depth comparators.

Before constructing the circuits, we need to fix an encoding. We already
decided that we (need to) use a Gray code, but not which one. One of the
simplest, if not most natural, Gray codes turns out to be well-suited for our
purposes.

Definition 8.1 (Binary Reflected Gray Code). B-bit Binary Reflected Gray
Code (BCRG) GB : [2B] ! {0, 1}

B
is defined recursively by

G1(0) = 0

G1(1) = 1

8B > 1 8x 2 [2B�1] : GB(x) = 0GB�1(x)

8B > 1 8x 2 [2B] \ [2B�1] : GB(x) = 1GB�1(2
B

� 1 � x) .

GB is one-to-one, so we denote by DB its inverse, the decoding function. In the

following, we will write D(g) instead of DB(g), as B can be inferred from the

length of the decoded string g.

We know that we won’t have to handle arbitrary metastable strings, as
metastability is only introduced by a TDC up-count being interrupted.

Definition 8.2 (Valid Strings). The set valid B-bit strings is defined as

VB := {GB(x) | x 2 [2B]} [{GB(x) ⇤ GB(x + 1) | x 2 [2B
� 1]} .

We define a total order <G on VB according to the encoded values. The total

order is given by the transitive closure of the partial order

8g, h 2 VB \ {0, 1}
B : g <G h , D(g) < D(h)

8x 2 [2B
� 1] : G(x) < G(x) ⇤ G(x + 1) < G(x + 1) .

81

82 LECTURE 8. METASTABILITY-CONTAINING SORTING

0 0000 4 0110 8 1100 12 1010

0-1 000M 4-5 011M 8-9 110M 12-13 101M

1 0001 5 0111 9 1101 13 1011

1-2 00M1 5-6 01M1 9-10 11M1 13-14 10M1

2 0011 6 0101 10 1111 14 1001

2-3 001M 6-7 010M 10-11 111M 14-15 100M

3 0010 7 0100 11 1110 15 1000

3-4 0M10 7-8 M100 11-12 1M10 --- ---

Table 8.1: Valid 4-bit strings.

Denote by maxG and minG the maximum and minimum w.r.t. to G.

Table 8.1 lists VB according to B . Our goal is to compute maxG and minG

for given valid strings g, h 2 VB . As you have shown in an exercise, for inputs
that are valid strings the above definitions of maxG and minG coincides with
the metastable closure of their restrictions to stable values, i.e.,

maxG{g, h} = ⇤
g�g0

2{0,1}
B

h�h0
2{0,1}

B

maxG(g0
, h

0) .

Thus, we need to figure out how to implement the closure of these (restricted)
operators, at least for inputs that are valid strings.

8.1 4-valued Comparison of BRGC Strings

Our first step is to break down the task of determining maxG into smaller pieces.
One way of doing this is to see how a (simple) state machine can perform the

g0,i�1 = h0,i�1

par(g0,i�1) = 0

[00]

Init

g0,i�1 = h0,i�1

par(g0,i�1) = 1

[11]

g <G h

[01]

g >G h

[10]

11

00

10

01

true true

11

10

01

00

Figure 8.1: Finite state automaton determining which of two Gray code inputs
g, h 2 {0, 1}

B is larger. In each step, the machine receives gihi as input. State
encoding is given in square brackets.

8.1. 4-VALUED COMPARISON OF BRGC STRINGS 83

s
(i�1) maxG{g, h}i minG{g, h}i

00 max{gi, hi} min{gi, hi}

10 gi hi

11 min{gi, hi} max{gi, hi}

01 hi gi

Table 8.2: Computing maxG{g, h}i and minG{g, h}i from the current state
s
(i�1) and inputs gi and hi.

required computation. Our state machine is fed the input bits one pair at a time,
see Figure 8.1, to determine which of the strings (if any) is larger; one then needs
to determine the output accordingly. As we are dealing with Gray code, we do
not have a 3-valued comparison to make (larger, smaller, or equal, non-trivially
recursing only on state equal), but rather a 4-valued one: the possible states
are larger, smaller, equal with even parity (standard recursion), and equal with
odd parity (recurse with flipped meanings of larger and smaller).

Because the parity keeps track of whether the remaining bits are to be com-
pared w.r.t. the standard or “reflected” order, the state machine performs the
comparison correctly w.r.t. the meaning of the states indicated in Figure 8.1.

Lemma 8.3. Let g, h 2 {0, 1}
B

and i 2 [B + 1]. Then

• s
(i) = 00 , (g1,i = h1,i and (g <G h , gi+1,B <G hi+1,B)),

• s
(i) = 11 , (g1,i = h1,i and (g <G h , gi+1,B >G hi+1,B)),

• s
(i) = 01 , g <G h, and

• s
(i) = 10 , g >G h.

Proof. We show the claim by induction on i. It holds for i = 0, as s
(i) = 00,

g1,0 = h1,0 is the empty string, and g <G h if and only if g1,B = g <G h = h1,B .
For the step from i � 1 2 [B] to i, we make a case distinction based on s

(i�1).

s
(i�1) = 00: By the induction hypothesis, g1,i�1 = h1,i�1 and g <G h if and

only if gi,B <G hi,B . Thus, if gihi = 00, s
(i) = 00, g1,i = h1,i, and by

the recursive definition of the code, gi,B <G hi,B , gi+1,B <G hi+1,B .
Similarly, if gihi = 11, also g1,i = h1,i, but the code for the remaining
bits is “reflected,” i.e., g <G h , gi+1,B >G hi+1,B . If gihi = 01, the
definition implies that g <G h regardless of further bits, and if gihi = 10,
g >G h regardless of further bits.

s
(i�1) = 11: Analogously to the previous case, noting that reflecting a second

time results in the original order.

s
(i�1) = 01: By the induction hypothesis, g <G h. As 01 is an absorbing state,

also s
(i) = 01.

s
(i�1) = 10: By the induction hypothesis, g >G h. As 10 is an absorbing state,

also s
(i) = 10.

84 LECTURE 8. METASTABILITY-CONTAINING SORTING

This lemma gives rise to a sequential implementation based on the given
state machine, for input strings in {0, 1}

B . Table 8.2 lists the i
th output bit

as function of s
(i�1) and the pair gihi. Correctness of this computation follows

immediately from Lemma 8.3. Evaluating the table for the possible inputs gihi

yields the truth table of the function returning maxG{g, h}i minG{g, h}i when
given arguments s

(i�1) and gihi.

Definition 8.4 (Output Function). Given state s
(i�1)

2 {0, 1}
2
of the state

machine in Figure 8.1 after i � 1 2 N0 steps and inputs gihi 2 {0, 1}
2
, denote

by out(s(i�1)
, gihi) the output bits at position i, i.e.:

out 00 01 11 10

00 00 10 11 10

01 00 10 11 01

11 00 01 11 01

10 00 01 11 10

We can express the transition function of the state machine as an (as easily ver-
ified) associative operator ⇧ taking the current state and input gihi as argument
and returning the new state.

Definition 8.5 (Transition Operator). Given state s
(i�1)

2 {0, 1}
2
of the state

machine in Figure 8.1 and inputs gihi 2 {0, 1}
2
, define ⇧ such that s

(i) =
s
(i�1)

⇧ gihi is the resulting state of the state machine, i.e.:

meaning of state ⇧ 00 01 11 10

equal, par = 0 00 00 01 11 10

<G 01 01 01 01 01

equal, par = 1 11 11 10 00 01

>G 10 10 10 10 10

Note that ⇧ is associative and 00 ⇧ gihi = gihi, so the state of the machine after

processing the input completely is ⇧(g, h) := ⇧B
i=1

gihi := g1h1 ⇧ g2h2 ⇧ . . . ⇧

gBhB, where the order in which the ⇧ operations are executed is arbitrary.

Noting that the initial state s
(0) = 00 and that s

(0)
⇧ x = 00 ⇧ x = x for all

x 2 {0, 1}
2, we arrive at the following corollary.

Corollary 8.6. For all i 2 [1, B], we have that

maxG{g, h}i minG{g, h}i = out

i�1

⇧
j=1

gjhj , gihi

!
.

Remarks:

• This is all great, but it does not address the question of how to handle
metastability.

• Without metastability, all one needs to do is compute s
(B) and then apply

the output function. As ⇧ is associative, a binary tree of ⇧ subcircuits can
do this e�ciently.

8.2. DEALING WITH METASTABLE INPUTS 85

i 0 1 2 3 4

gihi 00 M0 11 00

s
(i)
M = s

(i�1)

M ⇧M gihi 00 00 M0 1M 1M

outM(s
(4)

M , gihi) 00 MM 11 00

outM(s
(i�1)

M , gihi) 00 M0 11 00

Table 8.3: Run of the FSM on inputs g = 0M10 and h = 0010, showing
that computing only the last state is insu�cient. This yields outM(1M,M0) =
⇤{00, 01, 10} = MM as second output, but outM(00,M0) = ⇤{00, 10} = M0 is
correct.

• Our strategy will be to replace ⇧ and out by their closure, i.e., ⇧M and
outM. It turns out that this approach works, but requires to actually use
s
(i�1) for each i 2 [1, B] instead of s

(B). Table 8.3 illustrates this by an
example.

8.2 Dealing with Metastable Inputs

As stated above, our strategy is to replace the operators by their metastable
closure. Moreover, we will exploit associativity of ⇧M to e�ciently compute
g1h1 ⇧M g2h2 ⇧M . . . ⇧M gi�1hi�1 for all i 2 [1, B] simultaneously, i.e., using a
circuit of small depth. Before we can do so, there are three hurdles to overcome:

(P1) Show that ⇧M is associative.

(P2) Show that repeated application of ⇧M computes s
(i)
M

.

(P3) Show that applying outM to s
(i�1)

M
and gihi results for all valid strings in

(maxG)M{g, h}i(minG)M{g, h}i.

Regarding the first point, we note the statement that ⇧M is associative does
not depend on B. In other words, it can be verified by checking for all possible
x, y, z 2 {0, 1,M}

2 whether (x ⇧M y) ⇧M z = x ⇧M (y ⇧M z). While it is tractable
to manually verify all 36 = 729 cases (exploiting various symmetries and other
properties of the operator), it is tedious and prone to errors. Instead, we verified
that both evaluation orders result in the same outcome by a short computer
program.

Theorem 8.7. (P1) holds, i.e., ⇧M is associative.

Apart from being essential for our construction, this theorem simplifies no-
tation; in the following, we can apply the same notation as for ⇧ to ⇧M with
impunity, i.e.,

⇧M
(g, h) :=

�
⇧M

�B
i=1

gihi := g1h1 ⇧M g2h2 ⇧M . . . ⇧M gBhB .

Remarks:

• In general, the closure of an associative operator needs not be associative.

86 LECTURE 8. METASTABILITY-CONTAINING SORTING

8.3 Determining s(i)
M

Our reasoning will be based on distinguishing two main cases: one is that s
(i)
M

contains at most one metastable bit, i.e., | res(s(i)
M

)|  2, and the other that

s
(i)
M

= MM. For each we need a technical statement.
FIXME: I’m not sure whether the resolution should already be introduced

when defining the closure.
For the first statement, a careful look at the metastable closure will be the

charm. The following notation will be useful.

Definition 8.8. For x 2 {0, 1,M}
B
, define the resolution res(x) : {0, 1,M}

B
!

P
�
{0, 1}

B
�
as follows:

res(x) := {y 2 {0, 1}
B

| 8i 2 {1, . . . , B} : xi 6= M) yi = xi} .

Note that with this definition, we have that fM(x) = ⇤ f(res(x)), where for
any function f and set S, f(S) = {f(s) | s 2 S}.

Observation 8.9. For any x 2 {0, 1,M}
B
, ⇤ res(x) = x.

Proof. By Definition 8.8,

8i 2 {1, . . . , B} : res(xi) =

(
{xi} if xi 6= M

{0, 1} if xi = M.

By Definition 7.9, thus

8i 2 {1, . . . , B} : (⇤ res(x))i = xi .

For example: ⇤ res(0M10) = ⇤{0010, 0110} = 0M10 .

Observation 8.10. For ; 6= S ✓ {0, 1}
B
, we have S ✓ res(⇤S).

Proof. Let ; 6= S ✓ {0, 1}
B and s 2 S. From Definition 7.9, for all i 2 [1, B]

we have that either (⇤S)i = si or (⇤S) = M. By Definition 8.8, it follows that
s 2 ⇤S.

In general, the reverse direction does not hold, i.e., res(⇤S) * S. For
example, consider S = {01, 10} and thus ⇤S = MM such that res(⇤S) =
{00, 01, 10, 11} = {0, 1}

2. Hence, S ✓ res(⇤S) but not res(⇤S) ✓ S. In
contrast, for | res(⇤S)|  2, we can see that the reverse direction holds.

Observation 8.11. For any subset of strings ; 6= S ✓ {0, 1}
B
, if | res(⇤S)| 

2, then res(⇤S) = S.

Proof. By Observation 8.10, S ✓ res(⇤S), so 0 6= |S|  2. If |S| = 1, i.e.,
S = {s} for some s 2 {0, 1}

B , then res(⇤S) = res(s) = {s} = S. If |S| = 2,
we have that S ✓ res(⇤S) and |S| = 2 � | res(⇤S)|, also implying that S =
res(⇤S).

Observation 8.12. If

���res
⇣
s
(i)
M

⌘���  2 for any i 2 [B + 1], then res(s(i)
M

) =

⇧i
j=1

res(gjhj).

8.3. DETERMINING S
(I)

M
87

Proof. With S := ⇧i
j=1

res(gjhj), we have that res
⇣
s
(i)
M

⌘
= res(⇤S). The

claim thus follows from Observation 8.11.

For the second case, s
(i)
M

= MM, the structure of the code will be very
helpful. Concretely, if in a valid string there is a metastable bit at position
m, then the remaining B � m following bits are the maximum codeword of a
(B � m)-bit code.

Observation 8.13. For g 2 VB, if there is an index 1  m < B such that

gm = M then gm+1,B = 10B�m�1
.

Proof. List the codewords in order. By the recursive definition of the code,
removing the first m � 1 bits of the code leaves us with 2m�1 repetitions of
(B � m + 1)-bit code alternating between listing it in order and in reverse
(“reflected”) order. Also by the recursive definition, the m

th bit toggles only
when the (B � m)-bit code resulting from removing it is at its last codeword,
10B�m�1.

Lemma 8.14. Suppose that for valid strings g, h 2 VB, it holds that s
(i)
M

= MM

for some i 2 [1, B]. Then g = h and s
(j)
M

= MM for all j 2 [i, B].

Proof. For R := ⇧i
k=1

res(gkhk) ✓ {0, 1}
2, we have that s

(i)
M

= ⇤R. As ⇤R =
MM, it must hold that (i) {00, 11} ✓ R or (ii) {01, 10} ✓ R. By Lemma 8.3,
(i) implies that there are stabilizations g

0
, g

00
2 res(g1,i) and h

0
, h

00
2 res(h1,i)

such that g
0 = h

0, par(g0) = 0, g
00 = h

00, and par(g00) = 1, while (ii) implies such
g

0
, g

00
, h

0
, h

00 with g
0

<G h
0 and g

00
>G h

00. Checking the order Definition 8.2
(cf. Table 8.1), we see that both options necessitate that g1,i = h1,i with some
metastable bit.

Denote by m 2 [1, i�1] the index such that gm = hm = M. Observation 8.13
shows that gm+1,B = hm+1,B = 10B�m�1. In particular, g = h, showing (again

by Lemma 8.3) that (i) or (ii) (in fact both) also apply to ⇧j
k=1

res(gkhk)

for each j 2 [i, B] (cf. Definition 8.5). We conclude that s
(j)
M

= MM for all
such j.

Putting these two pieces together yields (P2).

Theorem 8.15. (P2) holds, i.e., 8g, h 2 VB , i 2 [1, B] : s
(i)
M

= ⇧M
(g1,i, h1,i).

Proof. We show the claim by induction on i. Trivially, we have that s
(0)

M
=

s
(0) = 00 and thus for i = 1 that

s
(1)

M
= s

(0)

M
⇧M g1h1 = 00 ⇧M g1h1 = g1h1 = ⇧

M

(g1,1, h1,1) .

Hence, suppose that the claim has been established for i � 1 2 [1, B �

1] and consider index i. If
���res

⇣
s
(i�1)

M

⌘���  2, Observation 8.12 states that

res
⇣
s
(i�1)

M

⌘
= s

(i�1)

M
= ⇧i

j=1
res(gjhj). Together with the induction hypothe-

88 LECTURE 8. METASTABILITY-CONTAINING SORTING

sis, this yields that

⇧M
(g1,i, h1,i) =⇧M

(g1,i�1, h1,i�1) ⇧M gihi

= s
(i�1)

M
⇧M gihi = ⇤

⇣
res
⇣
s
(i�1)

M

⌘
⇧ res(gihi)

⌘

= ⇤
i

⇧
j=1

res(gjhj) = s
(i)
M

.

It remains to consider the case that s
(i�1)

M
= MM. By Lemma 8.14, s

(i)
M

=
MM, too. Thus,

⇧M
(g1,i, h1,i) = s

(i�1)

M
⇧M gihi = MM ⇧M gihi = MM = s

(i)
M

.

Remarks:

• As soon as two output bits become metastable, the simple relation given
in Observation 8.12 may break down. For instance, already making two
copies of the Xor of two bits showcases this issue. Stabilizations of the
inputs always result in identical output bits, but e.g. input 1M yields
output MM, which may also stabilize to 01 and 10.

• Fortunately for us, MM is an absorbing “state” of the state machine, so
we could handle this case without too much fuss.

8.4 Determining the Output Bits

We need to show that outM(s(i�1)
, gihi) = maxG{g, h}i minG{g, h}i for all g, h 2

VB and i 2 {1, . . . , B}.

Theorem 8.16. (P3) holds, i.e., given valid inputs g, h 2 VB and i 2 [1, B],

outM(s(i�1)

M
, gihi) = (maxG)M{g, h}i(minG)M{g, h}i.

Proof. Assume first that
���res

⇣
s
(i�1)

M

⌘���  2. Then

outM(s(i�1)

M
(g, h), gihi) = ⇤ out

⇣
res
⇣
s
(i�1)

M
(g, h)

⌘
, res(gihi)

⌘

Obs. 8.12
= ⇤ out

i�1

⇧
j=1

res(gjhj), res(gihi)

!

Cor. 8.6
= ⇤ (maxG{res(g), res(h)}i minG{res(g), res(h)}i)

= (maxG)M{g, h}i(minG)M{g, h}i .

Otherwise, s
(i�1)

M
= MM. Then, by Lemma 8.14, g = h. In particular, gi = hi.

Checking Definition 8.4, we see that for all s 2 {0, 1}
2 and b 2 {0, 1}, it holds

that out(s, bb) = bb. Therefore, outM(MM, bb) = bb for all b 2 {0, 1,M} and

outM(s(i�1)

M
(g, h), gihi) = gihi = (maxG)M{g, h}i(minG)M{g, h}i

in this case as well.

8.5. PARALLEL PREFIX COMPUTATION 89

Remarks:

• We have decomposed the task of computing the output into computing

s
(i)
M

, i 2 [B], and applying outM.

• We have decomposed computing s
(i)
M

into applying ⇧M i � 1 times.

• As outM and ⇧M can be implemented by constant-sized circuits, we get
a circuit of asymptotically optimal size O(B) computing maxG{g, h} and
minG{g, h}.

• However, our main goal was to find a circuit of low depth performing this
computation. Applying ⇧M naively would yield a circuit of depth ⌦(B)!

• This is where we shamelessly exploit the associativity of ⇧M.

8.5 Parallel Prefix Computation

As ⇧M is associative, s
(B�1) is computed by any binary tree for which the

leaves are the inputs gihi, i 2 {1, . . . , B � 1}, and whose inner nodes are ⇧M

(sub)circuits. Using a balanced tree then results in depth dlog(B�1)e. However,
we need to compute all s

(i), i 2 [B]. We could simply use B trees, whose total
number of inner nodes would be

B�1X

i=0

i =
(B � 1)B

2
2 ⇥(B2) ,

still resulting in a circuit of the same depth. We can do much better!

Theorem 8.17. Given a circuit C implementing an associative operator � : D⇥

D ! D and inputs gi 2 D, i 2 [2b] for some b 2 N, there is a circuit of

size O(2b
|C|) and depth O(bd(C)) outputting for each i 2 [2b] the value ⇡i :=Ji

j=0
gj (where

J
0

j=0
gj = g0).

Proof. We prove the statement by induction on b, where the claim is that a
circuit of size (at most) 2b+1

|C| and depth (at most) 2bd(C) does the job. For
b = 0, the trivial circuit wiring the input to the output satisfies the claim; it
has size and depth 0.

Hence, assume that the claim holds true for b � 1 2 N0 and consider b.
We recursively construct the desired circuit by using the circuit given by the
induction hypothesis, see Figure ??. Concretely, we use 2b�1 copies of C to (in
parallel) compute g

0

i := g2i � g2i+1, i 2 [2b�1]. We then feed these values into a
(sub)circuit of size ?(b � 1)|C| and depth 2(b � 1)d(C) that outputs

⇡
0

i :=
iK

j=0

g
0

j =
2iK

j=0

gj

for all i 2 [2b�1]. Note that ⇡i = ⇡
0

(i�1)/2
for all odd i 2 [2d]. Then, adding

another 2b�1
� 1 copies of C, in parallel we compute ⇡i =

Ji
j=0

gj = ⇡i�1 �

gi = ⇡
0

(i�2)/2
� gi for all even i 2 [2d] \ {0}. Because ⇡0 = g0 is already

90 LECTURE 8. METASTABILITY-CONTAINING SORTING

available as input, we thus obtain ⇡i for all i 2 [2d]. The size of the resulting
circuit is bounded by (2b�1 + 2b + 2b�1

� 1)|C| < 2b+1
|C| and its depth by

d(C) + 2(b � 1)d(C) + d(C) = 2bd(C).

g0 g1 g2 g3 . . . g2b�2 g2b�1

� � �

PPC�(2b�1)

g0
0 g0

1
. . . g0

2b�1�1

�0
1 �0

2
. . . �0

2b�1�1

� �

⇡0 ⇡1 ⇡2 ⇡3 . . . ⇡2b�2 ⇡2b�1

Figure 8.2: The recursive construction used in Theorem 8.17.

Corollary 8.18. There is a comparator circuit of size O(B) and depth O(log B)
for valid strings (see Figure 8.3).

Proof. By Theorem 6.6, there are circuits of constant size and depth that im-
plement ⇧M and outM. We apply Theorem 8.17 to the circuit for ⇧M and inputs
gihi, i 2 {1, . . . , B � 1} (for b = dlog Be, simply ignoring the unneeded inputs
and outputs to the circuit), yielding a circuit of size O(B) and depth O(log B)
computing outputs s

(i�1), i 2 [B] \ {0}. As s
(0) = 00 is a constant, we do

not need a circuit to compute it. We then feed for i 2 {1, . . . , B} the inputs
s
(i�1) and gihi to a copy of the circuit implementing outM, yielding the correct

outputs. This adds O(B) to the size and increases the depth by a constant.

Remarks:

• There are other parallel prefix computation circuit constructions. These
are of interest only when caring about the factor-2 overhead in the depth
of the circuit. Things then get interesting, as also fan-out becomes an
issue (a large fan-out slows down the circuit as well).

Bibliographic Notes

There’s almost nothing to add to the references given for the previous lecture.
For the Parallel Prefix Computation (PPC) framework, see [LF80].

BIBLIOGRAPHY 91

g h

s
(0)

s
(1)

outM

max0 min0 minBmaxB

s
(B�1)

h0

g0

outM outM
g1

h1 hB�1

gB�1

max1 min1

Figure 8.3: The Gray code comparator.

Bibliography

[LF80] Richard E Ladner and Michael J Fischer. Parallel Prefix Computation.
Journal of the ACM (JACM), 27(4):831–838, 1980.

92 LECTURE 8. METASTABILITY-CONTAINING SORTING

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Lower Bound on the Local Skew
	Formalizing the Problem
	Averaging Protocols
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Upper Bound on the Local Skew
	GCS Algorithm
	Analysis of the GCS Algorithm

	Fault-Tolerant Clock Synchronization
	The Pulse Synchronization Problem
	A Variant of the Srikanth-Toueg Algorithm
	Impossibility of Synchronization for one Third of Faulty Nodes

	Synchronizing by Approximate Agreement
	Approximate Agreement
	A Variant of the Lynch-Welch Algorithm

	Metastability
	Kleene Logic and Circuits
	The Limits of Metastability-Containment
	Hardness of Containment
	Containing a Bounded Number of Metastable Inputs

	Metastability-Containing Control Loops
	Metastability in Control Loops
	First Attempt: Binary Counters
	Second Attempt: Unary ``Counters''
	Third Attempt: Gray Codes

	Metastability-Containing Sorting
	4-valued Comparison of BRGC Strings
	Dealing with Metastable Inputs
	Determining the States
	Determining the Output Bits
	Parallel Prefix Computation

	Notation and Preliminaries
	Numbers and Sets
	Graphs
	Trees and Forests

	Asymptotic Notation
	Definitions
	Properties

	Bounding the Growth of a Maximum of Differentiable Functions

