
Exercise 3: Control Issues

Task 1: Controlling the Global Skew

In the lecture, we proved that the GCS algorithm achieves local skew O(log G), where G
is maximum global skew in the network. However, we did show that GCS maintains any
bound on G itself. Here you will analyze a variant of the GCS algorithm that maintains
G = O(D), where D is the network diameter. Thus the performance of this variant
matches the lower bound proven in the previous lecture.

Recall that our analysis of the GCS algorithm only requires that nodes satisfying
FC (respectively SC) run in fast (respectively slow) mode. The modification of the
algorithm you describe here will modify the behavior of GCS only when neither FC nor
SC applies in such a way that the algorithm maintains a bound on the global skew.

(a) Add the condition that any node v ∈ V satisfying Lv(t) = maxw∈V {Lw(t)} is in
slow mode at time t and determine a suitable trigger condition. Show that your
trigger condition does not conflict with FT.

(b) Apply the techniques used in the (refined) Max Algorithm to maintain an estimate
Mv(t) of the largest clock value throughout the system at each v ∈ V . Show
that maxv∈V {Lv(t)} ≥ Mv(t) ≥ maxv∈V {Lv(t)} − Gmax for some Gmax. (Hints:
Make minimal modifications to the Max Algorithm, so that the reasoning changes
very little. This way, you can argue that the proof of the bound is analogous.
Note that you need to be slightly more careful regarding the rate at which nodes
increase the estimates when Lv(t) < Mv(t): use rate hv/ϑ ≤ 1. You should obtain
Gmax = ((ϑ− 1/ϑ)T + (ϑ− 1)d+ u)D.)

(c) Show that Lv(t) = minw∈V {Lw(t)} implies that v does not satisfy ST at time t.

(d) Assume that σ = µ/(ϑ − 1) > 1 and that maxv∈V {Hv(0)} ≤ Gmax. Add the
condition that any node v ∈ V satisfying Lv(t) < Mv(t) such that ST does not hold
at time t is in fast mode. Conclude that the modified algorithm has global skew
G ≤ Gmax and still obeys FC and SC. What is the resulting local skew, provided
that max{v,w}∈E{Hv(0)−Hw(0)} ≤ δ?

Solution

a) The trigger condition is that Lv(t) ≥ L̃w(t) for all w ∈ Nv, which is implied by
Lv(t) = maxw∈V {Lw(t)}. If FTholds, there are s ∈ N and x ∈ Nv so that L̃x(t) −
Lv(t) > (2s− 1)δ > 0, i.e., the new trigger condition cannot hold.

b) We modify the Max Algorithm as follows.

Observe that (i) Mv(t) ≥ Lv(t) at all times, (ii) Mv is never increased beyond
maxv∈V {Lv(t)} (either Mv(t) = Lv(t) or it increases at rate hv/ϑ ≤ 1, and it is
never set to a value larger than maxv∈V {Lv(t)}, as messages are under way for at
least d − u time), and (iii) Mv(t) increases at least at rate 1/ϑ while being stored,
while estimates “increase at rate 1” while travelling as a message. Arguing as in the
lecture, we thus get a bound of Gmax ≤ ((ϑ− 1/ϑ)T + (ϑ− 1)d+ u)D.

c) If Lv(t) = minw∈V {Lw(t)}, then L̃x(t) > Lx(t)− δ ≥ Lv(t)− δ for all x ∈ Nv. Thus,
Lv(t)− L̃x(t) < δ ≤ (2s− 1)δ for any s ∈ N and x ∈ Nv, so ST 1 does not hold.

d) Assume for contradiction that the global skew reaches Gmax+ε for some ε > 0. Thus,
there is a time t1 so that maxv∈V {Lv(t1)} −minv∈V {Lv(t1)} = Gmax + δ. Let t0 be
maximal such that t0 ≤ t1 and maxv∈V {Lv(t0)}−minv∈V {Lv(t0)} = Gmax; as logical



Algorithm 1: Max Estimate Algorithm.

1 Mv(0) := Lv(0)
2 at all times t:
3 if Mv(t) = Lv(t) then
4 increase Mv at rate lv
5 else
6 increase Mv at rate hv/ϑ
7 if received 〈M〉 at time t and M + d− u > Mv(t) then
8 Mv(t) := M + d− u
9 if Hv(t) = kT for some k ∈ N then

10 send 〈Mv(t)〉 to all neighbors

clocks are continuous and Lv(0)− Lw(0) = Hv(0)−Hw(0) ≤ Gmax for all v, w ∈ V ,
such a time exists.

Consider maxv∈V {Lv(t)}. Whenever Lv(t) = maxw∈V {Lw(t)}, by a) v is in slow
mode, i.e., lv(t) = hv(t) ≤ ϑ. It follows that maxv∈V {Lv(t1)} −maxv∈V {Lv(t0)} ≤
ϑ(t1 − t0). Now consider minv∈V {Lv(t)}. Whenever Lv(t) = minw∈V {Lw(t)} at a
time t ∈ (t0, t1], we have by b) that Mv(t) ≥ maxv∈V {Lv(t0)}−Gmax > Lv(t) and by
c) that STis not satisfied at v. Hence, v is in fast mode and thus lv(t) = (1+µ)hv(t) ≥
1+µ > ϑ, as σ > 1. Hence minv∈V {Lv(t1)}−minv∈V {Lv(t0)} > ϑ(t1−t0). It follows
that

Gmax + δ = max
v∈V
{Lv(t1)} −min

v∈V
{Lv(t1)} < max

v∈V
{Lv(t0)} −min

v∈V
{Lv(t0)}) = Gmax ,

a contradiction.

By a), adding the new trigger condition for slow mode is not in conflict with FT,
and the modification from d) is not in conflict with STby construction. Hence,
Theorem 2.9 still applies and we can conclude that
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Task 2: Controlling Uncertainty

In the lecture, we assumed that v ∈ V has an estimate L̃w of the logical clock Lw of
each of its neighbors w ∈ Nv, satisfying that Lw(t)− δ < L̃w(t) ≤ Lw(t) at all times t.
In this exercise, you determine δ for a straightforward way of deriving such an estimate.
You may assume that max{v,w}∈E{Hv(0)−Hw(0)} ≤ δ− (ϑ(1 +µ)− 1/ϑ)d throughout
this exercise and that ϑ ∈ O(1).

a) Suppose w ∈ V sends a message with its current logical clock value whenever Hv(t) =
kT for some k ∈ N, and also at time 0. Determine a (good) estimate L̃w(t) that
v ∈ V can compute based on this information. Bound the resulting δ. (Hint: It’s ok
to be a bit sloppy with lower order terms or constant factors, as long as you get the
asymptotics right.)

b) For fixed values of all other parameters, determine a choice of µ asymptotically
minimizing our upper bound on the local skew (i.e., up to constant factors). (Hint:
Argue that δ ∈ Ω(G) implies that the upper bound is trivial and that it doesn’t
matter (asymptotically) to choose µ to be at least max{u/(T +d), 8(ϑ− 1)}. Having
ruled out these corner cases, check how the bound changes if a value of µ satisfying
these constraints is doubled.)



c) For this method of determining estimates, the asymptotically optimal choice of µ you
computed, and the global skew bound you obtained in the first exercise, determine
the bound on the local skew as function of T (use the same value of T for global and
local estimates).

Solution

a) Let t0 be the time when v ∈ V receives the first message from w ∈ Nv. For t ≥ t0,
denote by tr the most recent time when v received a message from w, and let ts ∈
(tr − d, tr − d+ u) be the time when it was sent. We have that

Lw(t) ≥ Lw(tr) + t− tr

≥ Lw(tr) +
Hv(t)−Hv(tr)

ϑ

≥ Lw(ts) + (tr − ts) +
Hv(t)−Hv(tr)

ϑ

≥ Lw(ts) + d− u+
Hv(t)−Hv(tr)

ϑ
.

Thus, setting L̃w(t) := Lw(ts) + d−u+ Hv(t)−Hv(tr)
ϑ at times t ≥ t0 is a valid choice.

Now let us check by how much this choice may underestimate Lw(t).

Lw(t)−
(
Lw(ts) + d− u+

Hv(t)−Hv(tr)

ϑ

)
≤ ϑ(1 + µ)(t− ts)− d+ u− t− tr

ϑ

=

(
ϑ(1 + µ)− 1

ϑ

)
(t− tr) + ϑ(1 + µ)(tr − ts)− d+ u

<

(
ϑ(1 + µ)− 1

ϑ

)
(t− ts) + u

<

(
ϑ(1 + µ)− 1

ϑ

)
(T + d) + u

=

(
ϑµ+

(ϑ+ 1)(ϑ− 1)

ϑ

)
(T + d) + u

< (ϑµ+ 2(ϑ− 1))(T + d) + u

< 3ϑµ(T + d) + u ,

where the last step exploits that σ > 1.

Regarding the estimates to be used before the first message is received, simply
initialize the estimate to Hv(0) − δ + (ϑ(1 + µ) − 1/ϑ)d and increase it at rate
hv/ϑ; this is a safe lower bound, which at time t < d is off by no more than
δ − (ϑ(1 + µ)− 1/ϑ)(d− t) < δ.

To see that the obtained bound is (asymptotically) optimal (given this simple com-
munication scheme), observe that (i) a difference of u is unavoidable by indistin-
guishability, (ii) Ω(T + d) time passes between updates, and (iii) in the meantime,
the logical clock rate of w may be anywhere between 1 and ϑ(1 + µ). (ii) and (iii)
yield that δ ∈ Ω((ϑ− 1 + ϑµ)(T + d)) = Ω(ϑµ(T + d)).

b) Abbreviate c := ϑ(T + d) and recall that
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If cµ < u, we increase µ such that cµ = u, which increases the bound by at most a
factor of 2. Thus, we can assume cµ ≥ u in the following, which implies that
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Next, if log(µ/(ϑ−1)) < 3, we increase µ such that µ = 8(ϑ−1), which increases the
bound by no more than factor 8. If log G/(cµ) < 3, the upper bound is in Ω(G) and
thus trivial; in this case, reducing µ can’t hurt. Having dealt with the corner cases,
write `1 := log G/(cµ) and `2 := logµ/(ϑ− 1). Doubling µ thus changes the term in
the asymptotic expression from

cµ

⌈
lnG/(cµ)

lnµ/(ϑ− 1)

⌉
= cµ

⌈
`1
`2

⌉
to 2cµ

⌈
`1 − 1

`2 + 1

⌉
≥ cµ

⌈
`1
`2

⌉
,

where the inequality uses the assumption that `1 ≥ 3 and `2 ≥ 3. Hence, increasing µ
cannot improve the bound by more than a constant factor. As ϑ ∈ O(1), we conclude
that the choice µ := ϑu/c+ 8(ϑ−1) = u/(T +d) + 8(ϑ−1) is optimal up to constant
factors.

c) According to b), we can safely set µ := u/(T + d) + 8(ϑ− 1). Plugging in the bounds
from a) and Task 1 d), we get that
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Task 3*: Control Right from the Beginning

So far, we have largely ignored the issue of network initialization. It is unrealistic
to assume that all nodes start executing the algorithm precisely at time 0. Indeed,
this would require perfect synchronization! Instead, we now assume that nodes can
spontanteously wake up and execute the algorithm at any time, and that a node wakes
up when it receives its first message. The hardware clock of a node is 0 at the time
when it wakes up. W.l.o.g., assume that at least one node wakes up at time 0.

a) Initialize the network by flooding, i.e., on wake-up, a node broadcasts a message to
all its neighbors. Adapt the clock estimation technique from Task 2 to account for
the modified initialization.

b) Extend the hardware clock functions, logical clock functions, and clock estimates to
be defined from time 0 on such that (i) 1 ≤ hv(t) ≤ ϑ for all t, (ii) Lv(t) = Hv(t) at
times t when v has not yet woken up, (iii) Lw(t)− δ < L̃w(t) ≤ Lw(t) at all times t,
and (iv) node v is in slow mode at times t when it has not woken up yet according
to the (modified) GCS algorithm.

c) Convince Will and your fellow students that this approach yields the same skew
bounds you computed in Tasks 1 and 2!


