
Exercise 4: Fault Frustration

Task 1: I’m Getting Tired of these Delays!

a) Show that the Srikanth-Toueg algorithm has skew at most d + u.

b) Show that this skew bound is tight. It suffices to do so for the maximal number of
faults dn/3e − 1.

Solution

a) We revisit the last paragraph of the proof of Lemma 4.3. If t′ is the minimum time
after tp when a node transitions to pulse, it must have received n−f ≥ f+1 propose
messages by that time. The senders of these messages send propose messages to all
nodes. These must arrive by time t′ + u: if ts is such a sending time, we have that
t′ ≥ ts + d− u, but all messages arrive by time ts + d ≤ t′ + u. Thus, all non-faulty
nodes have transitioned to propose by time t′ + u and sent respective messages. By
time t′ + d + u, all non-faulty nodes have transitioned to pulse.

b) Split the correct nodes into sets F and S, where |F | = n − 2f ≥ f + 1 and |S| =
n− f − |F | = f . All nodes have hardware clock rate 1. Messages to nodes in S are
delayed by d− ε (for some arbitrarily small ε > 0), while messages to nodes in F are
delayed by d − u + ε. Hv(0) := 0 for all v ∈ Vg. Faulty nodes never send messages
to nodes in S and keep sending propose messages to nodes in F that arrive exactly
on each transition to start and ready.

Observe that (i) nodes in F always transition at the same times, (ii) nodes in S
always transition at the same times, (iii) all nodes always take the exact same time
to transition from pulse to ready, and, unless “pulled” by the f + 1 threshold rule,
the same time to transition from ready to propose, (iv) if the f + 1 threshold rule
applies, this is for the nodes in S and happens d − ε time after the nodes from F
transitioned to propose, and (v) if the f + 1 threshold rule does not apply, the time
difference between nodes in F and S transitioning to pulse increases by u− 2ε.

Hence, eventually there will be an iterations in which the nodes in F will transition
to propose when the messages from nodes in F arrive, i.e., d−ε time after them. It
takes them another d− ε time to receive the messages of their fellow nodes in S and
transition to pulse. In constrast, the nodes in F transition to pulse already d−u+ε
time after transitiong to propose. We thus have a skew of 2(d− ε)− (d− u + ε) ≥
d + u− 3ε. As ε can be chosen arbitrarily small, it follows that S ≥ d + u.

Task 2: Stop Failing and Start Synchronizing!

In this exercise, 3f ≥ n, i.e., there may be “too many” Byzantine nodes.

a) Show that clock synchronization is impossible with this many faults if the constant
amortized progress condition is satisfied. (Hint: First “spend” some of the uncer-
tainty and clock drifts to show that logical clocks cannot increase too rapidly. Then
argue that any solution would imply a pulse synchronization algorithm.)

b) Show that even with this many faults, there is an algorithm that achieves constant
skew and has unbounded logical clocks. You may assume that maxv∈Vg{Hv(0)} ≤
H ∈ R+. (Hint: Solve the problem without communication!)

c) Is the solution from b) useful? (Remark: This is an open-ended discussion. There is
not necessarily a single right answer.)



Solution

a) Assume for contradiction that there was an algorithm A with constant amortized
progress that solved clock synchronization with bounded skew G and tolerates f ≥
n/3 Byzantine faults. Set u′ := u/2, d′ := d− u/4, and ϑ′ := 1 + (ϑ− 1)/2. Consider
the algorithm on executions with delays from (d′ − u′, d′) and hardware clock rates
from [1, ϑ′]. Applying Lemma 2.4, we can see that no node ever can increase its
logical clock by more than 2G in u/4 time.

Using this information and assuming that Hv(0) = 0 for all v ∈ Vg, we can construct
a pulse synchronization algorithm as follows. We run A, where each node generates a
pulse whenever its logical clock reaches a multiple of a (to-be-determined) parameter
T that is larger than maxv∈Vg

{Lv(0)}; note that the latter value is known, as Lv(0)
is determined by Hv(0). As A satisfies constant amortized progress, there is some
S (depending on G and the constants in the progress condition) such that for each
k ∈ N, it holds that

max{t ∈ R+
0 | ∃v ∈ Vg : Lv(t) = kT} −min{t ∈ R+

0 | ∃v ∈ Vg : Lv(t) = kT} ≤ S ,

i.e., the pulse synchronization algorithm has skew S. By choosing T := 16GS/u, the
bound on the increase of logical clocks implies that it takes at least 2S time for a node
that generates a pulse to generate the next. Thus, we have that Pmin := S is a valid
minimum period for the algorithm. Lastly, because A satisfies the amortized progress
condition, there is some bounded maximum period Pmax that the new algorithm
satisfies.

In summary, we have constructed a pulse synchronization algorithm for 3f ≥ n under
the condition that Hv(0) = 0 for all v ∈ V (with modified delay bounds and clock
drift, which does not matter). This is a contradiction to Theorem 4.6, so the original
assumption that a clock synchronization algorithm with constant amortized progress
and bounded skew tolerating f > n/3 faults must be wrong.

b) We set Lv(t) := log(1 + Hv(t)) for all v ∈ Vg. As the logarithm is increasing and
log(a + b) ≤ log a + log b for a, b ≥ 1, this implies for v, w ∈ V and t ∈ R+

0 that

Lv(t)− Lw(t) = log(1 + Hv(t))− log(1 + Hw(t))

≤ log(1 + H + ϑt)− log(1 + t)

≤ log(1 + H) + log(ϑ(1 + t))− log(1 + t)

≤ H + log ϑ .

c) All the “algorithm” from b) does is to compute a function of the hardware clock. This
function cannot contain any additional information or useful guarantee. Concretely,
here it is just rescaling clocks non-uniformly to keep the skew of the logical clocks
small, but the clocks in turn cannot be used to synchronize events at the different
nodes any better than directly using the hardware clock values would.


