
Exercise 5: Aligning our Clocks

Task 1: Converging to Agreement

a) Given a skew bound Sr for pulse r, determine Tr and δr so that performing a respec-
tive iteration of the loop of Algorithm 5.2 results in correct execution of round r.

b) Determine a skew bound Sr+1 for pulse r + 1 as function of Sr for the (minimal)
choices of Tr and δr from a). What is S∞ := limr→∞ Sr?

c) Assume that maxv∈Vg
{Hv(0)} ≤ H for some known H > S∞. Given ε, determine

the round rε so that Sr ≤ S∞ + ε for all r ≥ rε. How long does it take in terms
of real time until this skew bound is reached? (Hint: an asymptotic bound suffices,
where we consider ϑ (and thus all values depending only on ϑ) to be a constant.)

d) Is this bound good/bad/optimal?

Solution

a) Following the lecture notes, we can directly use the lower bound on T from Lemma 5.8
and choose δr as in Lemma 5.9, yielding Tr/ϑ ≥ (ϑ2 + ϑ + 1)Sr + ϑd and δr :=
u+ (ϑ− 1)d+ 2(ϑ2 − ϑ)Sr.

b) Choosing δr and minimal Tr according to a), be can bound ‖~pr+1‖ analogously to
the proof of Lemma 5.8, yielding

‖~pr+1‖ ≤
Sr
2

+ δr +

(
1− 1

ϑ

)
Tr

=
Sr
2

+ u+ (ϑ− 1)d+ 2(ϑ2 − ϑ)Sr + (ϑ3 − 1)Sr + (ϑ2 − ϑ)d

=
(2ϑ3 + 4ϑ2 − 4ϑ− 1)Sr

2
+ u+ (ϑ2 − 1)d =: Sr+1 .

If q := (2ϑ3 + 4ϑ2− 4ϑ− 1)/2 < 1 (which is equivalent to the requirement on ϑ from
Theorem 5.10), we thus have

lim
r→∞

Sr =
u+ (ϑ2 − 1)d

1− q
=

2u+ 2(ϑ2 − 1)d

3 + 4ϑ− 4ϑ2 − 2ϑ3
.

c) We have that

Sr = qr−1S1 +

r−2∑
k=0

qk(u+ (ϑ2 − 1)d)

= qr−1S1 +
1− qr−1

1− q
· (u+ (ϑ2 − 1)d)

= qr−1H + (1− qr−1)S∞ .

Hence, Sr ≤ S∞ + ε is equivalent to

qr−1(H − S∞) ≤ ε

⇔ H − S∞
ε

≤
(

1

q

)r−1

⇔ 1 + log1/q

H − S∞
ε

≤ r



Thus, rε := 1 + dlog1/q(H − S∞)(ε)e is sufficient. In order to bound the real time
until this bound is achieved, consider first the total nominal duration of all respective
rounds:

rε−1∑
r=1

Tr =

rε−1∑
r=1

ϑ((ϑ2 + ϑ+ 1)Sr + ϑd)

=

rε−1∑
r=1

ϑ((ϑ2 + ϑ+ 1)(qr−1H + (1− qr−1)S∞) + ϑd)

< 3ϑ3
rε−1∑
r=1

((qr−1H + (1− qr−1)S∞) + d)

< 3ϑ3

( ∞∑
r=0

qr(H − S∞) +

rε−1∑
r=1

(S∞ + d)

)

= 3ϑ3
(

1

1− q
· (H − S∞) + (rε − 1)(S∞ + d)

)
∈ O

(
H + (S∞ + d) log1/q

H − S∞
ε

)
= O

(
H + d log1/q

H − S∞
ε

)
Here, the second to last step assumes that H > S∞ + ε (i.e., rε ≥ 2), while the last
step uses that S∞ ∈ O(u + (ϑ − 1)d) ⊆ O(d). While hardware clock rates are at
least 1, it is possible that clocks are set back, resulting in rounds that are longer than
time Tr. However, we know from the analysis that the maximum duration is Tr + δr,
where δr ≤ Tr, so the asymptotic bound does not change.

d) The first summand ofH is clearly necessary, as this is the time required for the correct
nodes to even generate the first pulse. The factor of d in the second summand is
also clearly necessary, as some communication must occur in order to synchronize
the nodes. Thus, the only possible overhead is the logarithmic factor due to the
exponential convergence towards S∞. This factor is inherent to the technique (i.e.,
approximate agreement), but not known to be necessary for clock synchronization in
the presence of faults.

Task 2: We’re not Synchronized!

a) Fix any T and S in accordance with Theorem 5.10, and compute ∆v
w as in Lemma 5.9.

Assume that node v uses default value 0 for ∆v
w if no (or conflicting) messages

are received from w during a round. Under these conditions, give an execution of
Algorithm 5.2 in which skews remain larger than T/2 forever. You may assume that
ϑ is sufficiently small to simplify matters, and negative hardware clock values are
permitted (these represent late initialization).

b) Now assume that there are n−f ≤ n−2 correct nodes v ∈ Vg satisfying 0 ≤ Hv(0) ≤
S and you are given an execution in which the skew is S for each pulse, and each
correct node generates a pulse exactly every P ∈ R+ time. Moreover, faulty nodes
never send messages and you may assume that the algorithm’s parameters are such
that, potentially, ∆v

w could become much larger than S (in a correct execution of
the algorithm). Show that if one of the faulty nodes is merely a “confused” correct
node whose initial hardware clock value is off, there is an execution in which this
node never synchronizes with the others. (Hint: Don’t crunch numbers, find a way



of giving the faulty nodes control over the confused node’s clock adjustments, and
use this to keep it away from the others!)

c∗) Can you fix this by modifying the algorithm? That is, make sure that in the scenario
of b), but even with up to f − 1 < n/3 Byzantine nodes, eventually all correct nodes
have skew at most S? Again, you may assume that ϑ is close to 1. (Hint: Modify
the behavior of nodes when they have proof that something is amiss so that they
either catch up with the main field or slow down enough for the main field to catch
up with them.)

Solution

a) We split the nodes into two groups A∪̇B so that min{|A|, |B|} > f . Nodes v ∈ A
have Hv(0) = 0, nodes in v ∈ B have Hv(0) = −H := −(T − ϑ2S − ϑd − u/2). We
choose ϑ > 1 sufficiently small such that H > ϑ2S + ϑd; as with ϑ = 1 we had that
T ≥ 6(u + d) and S = 2u and the relevant expressions are for ϑ ≥ 1 continuous
functions of ϑ, this is possible. Note also that for sufficiently small ϑ > 1, we have
that H ≥ T/2. All hardware clock rates are 1 and all message delays are d − u/2.
Due to symmetry, all nodes in A will have the same logical clock values at all times,
and the same holds true for the nodes in B.

Suppose w ∈ A (w ∈ B) sends a message at time t, i.e., Lv(t) = (r− 1)T + (ϑ+ 1)S.
This message is received at time t+ d− u/2, when v ∈ A (v ∈ B) has

Lv

(
t+ d− u

2

)
= Lw(t) + d− u

2
= (r − 1)T + (ϑ+ 1)S + d− u

2

for some r ∈ N, as d − u/2 < S + ϑd, i.e., v has not adjusted its clock during this
iteration of the loop of the algorithm yet. Thus, if v receives no other messages

during [pv,r, τv,r], it computes S
(f+1)
v = −(ϑ−1)d−u/2− (ϑ2−ϑ)S and S

(n−f)
v = 0,

setting its logical clock back by λ := ((ϑ − 1)d + u/2 + (ϑ2 − ϑ)S)/2 at time τv,r.
This results in iteration r of the loop being complete after T + λ real time.

We claim that this happens every time at all nodes. To show this, assume for
contradiction that this is not true, and let r be the minimal iteration number in
which this occurs. Assume first that a node v ∈ A receives a message from w ∈ B
during [pv,r, τv,r], which w sent at time t ≤ τv,r−d+u. As the claim was not violated
before, we have that

pv,r = (r − 1)(T + λ) + S
τv,r = (r − 1)(T + λ) + (ϑ2 + ϑ+ 1)S + ϑd

t = (r′ − 1)(T + λ) + (ϑ+ 1)S +H

for some r′ ∈ N. As t ∈ [pr − d+ u/2, τv,r − d+ u/2], it follows that

0 ≤ (r′ − r)(T + λ) + ϑS + d− u

2
+H ≤ (ϑ2 + ϑ)S + ϑd .

As H > ϑ2S + ϑd, the upper bound enforces r′ < r. However, T > ϑS + d + H,
violating the lower bound. Hence, consider the other case in which v ∈ B receives a
message from w ∈ A during [pv,r, τv,r] instead. As the claim was not violated before,
we have that

pv,r = (r − 1)(T + λ) + S +H

τv,r = (r − 1)(T + λ) + (ϑ2 + ϑ+ 1)S + ϑd+H

t = (r′ − 1)(T + λ) + (ϑ+ 1)S



yielding that

0 ≤ (r′ − r)(T + λ) + ϑS + d− u

2
−H ≤ (ϑ2 + ϑ)S + ϑd .

As H > ϑS + d, it must hold that r′ > r. However, the lower bound then implies
that

T < H + ϑ2S + (ϑ− 1)d+
u

2
,

which is not the case. We conclude that the claim holds for all times. In particular,
the skew between nodes in v ∈ B and v ∈ A is

pv,r − pw,r = H ≥ T

2

for all r ∈ N.

b) Observe that the confused node v would produce pulses exactly every T time if
it never received any messages during [pv,r, τv,r] and its hardware clock rate is 1.
From Theorem 5.10, we know that P ∈ [T/ϑ − S, T + 2S], where (1 − 1/ϑ)T < S.
Accordingly, P ∈ T ±O(S).

If T < P , choose the initial hardware clock value of v such that it misses all but f
messages from correct nodes in each pulse, which it receives very early (i.e., during
[pv,r, pv,r +S]). Accordingly, v will compute values ∆v

w � −S for these nodes. Thus,
if a faulty node w now sends a message such that the resulting ∆v

w ∈ [−O(S), 0], v
will set its clock forward by ∆v

w/2 (as it defaults to ∆v
w = 0 for the missing messages).

Recalling that ∆v
w can be large compared to 2S, the faulty nodes can thus indeed

make sure that v produces pulses exactly every P time and this scenario repeats.

Similarly, if T ≥ P , choose the initial hardware clock value of v such that it misses
all but f messages from correct nodes in each pulse, which it receives very late (i.e.,
during [τv,r − S, τv,r]). Then faulty nodes can make v set its clock back sufficiently
to match the period P or the other nodes and stay in this state indefinitely.

c∗) See https://people.mpi-inf.mpg.de/ clenzen/pubs/KL18self-stabilizing.pdf .

https://people.mpi-inf.mpg.de/~clenzen/pubs/KL18self-stabilizing.pdf

