
Appendix A

Notation and Preliminaries

This appendix sums up important notation, definitions, and key lemmas that
are not the main focus of the lecture.

A.1 Numbers and Sets

In this lecture, zero is not a natural number: 0 /2 N; we just write N0 := N[{0}
whenever we need it. Z denotes the integers, Q the rational numbers, and R
the real numbers. We use R+ = {x 2 R | x > 0} and R+

0 = {x 2 R | x � 0}.
Rounding down x 2 R is denoted by bxc := max{z 2 Z | z x} and

rounding up by dxe := min{z 2 Z | z � x}.
For n 2 N0, we define [n] := {0, . . . , n � 1}, and for a set M and k 2 N0,�M

k

�
:= {N ✓ M | |N | = k} is the set of all subsets of M that contain exactly

k elements.

A.2 Graphs

A finite set of vertices, also referred to as nodes V together with edges E ✓�V
2

�
defines a graph G = (V,E). Unless specified otherwise, G has n = |V |

vertices and m = |E| edges and the graph is simple: Edges e = {v, w} ✓ V are
undirected, there are no loops, and there are no parallel edges.

If e = {v, w} 2 E, the vertices v and w are adjacent, and e is incident to v

and w, furthermore, e0 2 E is adjacent to e if e\ e
0
6= ;. The neighborhood of v

is
Nv := {w 2 V | {v, w} 2 E},

i.e., the set of vertices adjacent to v. The degree of v is

�v := |Nv|,

the size of v’s neighborhood. We denote by

� := max
v2V

{�v}

the maximum degree in G.

37

38 APPENDIX A. NOTATION AND PRELIMINARIES

A v1-vd-path p is a set of edges p = {{v1, v2}, {v2, v3}, . . . , {vd�1, vd}} such
that |{e 2 p | v 2 e}| 2 for all v 2 V . p has |p| hops, and we call p a cycle

if it visits all of its nodes exactly twice. The diameter D of the graph is the
minimum integer such that for any v, w 2 V there is a v-w-path of at most D

hops (or D = 1 if no such integer exists). We consider connected graphs only,
i.e., graphs satisfying D 6= 1.

A.2.1 Trees and Forests

A forest is a cycle-free graph, and a tree is a connected forest. Trees have n� 1
edges and a unique path between any pair of vertices. The tree T = (V,E) is
rooted if it has a designated root node r 2 V . A leaf is a node of degree 1. A
rooted tree has depth d if the maximum length of a root-leaf path is d.

A.3 Asymptotic Notation

We require asymptotic notation to reason about the complexity of algorithms.
This section is adapted from Chapter 3 of Cormen et al. [?]. Let f, g : N0 ! R
be functions.

A.3.1 Definitions

O(g(n)) is the set containing all functions f that are bounded from above by
cg(n) for some constant c > 0 and for all su�ciently large n, i.e. f(n) is asymp-

totically bounded from above by g(n).

O(g(n)) := {f(n) | 9c 2 R+
, n0 2 N0 : 8n � n0 : 0 f(n) cg(n)}

The counterpart of O(g(n)) is ⌦(g(n)), the set of functions asymptotically

bounded from below by g(n), again up to a positive scalar and for su�ciently
large n:

⌦(g(n)) := {f(n) | 9c 2 R+
, n0 2 N0 : 8n � n0 : 0 cg(n) f(n)}

If f(n) is bounded from below by c1g(n) and from above by c2g(n) for positive
scalars c1 and c2 and su�ciently large n, it belongs to the set ⇥(g(n)); in this
case g(n) is an asymptotically tight bound for f(n). It is easy to check that
⇥(g(n)) is the intersection of O(g(n)) and ⌦(g(n)).

⇥(g(n)) := {f(n) | 9c1, c2 2 R+
, n0 2 N0 : 8n � n0 :

0 c1g(n) f(n) c2g(n)}

f(n) 2 ⇥(g(n)) , f 2 (O(g(n)) \ ⌦(g(n)))

For example, n 2 O(n2) but n /2 ⌦(n2) and thus n /2 ⇥(n2).1 But 3n2
�n+5 2

O(n2), 3n2
� n + 5 2 ⌦(n2), and thus 3n2

� n + 5 2 ⇥(n2) for c1 = 1, c2 = 3,
and n0 = 4.

1
We write f(n) 2 O(g(n)) unlike some authors who, by abuse of notation, write f(n) =

O(g(n)). f(n) 2 O(g(n)) emphasizes that we are dealing with sets of functions.

A.3. ASYMPTOTIC NOTATION 39

In order to express that an asymptotic bound is not tight, we require o(g(n))
and !(g(n)). f(n) 2 o(g(n)) means that for any positive constant c, f(n) is
strictly smaller than cg(n) for su�ciently large n.

o(g(n)) := {f(n) | 8c 2 R+ : 9n0 2 N0 : 8n � n0 : 0 f(n) < cg(n)}

As an example, consider 1
n . For arbitrary c 2 R+, 1

n < c we have that for all
n �

1
c + 1, so 1

n 2 o(1). A similar concept exists for lower bounds that are not
asymptotically tight; f(n) 2 !(g(n)) if for any positive scalar c, cg(n) < f(n)
as soon as n is large enough.

!(g(n)) := {f(n) | 8c 2 R+ : 9n0 2 N0 : 8n � n0 : 0 cg(n) < f(n)}

f(n) 2 !(g(n)) , g(n) 2 o(f(n))

A.3.2 Properties

We list some useful properties of asymptotic notation, all taken from Chapter 3
of Cormen et al. [?]. The statements in this subsection hold for all f, g, h : N0 !

R.

Transitivity

f(n) 2 O(g(n)) ^ g(n) 2 O(h(n))) f(n) 2 O(h(n)),

f(n) 2 ⌦(g(n)) ^ g(n) 2 ⌦(h(n))) f(n) 2 ⌦(h(n)),

f(n) 2 ⇥(g(n)) ^ g(n) 2 ⇥(h(n))) f(n) 2 ⇥(h(n)),

f(n) 2 o(g(n)) ^ g(n) 2 o(h(n))) f(n) 2 o(h(n)), and

f(n) 2 !(g(n)) ^ g(n) 2 !(h(n))) f(n) 2 !(h(n)).

Reflexivity

f(n) 2 O(f(n)),

f(n) 2 ⌦(f(n)), and

f(n) 2 ⇥(f(n)).

Symmetry

f(n) 2 ⇥(g(n)) , g(n) 2 ⇥(f(n)).

Transpose Symmetry

f(n) 2 O(g(n)) , g(n) 2 ⌦(f(n)), and

f(n) 2 o(g(n)) , g(n) 2 !(f(n)).

40 APPENDIX A. NOTATION AND PRELIMINARIES

A.4 Bounding the Growth of a Maximum of Dif-

ferentiable Functions

Lemma A.1. For k 2 N, let F = {fi | i 2 [k]}, where each fi : [t0, t1] ! R is dif-

ferentiable, and [t0, t1] ⇢ R. Define F : [t0, t1] ! R by F (t) := maxi2[k] {fi(t)}.

Suppose F has the property that for every i and t, if fi(t) = F (t), then d

dt
fi(t)

r. Then for all t 2 [t0, t1], we have F (t) F (t0) + r(t� t0).

Proof. We prove the stronger claim that for all a, b satisfying t0 a < b t1,
we have

F (b)� F (a)

b� a
 r. (A.1)

To this end, suppose to the contrary that there exist a0 < b0 satisfying (F (b0)�
F (a0))/(b0�a0) � r+" for some " > 0. We define a sequence of nested intervals
[a0, b0] � [a1, b1] � · · · as follows. Given [aj , bj], let cj = (bj + aj)/2 be the
midpoint of aj and bj . Observe that

F (bj)� F (aj)

bj � aj
=

1

2

F (bj)� F (cj)

bj � cj
+

1

2

F (cj)� F (aj)

cj � aj
� r + ",

so that
F (bj)� F (cj)

bj � cj
� r + " or

F (cj)� F (aj)

cj � aj
� r + ".

If the first inequality holds, define aj+1 = cj , bj+1 = bj , and otherwise define
aj+1 = aj , bj = cj . From the construction of the sequence, it is clear that for
all j we have

F (bj)� F (aj)

bj � aj
� r + ". (A.2)

Observe that the sequences {aj}
1
j=0 and {bj}

1
j=0 ar both bounded and mono-

tonic, hence convergent. Further, since bj � aj =
1
2j (b0� a0), the two sequences

share the same limit.
Define

c := lim
j!1

aj = lim
j!1

bj ,

and let f 2 F be a function satisfying f(c) = F (c). By the hypothesis of the
lemma, we have f

0(c) r, so that

lim
h!0

f(c+ h)� f(h)

h
 r.

Therefore, there exists some h > 0 such that for all t 2 [c� h, c+ h], t 6= c, we
have

f(t)� f(c)

t� c
 r +

1

2
".

Further, from the definition of c, there exists N 2 N such that for all j � N ,
we have aj , bj 2 [c� h, c+ h]. In particular this implies that for all su�ciently
large j, we have

f(c)� f(aj)

c� aj
 r +

1

2
", (A.3)

f(bj)� f(c)

bj � c
 r +

1

2
". (A.4)

A.4. BOUNDING THEGROWTHOF AMAXIMUMOFDIFFERENTIABLE FUNCTIONS41

Since f(aj) F (aj) and f(c) = F (c), (4.3) implies that for all j � N ,

F (c)� F (aj)

c� aj
 r +

1

2
".

However, this expression combined with with (4.2) implies that for all j � N

F (bj)� F (c)

bj � c
� r + ". (A.5)

Since F (c) = f(c), the previous expression together with (4.4) implies that for
all j � N we have f(bj) < F (bj).

For each j � N , let gj 2 F be a function such that gj(bj) = F (bj). Since F

is finite, there exists some g 2 F such that g = gj for infinitely many values j.
Let j0 < j1 < · · · be the subsequence such that g = gjk for all k 2 N. Then for
all jk, we have F (bjk) = g(bjk). Further, since F and g are continuous, we have

g(c) = lim
k!1

g(bjk) = lim
k!1

F (bjk) = F (c) = f(c).

By (4.5), we therefore have that for all k

g(bjk)� g(c)

bjk � c
=

F (bj)� F (c)

bj � c
� r + ".

However, this final expression contradicts the assumption that g0(c) r. There-
fore, (4.1) holds, as desired.

	Synchronizing Clocks
	The Clock Synchronization Problem
	The Max Algorithm
	Lower Bound on the Global Skew
	Refining the Max Algorithm
	Afterthought: Stronger Lower Bound

	Lower Bound on the Local Skew
	Formalizing the Problem
	Averaging Protocols
	Lower Bound with Bounded Clock Rates
	Lower Bound with Arbitrary Clock Rates

	Upper Bound on the Local Skew
	GCS Algorithm
	Analysis of the GCS Algorithm

	Notation and Preliminaries
	Numbers and Sets
	Graphs
	Trees and Forests

	Asymptotic Notation
	Definitions
	Properties

	Bounding the Growth of a Maximum of Differentiable Functions

