
Lecture 12

Pulse Synchronization

In this lecture, we finally address the task of self-stabilizing pulse synchroniza-
tion. A trace is good from time t if starting from then (i.e., when starting to
count pulses from time t), the requirements of pulse synchronization are met.

We will head for an algorithm with a very good trade-o↵ between stabiliza-
tion time and communication complexity — here measured by the amount of bits
a correct node broadcasts within O(d) time —right away. This will be achieved
by reducing the task to consensus, very similar to the previous lecture. How-
ever, the fact that timing is now imprecise (due to uncertain message delays and
drifting clocks), the details become rather complex. We will focus on the key
ideas in this lecture, deliberately avoiding to give detailed proofs. Once we strip
away these obfuscating issues, very little conceptual di↵erences remain between
the solution from the previous lecture and the algorithm presented today.

12.1 Outline of the Construction

We will sketch the overall construction, relying on the high similarity to the
recursive construction of synchronous counting algorithms from the previous
lecture for intuition. This will lead to identifying the main challenge in the
approach, which we will focus on afterwards. Let us first state the final result
of the machinery.

Theorem 12.1. For f 2 N0, denote by C(f) (synchronous deterministic) con-

senus algorithms tolerating f faults on any number n � 3f + 1 of nodes and

by R(f) and M(f) their round complexities and message sizes, respectively. If

1 < #  1.004, there exists T0 2 ⇥(R(f)) and ' 2 1 + O(# � 1) such that for

any T � T0 there is a pulse synchronization algorithm P satisfying that

• it stabilizes in S(P) 2 O(d(1 +
Pdlog fe

k=0
R(2k))) time,

• correct nodes broadcast M(P) 2 O(1 +
Pdlog fe

k=0
M(2k)) bits per d time,

• it has skew 2d,

• it has minimum period Pmin � T , and

• it has maximum period Pmax  'T .

137

138 LECTURE 12. PULSE SYNCHRONIZATION

Corollary 12.2. If 1 < #  1.004, there exists T0 2 ⇥(f) and ' 2 1+O(#�1)
such that for any T � T0 there is a pulse synchronization algorithm P satisfying

that

• it stabilizes in O(df) time,

• correct nodes broadcast O(log f) bits per d time,

• it has skew 2d,

• it has minimum period Pmin � T , and

• it has maximum period Pmax  'T .

Proof. We plug the Phase King algorithm into Theorem 12.1.

To make the recursion underlying this theorem work, again we need two main
steps: The first is to construct pulse synchronization algorithms from resynchro-

nization algorithms, which are “weak” pulse synchronization algorithms that
produce a “proper” pulse only once in a while; the second is to construct resyn-
chronization algorithms from two pulse synchronization algorithms on disjoint
subsets of the nodes.

Definition 12.3 (Resynchronization Algorithm). B is an f -resilient resynchro-
nization algorithm with skew ⇢ and separation window that stabilizes in time

S(B), if the following holds: there exists a time t  S(B) such that every correct

node v 2 Vg locally generates a resynchronization pulse at time r(v) 2 [t, t + ⇢)
and no other resynchronization pulse before time t + ⇢ + . We call such a

resynchronization pulse good.

Here is an example on how this might look like:

Node 1
Node 2
Node 3
Node 4

good resynchronisation pulse

faulty node, arbitrary behaviour

spurious pulses

t t + ⇢ + t + ⇢
no pulses for

time

Note that we do not impose any restrictions on what the nodes do outside the
interval [t, t + ⇢ +). In particular, in constrast to the synchronous counting
construction, we do not require that correct nodes agree on whether there are
pulses or not outside this interval. Instead, this part of the construction will
be subsumed by the first step, in which we construct pulse synchronization
algorithms from resynchronization algorithms.

Using the same ideas as in the previous lecture, one can construct resynchro-
nization algorithms from two smaller pulse synchronization instances as follows:

• Both instances may trigger resynchronization pulses via generating pulses.

• The instances (are supposed to) run at di↵erent frequencies. Hence, re-
gardless of their initial phase relation, after a few pulses a correct instance
(i.e., one with su�ciently many correct nodes) is guaranteed to produce a
good pulse, provided that the other one adheres to its frequency bound.

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 139

• All correct nodes will “echo” seeing a pulse from either instance and only
accept it if (i) n�f nodes echoed the pulse, (ii) it adheres to the frequency
bounds according to the node’s local clock, and (iii) the node didn’t re-
cently observe fewer than n � f and more than f nodes echo a pulse of
the instance.

• If (i), (ii), or (iii) are violated, a node will (locally) suppress any pulses
by the respective instance for su�ciently long to guarantee that the other
(correct) instance succeeds in generating a good pulse.

As in the previous lecture, this forces a faulty instance to stick to the required
frequency bound or be ignored entirely. It does not guarantee that all pulses
are produced consistently (as we don’t run consensus), but this is not required
from a resynchronization algorithm.

Once we also have a way of constructing pulse synchronization algorithms
from resynchronization algorithms, which we will discuss in more depth, the
recursive construction is performed exactly as for synchronous counting, cf. Fig-
ure 12.1. For f = 0, pulse synchronization is trivial; all nodes simply trigger
pulses when a designated leader tells them to. To construct an algorithm for
f 2 [2i, 2i+1

� 1], i 2 N, faults, we select f0, f1 < 2i so that f0 + f1 + 1 = f
and (the already inductively constructed) pulse synchronization algorithms with
n0 = 3f0 +1 and n1 = 3f1 +1 nodes, implying that n0 +n1 < 3f +1  n. From
these we derive a resynchronization algorithm on all n nodes tolerating f faults,
which in turn we use to obtain the desired pulse synchronization algorithm.
Working out the details, one arrives at the result stated in Theorem 12.1.

Remarks:

• In Theorem 12.1, ' is a bit larger than #, as the construction is lossy with
respect to the quality of the hardware clocks. However, up to constant
factors, the quality of the clocks is preserved: ' � 1 2 O(# � 1).

• The described construction of resynchronization algorithms is fraught with
a frustating amount of bookkeeping due to the slightly di↵erent perception
of time of the correct nodes. While the approach works just as described
if #  1.004 —a somewhat arbitrary bound that could be improved to
a certain extent — formalizing the construction and proving it correct is
very laborious.

• Accordingly, we will not do this in this lecture, but rather focus on the
other main step of the recursive construction, in which we get to see some
new algorithmic ideas.

12.2 Stabilization after Resynchronization Pulse

Before getting to business, let’s have a look at the general setting and a few no-
tational simplifications. First, assume that at time 0 each node locally triggers
a good resynchronization pulse, where “is large enough” for the stabiliza-
tion process to finish before any other resynchronization pulse, good or bad, is
triggered at a correct node (the minor time di↵erence of up to � between the
resynchronization pulses can easily be accounted for, so we neglect it here). We
need to guarantee that within time the algorithm stabilizes and cannot be

140 LECTURE 12. PULSE SYNCHRONIZATION

P(7, 2): pulse synchronisation algorithm (Theorem 6)

B(7, 2): resynchronisation algorithm (Theorem 7)

P(4, 1): pulse synchronisation algorithm (T6)

B(4, 1): resynchronisation algorithm (T7)

P(2, 0) P(2, 0)

P(3, 0): trivial pulse synchronisation algorithm

Figure 12.1: Recursively building a 2-resilient pulse synchronization algorithm
P (7, 2) over 7 nodes. The construction utilises low resilience pulse synchro-
nization algorithms to build high resilience resynchronization algorithms, which
can then be used to obtain highly resilient pulse synchronization algorithms.
Here, the base case consists of trivial 0-resilient pulse synchronization algo-
rithms P (2, 0) and P (3, 0) over 2 and 3 nodes, respectively. Two copies of
P (2, 0) are used to build a 1-resilient resynchronization algorithm B(4, 1) over 4
nodes using. The resynchronization algorithm B(4, 1) is used to obtain a pulse
synchronization algorithm P (4, 1). Now, the 1-resilient pulse synchronization
algorithm P (4, 1) over 4 nodes is used together with the trivial 0-resilient algo-
rithm P (3, 0) to obtain a 2-resilient resynchronization algorithm B(7, 2) for 7
nodes and the resulting pulse synchronization algorithm P (7, 2). White nodes
represent correct nodes and black nodes represent faulty nodes. The gray blocks
contain too many faulty nodes for the respective algorithms to correctly operate,
and hence, they may have arbitrary output.

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 141

“confused” by any inconsistent resynchronization pulses. Accordingly, we will
make sure that resynchronization pulses can a↵ect the behavior of nodes only
when the algorithm has not already stabilized.

Our approach to generating pulses will be to execute consensus for each
pulse. The challenge is to stabilize this procedure.

Simulating Consensus

We want to run synchronous consensus, but we’re not operating in the syn-
chronous model. Hence, we need to simulate synchronous execution. To this
end, we may use any (non-stabilizing) pulse synchronization algorithm, where
we locally count the pulses to keep track of the round number. This works splen-
didly, provided that each run is initialized correctly: using the Srikanth-Toueg
algorithm (cf. Task 3 of exercise sheet 10), if all correct nodes start execution
of the pulse synchronization algorithm within a time window of O(Rd) time,
simulation of an R-round consensus algorithm can be completed within O(Rd)
time; the outputs will even be generated within O(d) time, as the skew of the
algorithm is 2d. We will never need more than one instance to run, so this will
be e�cient in terms of communication.

However, as nodes may initially be in arbitrary states, the simulation may
get “messed up,” at least until we can clear the associated variables and (re-
)initialize them properly. This is the first challenge we need to overcome. In
addition, we may also run into the familiar issue that not all correct nodes may
know that they should simulate an instance. In this case, the pulse synchro-
nization algorithm may not even function correctly. All of these problems will
essentially be solved by employing silent consensus. Either all correct nodes
participate, which causes them to reinitialize all state variables of the simu-
lated consensus routine and ensures that the pulse synchronization algorithm
works correctly, or no correct node will send messages for the consensus rou-
tine —meaning that it will never output 1 (the only result that matters), even
if the simulation is completely o↵ in terms of timing and attribution of mes-
sages to rounds due to the Srikanth-Toueg algorithm breaking. Summarizing,
the simulation has the following properties

• Each node stores the state of at most one consensus instance. It aborts
any local simulation if its local clock shows that it has been running for
longer than the maximum possible time of Tmax 2 O(Rd).

• If all correct nodes initialize an instance within ⌧ 2 O(Rd) time (for a
suitable relation between ⌧ and Tmax) and none of them re-initialize for
another instance, all correct nodes will terminate within Tmax time and
produce an output satisfying validity and agreement.

• If during (t � d, t] no correct node is simulating an instance (i.e., by time
t there are also no more respective messages in transit), no correct node
will output a 1 as result of a simulation during (t � d, t1 + Tmin], where
t1 is the infimal time larger than t � d when a correct node initializes
an instance with input 1 and Tmin 2 ⇥(Rd) is the minimum time to
complete simulation of a consensus instance (note that we can enforce
such a minimum time even for “incorrect” execution, by having nodes
check the timing locally).

142 LECTURE 12. PULSE SYNCHRONIZATION

G1’

G2

G2

G1

G2’

������� �����

����
Guard Condition
G1 hT1i expires and received � n � f ����� messages

within time T1 before T1 expired
G1’ hT1i expires and ¬G1
G2 auxiliary machine signals ������ 1
G2’ hTwaiti expires or

auxiliary machine signals ������ 0

Figure 12.2: The main state machine. When a node transitions to state pulse

(double circle) it will generate a local pulse event and send a pulse message
to all nodes. When the node transitions to state wait it broadcasts a wait

message to all nodes. Guard G1 employs a sliding window memory bu↵er, which
stores any pulse messages that have arrived within time T1 (as measured by
the local clock). When a correct node transitions to pulse it resets a local
T1 timeout. Once this expires, either Guard G1 or Guard G1’ become satisfied.
Similarly, the timer Twait is reset when node transitions to wait. Once it expires,
Guard G2’ is satisfied and node transitions from wait to recover. The node
can transition to the pulse state when Guard G2 is satisfied, which requires an
output 1 signal from the auxiliary state machine given in Figure 12.3.

Remarks:

• A formal proof would require to work out the constants and how they
relate to each other. However, as we know that # is “su�ciently close” to
1, tweaking the period of the Srikanth-Toueg algorithm the right way, we
can assume that Tmax ⇡ Tmin + ⌧ .

State Machines

Our overall strategy is simple. Once stabilized, the algorithm generates pulses
by repeatedly executing consensus instances, where each correct node will use
input 1, and an output of 1 triggers a pulse. To this end, each node runs a copy
of the main state machine shown in Figure 12.2. All correct nodes will see each
other generating a pulse within T1 2 ⇥(d) local time, transition to wait, and
this will ultimately result in the next consensus instance being initialized by the
auxilliary state machine (shown in Figure 12.3).

To achieve stabilization, we seek to enforce one of two events: either (i) a
consensus instance is simulated correctly, outputs 1 (by agreement at all nodes),
and thus generates a synchronized pulse kicking the system back into the in-
tended mode of operation, or (ii) all nodes end up in state recover of the
state machine. A node being in state recover means that it has proof that the
algorithm has not stabilized (yet) and may thus take actions that are caused
by a resynchronization pulse, as this does not jeopardize stable operation in
case of spurious resynchronization pulses. Therefore, if we ensure that within
O(dR) time after a good resynchronization pulse either (i) occurs or (ii) hap-
pens and no consensus instance is running anymore (or about to be started), we
can “restart” the system by letting each correct node in state recover start

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 143

G4

G3

G6

G6’G5

G5’

G7 G9

G9

G8

G8

G4

G4

������ 1

������ 0

Guard Condition
G3 hTactivei expires while in �������
G4 � f + 1 ���� messages within time Tlisten
G5 � n � f ���� messages within time Tlisten
G5’ hTlisteni expires

Guard Condition
G6 hT2i expires while not in �������
G6’ hT2i expires while in �������
G7 hT2i expires
G8 A outputs ‘1’
G9 A outputs ‘0’or hTconsensusi expires

or G4 is satis�ed

������ ����

����� 0

����� 1 ��� 1

��� 0

Figure 12.3: The auxiliary state machine. The auxiliary state machine is re-
sponsible for initializing and simulating the consensus routine. The gray boxes
denote states which represent the simulation of the consensus routine C. If the
node transitions to run 0, it uses input 0 for the consensus routine. If the node
transitions to run 1, it uses input 1. When the consensus simulation declares
an output, the node transitions to either output 0 or output 1 (sending the
respective output signal to the main state machine) and immediately to state
listen. The timeouts Tlisten, T2, and Tconsensus are reset when a node transi-
tions to the respective states that use a guard referring to them. The timeout
Tactive in Guard G3 (dashed line) is reset by the resynchronisation signal from
the underlying resynchronisation algorithm. Both input 0 and input 1 have a
self-loop that is activated if Guard G4 is satisfied. This means that if Guard G4
is satisfied while in these states, the timer T2 is reset.

144 LECTURE 12. PULSE SYNCHRONIZATION

a consensus instance with input 1, simply when a su�ciently large timeout of
⇥(dR) expires.

Either way, a pulse with small skew will be generated, from which on the
system will run as intended.

Lemma 12.4. Suppose that all correct nodes transition to pulse during [t, t +
2d] and timeouts are suitably chosen. Then the execution stabilized by time

t, where a skew of 2d and period bounds of Pmin � (T1 + T2)/# + Tmin and

Pmax  T1 + T2 + Tmax + 3d are guaranteed.

Proof. Exercise.

The challenge is to ensure that always one of the above two cases applies.
This is mostly ensured by the design of the auxilliary state machine, which
however takes into account the transitions to wait in the main state machine —
which, in turn, does the consistency checks that (i) n�f nodes should transition
to pulse within T1 2 ⇥(d) local time to go to wait and (ii) within Twait 2 ⇥(dR)
local time nodes expect to generate a pulse again. If either is not satisfied, the
node transitions to recover, which it leaves only when it generates a pulse
again. A node in recover knows that something is wrong and, accordingly,
will use input 0 for consensus instances. The auxilliary state machine uses some
additional thresholds based on transitions to wait.

Sketch of Proof of Stabilization

All these rules are designed to support the following line of reasoning:

1. Once the stabilization process is “started” by a resynchronization pulse,
within O(dR) time no correct node will be executing consensus at some
point (and no respective messages will be in transit).

2. From then on, any consensus instance outputting 1 must have been caused
by a correct node transitioning to run 1, as otherwise the fact that the
consensus routine is silent ensures that only output 0 can be generated
(regardless of participation).

3. If any correct nodes transitions to run 1 before the (large) timeout Tactive

expires, all correct nodes will be “pulled” along into one of the input states
(with suitable timing) to participate in the consensus instance, so it will
be simulated correctly. Thus, if any node outputs 1, (i) applies.

4. On the other hand, if no correct node outputs a 1 for ⇥(dR) time, they
end up in the states recover in the main state machine and listen in
the auxilliary state machine, i.e., case (ii) applies.

We now sketch proofs of these statements. Naturally, all of this hinges on the
right choice of timeouts; to minimize distraction, in our proof sketch we will
assume that they are suitably chosen. Moreover, Tactive, which nodes reset
upon locally triggering a resynchronization pulse, is “large enough,” i.e., the
dashed transition will not occur for long enough for us to either end up in case
(i) (meaning that it will never happen) or case (ii) (meaning that the timeout
expiring correctly initializes a consensus instance). To simplify matters further,
assume that # � 1 is su�ciently small (read: a constant that is arbitrarily close

12.2. STABILIZATION AFTER RESYNCHRONIZATION PULSE 145

to 1) and that all timeouts are in O(dR), which for such # is feasible. Note
that this implies that after all timeouts had the opportunity to expire, i.e., after
O(dR) time, we know that timeouts and memory bu↵ers of sliding windows are
in states consistent with what actually happened, e.g., a node in state wait is
there because it actually received n� f pulse messages within T1 local time no
more than Twait local time ago.

We now work our way down the above list, starting by showing that, even-
tually, execution of consensus instances stops for at least d time at all correct
nodes.

Lemma 12.5. There is a time t0 2 O(dR) such that no correct node is in states

run 0 or run 1 during [t0, t0 + d].

Proof Sketch. In order for any correct node to transition out of state listen at
some time t, there must be at least one correct node to transition to wait during
(t� O(d), t]. This, in turn, requires n� 2f correct nodes to transition to pulse

within T1+d 2 O(d) time. These nodes will have to get from state listen in the
auxilliary machine back to output 1 again if they are to serve in supporting
any correct node to transition to wait again. As n > 3f , the remaining correct
nodes are not su�ciently many to reach the n � f threshold for convincing a
correct node to transition to wait, implying that for roughly (at least) T2 time
(see Guard G6, Guard G6’, and Guard G7) no node can transition from ready

to listen.
Hence, no node leaving state listen after time t + O(d) makes it to either

of run 0 or run 1 before (roughly) time t + 2T2. On the other hand, any
node that transitioned from listen to ready by time t + O(d) will get back to
listen by time t + O(d) + Tlisten + T2 + Tconsensus, where (as we will see later)
Tlisten 2 O(d) and Tconsensus ⇡ Tmax. Thus, up to minor order terms the claim
follows if T2 > Tmax, which can be arranged with T2 2 O(dR).

Finally, observe that if no node transitions to read for O(d)+Tlisten +T2 +
Tconsensus 2 O(dR) time, then of course also all correct nodes end up in state
listen as well.

Lemma 12.6. Let t0 be as in Lemma 12.5. Suppose at time t > t0, v 2 Vg

transitions to run 1. Then each w 2 Vg transitions to run 1 or run 0 within

a time window of size roughly (1 � 1/#)T2 + O(d).

Proof Sketch. We already observed that if any node transitions to wait, this
means that there is a window of size O(d) during which this is possible, followed
by a window of size at least T2 during which this is not possible. Hence, in
order for v to transition to run 1, it observes at least n � 2f > f correct nodes
transition to wait within O(d) time (we make sure that T2 is large enough to
enforce this). This means that all correct nodes observe these transitions in
a (slightly larger) time window. If we choose Tlisten to be # times this time
window (i.e., still in O(d) as promised), this implies that (i) any correct node
in state listen, run 0, or run 1 transitions to read and (ii) any node in
states input 0 or input 1 resets its timeout T2. As Tlisten 2 O(d), all of these
nodes thus will, up to a time di↵erence of O(d), switch to one of the execution
states after T2 expires at them, i.e., within a time window of the required size.
Here we use that the (properly initialized) consensus instance will not terminate
and have nodes transition to pulse (and thus potentially wait) again before

146 LECTURE 12. PULSE SYNCHRONIZATION

its execution, i.e., the established timing relation between the nodes starting
to execute consensus cannot be destroyed by another correct node switching to
wait again.

Corollary 12.7. Let t0 be as in Lemma 12.5. If after time t0 (but before

any Tactive timeout expires) any correct node transitions to pulse, the system

stabilizes.

Proof Sketch. By Lemma 12.5 and the fact that the utilized consenus routine is
silent, after time t0 no correct node can transition to pulse without some correct
node transitioning to run 1 first. By Lemma 12.6, such an event will correctly
initialize a consensus instance, which will thus be correctly simulated (note,
again, that no transitions to wait happen before the instance terminates). If
it outputs 1 (at all nodes), Lemma 12.4 proves stabilization. If it outputs 0, we
have a new time t0

0
such that no consensus instance is running and can repeat

the argument inductively.

Lemma 12.8. Let t0 be as in Lemma 12.5. If by time t0 + O(dR) the system

has not stabilized, all correct nodes are in states recover and listen, with no

wait messages in transit.

Proof Sketch. If after time t0 (but before Tactive expires) any correct node out-
puts 1 for a consensus instance, then Corollary 12.7 shows stabilization. If this is
not the case, no correct node transitions to pulse. In this case, after T1 +Twait

time all correct nodes will be and stay in state recover (without wait mes-
sages in transit), and after at most another 2Tlisten + T2 + Tconsensus 2 O(dR)
time all correct nodes will be in state listen. As mentioned earlier, in all of
this we assume that Tactive 2 O(dR) is large enough for this entire process to
be complete before it expires at any correct node.

Corollary 12.9. The algorithm given by the state machines in Figure 12.2 and

Figure 12.3 stabilizes within O(dR) time after a good resynchronization pulse,

provided 2 O(dR) is large enough.

Proof Sketch. If the prerequisites of Lemma 12.8 are not satisfied, the claim
is immediate. Otherwise, when Tactive expires at the correct nodes, they will
transition from listen to run 1, as the lemma states that they are all in
recover and listen. Correct initialization necessitates ⌧ � (1 � 1/#)Tactive 2

O((#�1)dR), which is feasible for su�ciently small #. Thus, for an appropriate
choice of ⌧ , the instance will be correctly simulated, and by validity it outputs
1. Lemma 12.4 hence shows stabilization by time Tactive + Tmax 2 O(dR).

Remarks:

• When actually proving this, one collects all the inequalities necessary for
the various lemmas and then shows that there are assignments to the
timeouts satisfying all of them concurrently.

• The framework can also be applied to randomized consensus routines.
This way, it is, e.g., possible to get stabilization time of O(log2 f) (with
high communication cost) or both stabilization time and broadcasted bits
per d time logO(1) f (with resilience f < n/(3 + ") for arbitrarily small
constant " > 0).

BIBLIOGRAPHY 147

• It is unknown whether any of these bounds are close to optimal. In con-
trast to synchronous counting, there is no reduction from consensus to
self-stabilizing pulse synchronization known. For instance, it cannot be
ruled out that a constant-time deterministic solution exists.

• We are still interested in showing how to combine this solution with Lynch-
Welch along the lines of Chapter 9. This will be done in an exercise.

Bibliographic Notes

We already mentioned that self-stabilizing pulse synchronization was first solved
by Dolev and Welch [DW04], albeit with exponential stabilization time. Sub-
sequently, this was improved to polynomial [?] and, eventually, linear [DH07].
The latter solution can be seen as the pulse synchronization equivalent of the
counting algorithm derived from running R consensus instances concurrently —
although here it is not one instance per round of the algorithm, but rather ⇥(f)
instances, the idea being that each node may initiate an instance, and this is
going to succeed in stabilizing the algorithm, if the initiating node is correct.

This linear-time linear bandwidth (i.e., number of broadcasted bits per d
time) barrier was first overcome by randomization [DFLS14]. The idea of resyn-
chronization pulses already shows up in this algorithm, but they are not provided
recursively. Rather, each node may trigger a pulse once every ⇥(fd) time by
a simple broadcast, and randomization together with bounding the influence of
faulty nodes by threshold voting and memorization ensures that this succeeds
with a very large probability within O(fd) time. This improved the number
of bits nodes need to broadcast for stabilization in O(fd) time to O(1) per d
time. However, the construction cannot be used recursively as-is, since the al-
gorithm exploits that the resynchronization pulses are distributed randomly to
avoid “bad” timing relations. The construction presented in this lecture [LR17?
] overcomes this restriction by relying on consensus.

It is worth noting that most constructions, in particular those of with sta-
bilization time O(fd), end up directly using consensus or tools that are strong
enough to solve consensus in constant expected time. However, it remains open
whether this is actually necessary or there are algorithms that outperform any
consensus-based solution.

Bibliography

[DFLS14] Dolev Dolev, Matthias Függer, Christoph Lenzen, and Ulrich Schmid.
Fault-tolerant Algorithms for Tick-generation in Asynchronous Logic.
Journal of the ACM, 61(5):30:1–30:74, 2014.

[DH07] Danny Dolev and Ezra N. Hoch. Byzantine Self-stabilizing Pulse
in a Bounded-Delay Model. In Proc. 9th International Symposium

on Stabilization, Safety, and Security of Distributed Systems (2007),
pages 234–252, 2007.

[DW04] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in
the Presence of Byzantine Faults. Journal of the ACM, 51(5):780–
799, 2004.

148 LECTURE 12. PULSE SYNCHRONIZATION

[LR17] Christoph Lenzen and Joel Rybicki. Self-stabilising Byzantine Clock
Synchronisation is Almost as Easy as Consensus. In Proc. 31th Sym-

posium on Distributed Computing (DISC), pages 32:1–32:15, 2017.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Lower Bound on the Local Skew
	Formalizing the Problem
	Averaging Protocols
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Upper Bound on the Local Skew
	GCS Algorithm
	Analysis of the GCS Algorithm

	Fault-Tolerant Clock Synchronization
	The Pulse Synchronization Problem
	A Variant of the Srikanth-Toueg Algorithm
	Impossibility of Synchronization for one Third of Faulty Nodes

	Synchronizing by Approximate Agreement
	Approximate Agreement
	A Variant of the Lynch-Welch Algorithm

	Metastability
	Kleene Logic and Circuits
	The Limits of Metastability-Containment
	Hardness of Containment
	Containing a Bounded Number of Metastable Inputs

	Metastability-Containing Control Loops
	Metastability in Control Loops
	First Attempt: Binary Counters
	Second Attempt: Unary ``Counters''
	Third Attempt: Gray Codes

	Metastability-Containing Sorting
	4-valued Comparison of BRGC Strings
	Dealing with Metastable Inputs
	Determining the States
	Determining the Output Bits
	Parallel Prefix Computation

	Self-Stabilization
	Making Lynch-Welch Self-Stabilizing
	First Attempt: Reset on Heartbeats
	Second Attempt: Adding Feedback
	Third Attempt: Reset on Unexpected Heartbeats Only
	Analysis

	Consensus
	The Phase King Algorithm
	Recursive Phase King
	Running Time Lower Bound

	Synchronous Counting
	Synchronous Counting vs. Consensus
	Pulsers
	Weak from (less Resilient) Strong Pulsers
	Plugging it Together

	Pulse Synchronization
	Outline of the Construction
	Stabilization after Resynchronization Pulse

	Notation and Preliminaries
	Numbers and Sets
	Graphs
	Trees and Forests

	Asymptotic Notation
	Definitions
	Properties

	Bounding the Growth of a Maximum of Differentiable Functions

