
Exercise 7: Spades of Gray

Task 1: Reflecting on Gray code

a) Given a B-bit Gray code, generate a (B + 1)-bit Gray code by using the code twice,
once forward with 0 as prefix and then reversed with 1 as prefix. Using this scheme
recursively, write down a 3-bit Binary Reflected Gray Code (BRGC).

b) Expand the code to allow for metastability, by adding the “codewords” G(x)∗G(x+1)
for x ∈ [2B ], where G denotes the B-bit BRGCencoding function. We call the union
of such strings and stable codewords valid strings. Order the valid strings such that
the unstable strings stabilize only to adjacent stable codewords, where the order of
the stable codewords is given by the natural order on the encoded values. Write the
result down for your 3-bit code.

c) Define

maxG{G(x), G(y)} := G(max{x, y})
minG{G(x), G(y)} := G(min{x, y}) ,

i.e., according to the order on stable BRGCstrings. Show that the metastable closure
of maxG and minG restricted to inputs that are valid strings is identical to what you
would get if you extended maxG and minG to valid strings G(x)∗G(x+ 1) according
to the above order.

d) Prove that there are comparator circuits for valid strings w.r.t. the above order.

Solution

a) Let G and G denote the list of codewords of the B-bit Gray code and its reverse,
respectively. Then the list of the (B + 1)-bit code is given by 0G ◦ 1G, where bG
means to put b ∈ {0, 1} in front of each codeword and ◦ concatenation of lists. As
G is a Gray code, the only place we need to check regarding the number of changing
bits is when switching between the two lists. However, as the last codeword of G is
the first of G, the only differing bit is the front one, i.e., we indeed constructed a
Gray code.

0 000 4 110

1 001 5 111

2 011 6 101

3 010 7 100

b) For a valid string G(x) ∗G(x + 1), x ∈ [2B ], we order G(x) <G G(x) ∗G(x + 1) <G

G(x + 1). Given the already defined total order <G on stable strings, this results in
a total order on all valid strings. As G(x) ∗G(x + 1) can stabilize only to G(x) and
G(x + 1), as G(x) and G(x + 1) differ only in a single bit, this construction meets
the requirements.

0 000 4 110

0-1 00M 4-5 11M

1 001 5 111

1-2 0M1 5-6 1M1

2 011 6 101

2-3 01M 6-7 10M

3 010 7 100

3-4 M10 --- ---



c) Suppose s and t are valid strings with s <G t. A simple, but tedious case distinc-
tion (looking at the table is the easiest way, though not very formal) shows that
this implies that for any stabilizations s′ of s and t′ of t, maxG(s′, t′) = t′ and
minG(s′, t′) = s′. Thus, by definition of the metastable closure,

(maxG)M(s, t) = ∗
t�t′∈{0,1}B

t′ = t

(minG)M(s, t) = ∗
s�s′∈{0,1}B

s′ = s .

d) By Theorem 6.6, we can implement (maxG)M(s, t) and (minG)M(s, t). By c), these
functions are consistent with the order on valid strings we defined above. Thus, we
can implement comparator circuits for this order on valid strings.

Task 2: Conversion

a) Given circuits that convert B-bit BCRG and the reversed code to unary code, re-
spectively, provide a circuit with O(2B) additional gates that converts (B + 1)-bit
BCRG to unary code.

b) Given a circuit that converts B-bit valid strings to (2B−1)-bit unary code (mapping

G(x) ∗ G(x + 1) to 1xM02
B−2−x), provide a circuit with at most 2B − 1 additional

gates and depth one larger that converts the reversed code.

c) Combine the previous results into a recursive construction that converts B-bit valid
strings to (2B − 1)-bit unary code with a circuit of size O(B2B) and depth O(B).

d) Compare this result to what you would get from applying the construction from
Theorem 6.6.

e*) Take a closer look at the circuits you constructed and/or the reverse code. Can you
come up with a more efficient decoding circuit? By how much does size and depth
improve in your new solutions?

Solution

a) Denote by C and C the circuits for the B-bit code and its reverse. Denoting by s
the input, feed s2...B+1 into both circuits. The first 2B − 1 output bits are given by
the bit-wise Or of the output of C with s1. Bit 2B equals s1. The remaining 2B − 1
bits are given by the bit-wise And of s1 with the output of C. This adds 2(2B − 1)
gates and increases depth by 1.

To see that this construction yields the correct output, observe that the structure of
BCRG imposes that if s1 = 0, the encoded number is given by decoding s2...B+1 as
B-bit BCRG, which is guaranteed by the circuit. If s1 = 1, the encoded number is
2B + x, where x is given by decoding s2...B+1 for the reverse code, which, again, is
exactly what the circuit computes.

b) In the reverse code, the codewords “count down,” i.e., the kth codeword of the
original code represents 2B − k. The circuit C decoding the original code outputs

1k−102
B−k for this codeword, but for the reverse code we need to output 12

B−k0k−1.
By negating each output bit of C and reversing their order, this is easily achieved by
adding 2B − 1 gates and increasing depth by 1.



c) Denote by |C| the size of a circuit and by d(C) its depth. Decoding a 1-bit code is
trivial with a circuit of size 0 and depth 0. Given a circuit CB for B-bit code, where
B ∈ N, we first apply b) to obtain a circuit CB of size |CB | + 2B − 1 and depth
d(CB) = d(CB) + 1 decoding the reverse code. We then apply a) to obtain a circuit
CB+1 decoding (B + 1)-bit code of size |CB |+ |CB |+ 2(2B − 1) = 2|CB |+ 3(2B − 1)
and depth d(CB) + 2. Applying this construction inductively, we get a circuits CB ,

B ∈ N, with |CB | =
∑B

i=1 2B−i · 3 · (2i − 1) < 3B2B and depth 2(B − 1).

It remains to show that the conversion is also working correctly in face of metasta-
bility, which we show by induction. This is trivial for a 1-bit code, so let’s assume
we have shown the claim for B-bit decoding circuits (and B-bit valid strings) and
consider a (B + 1)-bit valid string s fed into CB+1. If s1 6= M, observe that s2...B+1

is a valid string, so we can apply the induction hypothesis. Moreover, if s1 = 1, the
Or gates taking the output from CB and s1 as input guarantee that the first 2B − 1
output bits are stable 1. Similarly, if s1 = 0, the And gates ensure that the last
2B − 1 output bits are stable 0. Thus, the case s1 6= M is covered by the induction
hypothesis.

Now consider the case s1 = M. In this case, s2...B+1 = 10 . . . 0, the codeword for
2B − 1 in a B-bit code. Hence, CB and CB output 1 . . . 1 and 0 . . . 0, respectively.
Accordingly, the Or and And gates ensure that all but the (2B)th output bit are
stable. Thus, the induction step succeeds.

d) We apply the construction from Lemma 6.5 and Theorem 6.6 to each output bit. For
each bit we need a MUXM with B select bits, which has size O(2B) and (as each
CMUX has constant depth and we use a binary tree of CMUXes of depth B) depth
O(B). The total size of the circuit is thus O(B2B) and its depth is O(B).

When checking the constants, however, we get depth 4 and size 5 (or 3 and 4,
respectively, if we permit 3-input Or), so the construction here is slightly better. One
should not take this too seriously, though, as both solutions can be further optimized
by more clever use of (different) basic gates or optimizations on the transistor level.
(That’s why we usually think about asymptotic behavior when examining tasks in
the level of detail we use in the lecture and exercises.)

Task 3*: Closure

a) Learn about Huffman’s implementation of the metastable closure, based on prime
implicants.

b) Show that implementing comparators for valid strings with the above order using his
method results in very large circuits.

c) Decode what you learned in the TA session to the others!


