Exercise 1: Global vs. Local

Task 1: Even more Globally Optimal (60 points)

In the lecture, we proved a lower bound of Q(uD) for the global skew of any algorithm,
while the uppper bound achieved by the max algorithm is O(((9 — 1)d + u)D). Thus,
the upper bound may be significantly larger than our lower bound in the regime where
(9 — 1)d > u. In this exercise, you will show that an upper bound of O(uD + (¢ — 1)d)
is always achievable.

(a) Let v € V be a node and w € N, an arbitrary neighbor. Consider the following
process: at time t = 0, v sends a message to w. When w receives v’s message, w
immediately replies with a message. When v receives w’s message, v again responds
immediately and so on. Thus, for any exection, this process defines a sequence of
times OAZ to < t1 < to < --- when v receives a message from w. Define a “hardware
clock” H, that (discontinuously) adjusts its value at times t1,ts,... and increases
at the same rate as H, at all other times such that for all times t < ¢/, ﬁv satisfies

H(t) = H0) < (1+5) ¢ =0 +clu+ (@ —1)d) and H,(0)+t < H(@).

for some suitable constant ¢ > 0. (25 points) Hint: What do you know about
tir —t;7

(b) Counsider the “Min Algorithm,” in which nodes reduce their logical clock value to
L + d when receiving a message (L), but use H, as “hardware” clock at v. (The
messages sent are specified in c¢)). Define a “virtual clock” Ly, that lower bounds
all actual clock values, but also takes into account messages that are in transit,
which might cause nodes to set their clocks back. This clock should satisfy that
it increases at least at rate 1. Conclude that the algorithm guarantees amortized
1-progress. (10 points)

(¢) Bound the global skew of the algorithm. We are not concerned with the number of
sent messages, so nodes will send a message immediately after receiving one, as well
as send one every d local time (w.r.t. H,). (Remark: If it helps with notation, feel
free to show the statement only on a graph that is a simple path.) (25 points)

Task 2: The Least Possible Locally Optimal (40 points)

The local skew is defined in a similar way as the global skew except that we consider
the logical clock difference between the neighboring nodes only:

L= sup {L(t)},

teRy
where

L(t) = max {|L,(t) — L,(t)|}

{v,w}eFE
In this exercise, we analyze the local skew of the Refined Max Algorithm.

a) Let P = (vg,...,vp) be a path of length D. Construct an execution in which (i)
H,(0) =0forallv e V, (ii) Hy,,, (to) —Hy, (to) = ufor alli € [D], (iil) L,(t) = H,(t)
for all v € V and times ¢, and (iv) each hardware clock runs at rate 1 after time ¢.
(Hint: Simply set all message delays to d and ramp hardware clock speeds. Then
show that L,(t) = H,(t) for all v € V and ¢, because no node v receives a message

with L > H,(t) — d + u at any time ¢.) (20 points)

b) Take the above execution and modify it such that a skew of u(D — 1) occurs at
some time between nodes vy and v1. (Hint: Only change message delays after time
to, nothing else. “Pull” the nodes to the current maximum clock value one by one,
starting with vp_;.) (20 points)

Task 3*: Global and Local Happiness

a) Find out what the term synchronizers refers to in distributed computing!

b) Use basic techniques for synchronizers to devise an algorithm that satisfies con-
stant amortized progress, has asymptotically optimal global skew, and has local
skew O(uD). You may assume that (¢ — 1)d < u, so you don’t have to worry about
removing (¥ — 1)d terms.

c¢) Synchronize (i.e., communicate your findings) with the other students in the TA
session!

