
Exercise 6: Containment

Task 1: Containing Choice

The goal in this exercise is to prove Lemma 6.5.

a) Show the equivalence stated in the lemma.

b) Construct a k-bit MUXM implementation out of two (k− 1)-bit MUXM implemen-
tations and a CMUX. (Hint: To show correctness, make a case distinction on the
kth control bit, which is fed to the CMUX.)

c) What is the size of the resulting MUXM implementation when applying the con-
struction from b) recursively?

Solution

a) Suppose MUXM(x, s) = b ∈ {0, 1}, or, equivalently, that for all x � y ∈ {0, 1}2k and
s � s′ ∈ {0, 1}k, we have that ys′ = MUX(y, s′) = b. It follows that xs′ = b for each

s � s′ ∈ {0, 1}k, as otherwise z ∈ {0, 1}2k given by

zs :=

{
1− b if s = s′

ys else

satisfied that x � z and MUX(z, s′) = 1− b. As this holds for any s � s′ ∈ {0, 1}k,
this shows that

∀s � s′ ∈ {0, 1}k : xs′ = b .

For the reverse implication, assume that the latter is true. Thus, for all x � y ∈
{0, 1}2k and s � s′ ∈ {0, 1}k, MUX(y, s′) = b. This is equivalent to MUXM(x, s) =
b ∈ {0, 1}.

b) For s ∈ {0, 1,M}k, denote by s1 the most significant bit of s and by s2...k the
remaining bits of s. Take two copies of a circuit implementing a (k − 1)-bit MUXM

and fix inputs x ∈ {0, 1,M}2k , s ∈ {0, 1,M}k. To the first one, feed the 2k−1 inputs
xs′ with s′1 = 0 and the control bits s2...k. Similarly, the second copy receives inputs
xs′ with s′1 = 1 and control bits s2...k. The outputs of these circuits are fed as
inputs into a CMUX, whose control bit is given by s1. We claim that this results
in an implementation of a k-bit MUXM, whose output is given by the output of the
CMUX.

To show this, we use the equivalence from a) and make a case distinction. If s1 = 0,
then s′1 = 0 for any s � s′. Hence, MUXM(x, s) = b ∈ {0, 1} if and only if for all
s2...k � s′2...k ∈ {0, 1}k−1 we have that x0s′2...k

= b. This is equivalent to the first
(k− 1)-bit MUXM having output b, which due to s1 = 0 is equivalent to the output
of the CMUX being 0. Arguing analogously, we see that the implementation is also
correct for s1 = 1.

It remains to consider the case that s1 = M. Thus, the equivalence from a) shows that
MUXM(x, s) = b ∈ {0, 1} if and only if we have that for all s2...k � s′2...k ∈ {0, 1}k−1
both that x0s′2...k

= b and that x1s′2...k
= b. This is equivalent to both (k − 1)-bit

MUXM implementations having output b. Accordingly, the selectable inputs of the
CMUX are both b, and its output is b despite the select bit being M.

c) The size of a k-bit MUXM implementation following this construction is twice the
size of a (k − 1)-bit MUXM plus that of a CMUX. Summing over all levels of the

construction, we thus get
∑k−1

k′=0 2k
′

= 2k − 1 times the size of a CMUX. The size
of a CMUX is constant, so we end up with size O(2k).

Task 2: Copy and Conquer

Masking registers are registers that have somewhat predictable behavior when storing
a metastable bit. A mask-0 register R has the following behavior. Like an ordinary
register, if R stores a bit b ∈ {0, 1}, then every time the value of R is read, it will return
b. If the bit stored in R is M , then every sequence of accesses to R will return a sequence
of values of the form 00 · · · 0M11 · · · 1. In particular, every sequence of accesses to R
will return a sequence of values containing at most a single M .

a) Let f : {0, 1}n → {0, 1} be a function, and suppose x ∈ {0, 1,M}n satisfies fM(x) 6=
M . Let C be an arbitrary (not necessarily metastability containing!) circuit imple-
menting f . Suppose the individual bits of x are stored in mask-0 registers, and let
x(1), x(2), . . . , x(2n+1) denote the values of x read by a sequence of accesses to the
registers storing x. Finally, for each i ∈ {1, 2, . . . , 2n + 1}, define yi = C(x(i)). Show
that the value fM(x) can be inferred from y1, y2, . . . , y2n+1.

b) Come up with a small circuit that sorts its n inputs according to the total order
0 ≤ M ≤ 1. That is, devise a circuit C with n inputs and n outputs such that if
y = C(x) then we have y1 ≤ y2 ≤ · · · ≤ yn, where y has the same number of 0s,
1s, and Ms as x. (Hint: Figure out a solution sorting two values and then plug it
into a binary sorting network to get the general circuit. You don’t have to (re)invent
sorting networks, you may just point to a reference.)

c) Combine a) and b) to derive a circuit implementing fM from any (non-containing)
circuit implementing f ! Your solution should only be by a factor of nO(1) larger than
to the non-containing solution.

Solution

a) As at most a single M is read from each masking register, we have that at least n+ 1
of the copies are stable. For each of these n+ 1 copies, by definition of fM the circuit
implementing f will compute output fM(x).

b) Given two inputs x1 and x2, in terms of the order 0 ≤ M ≤ 1, we simply have that
OrM(x1, x2) = max{x1, x2} and AndM(x1, x2) = min{x1, x2}. Using an Or and
an And gate as comparator in a sorting network, we get a circuit of size O(n log n)
sorting n inputs.

c) We make 2n + 1 copies of the input and feed each copy into a copy of the circuit C
implementing f , as in a). If fM(x) = b ∈ {0, 1}, from a) we know that at least n + 1
of the outputs are b. In particular, after sorting the (n + 1)th value is b. Using b),
we can output the (n + 1)th value of the sorted sequence. In total, we have spent
O(n|C|+ n log n) ⊂ O(nO(1)|C|) gates.

Task 3*: Clocked Circuits

a) How would a model for clocked circuits based on the same worst-case assumptions
look like? (Hint: Reading up on it is fine.)

b) Standard registers, when being read, will output M if they’re internally metastable
and 0 or 1, respectively, when they’re stable. Show that they add no power in terms
of the functions that can be computed! (Hint: Unroll the circuit, i.e., perform the
multi-round computation in a single round with a larger circuit.)

c) In Task 2, you saw that masking registers allow for more efficient metastability-
containing circuits. Show that they are also computationally more powerful, i.e.,
they can compute functions that cannot be computed with masking registers! (Hint:
You already used this in Task 2!)

