Computational Geometry

Sándor Kisfaludi-Bak

Raimund Seidel

sandor.kisfaludi-bak@mpi-inf.mpg.de

rseidel@cs.uni-saarland.de

André Nusser andre.nusser@mpi-inf.mpg.de

Sessions: Tu, Th 10–12 on Zoom (roughly every 4th session will be a tutorial)

Homeworks: about every other week; half of the homework points necessary to qualify for the final exam

Exam: take-home exam; date to be determined

Coursepage: https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/computational-geometry

Are all points distinct?

Is S degenerate, i.e. are there 3 points of S on a common (straight) line?

Computational Model and Geometric Primitives

Real RAM: RAM that also has cells that can hold real numbers.

- arithmetic operations and comparisons of reals exactly and in constant time;
- possibly other operations such as squareroot, logarithm, etc.
 exactly and in constant time as well;

This model is convenient for concentrating on the geometric issues in the problems at hand. It can be unrealistic, i.e. difficult to realize. A lot of "abuse" is possible.

Computational Model and Geometric Primitives

Possible solution: Encapsulate all arithmetic on input reals into *geometric primitives:*

For example: how does point p lie with respect to the oriented line through the points q and r?

$$\mathsf{sidedness}(p;q,r) = \begin{cases} 1 & \text{if } p \text{ left of } \overrightarrow{qr} \\ 0 & \text{if } p \text{ on } \overrightarrow{qr} \\ -1 & \text{if } p \text{ right of } \overrightarrow{qr} \end{cases}$$

This can be arithmetically realized as the sign of the determinant

$$\begin{vmatrix} 1 & p_1 & p_2 \\ 1 & q_1 & q_2 \\ 1 & r_1 & r_2 \end{vmatrix}$$

5

Which 3 points of S span the smallest area triangle?

Which 3 points of S span the largest area triangle?

6

Which 3 points of S span the smallest area triangle?

Which 3 points of S span the largest area triangle?

The area of the triangle spanned by p,q,r is given the absolute value of

$$\frac{1}{2} \begin{vmatrix} 1 & p_1 & p_2 \\ 1 & q_1 & q_2 \\ 1 & r_1 & r_2 \end{vmatrix}$$

What is the smallest circle that contains S?

What is the smallest circle that contains S?

What is the smallest circle that contains S?

Geometric primitive:

The location of point p with respect to the circle through r, s, t is determined by the sign of the determinant

1	p_1	p_2	$p_1^2 + p_2^2$
1	r_1	r_2	$r_1^2 + r_2^2$
1	s_1	s_2	$s_1^2 + s_2^2$
1	t_1	t_2	$q_1^2 + t_2^2$

What is the smallest circle that contains S?

Geometric primitive:

The location of point p with respect to the circle through r, s, t is determined by the sign of the determinant

1	p_1	p_2	$p_1^2 + p_2^2$
1	r_1	r_2	$r_1^2 + r_2^2$
1	s_1	s_2	$\bar{s_1^2 + s_2^2}$
1	t_1	t_2	$q_1^2 + t_2^2$

in relation to the sign of the determinant

$$\begin{vmatrix} 1 & r_1 & r_2 \\ 1 & s_1 & s_2 \\ 1 & t_1 & t_2 \end{vmatrix}$$

What is the smallest convex polygon that contains S?

What is the smallest convex polygon that contains S ?

 ${\rm convex \ hull \ of} \ S$

Compute a triangulation of S?

Compute a triangulation of S?

Compute a "good" triangulation of S?

Compute a "good" triangulation of S?

"Delaunay triangulation"

Determine the "clusters of S"?

For a given integer k, compute or count the k-sets of S.

Definition: A k-set of S is a subset B of S with k elements for which there is a line that separates B from $S \setminus B$.

For a given integer k, compute or count the k-sets of S.

Definition: A k-set of S is a subset B of S with k elements for which there is a line that separates B from $S \setminus B$.

The geometric-combinatorial problem of giving good bounds for $f_k(S)$, the number of k-sets of S is still open:

$$n \cdot e^{\Omega(\sqrt{\log k})} \le f_k(S) \le O(n\sqrt[3]{k})$$

Problem 9: Ham-Sandwich cuts for planar point sets:

Let R be a set of n red points and B be a set of n blue points, compute a line that simultaneously halves R and B.

Problem 9: Ham-Sandwich cuts for planar point sets:

Let R be a set of n red points and B be a set of n blue points, compute a line that simultaneously halves R and B.

Problem 10: Discrepancy

How well does a set S of n points in a unit disc D reflect the area of halfplanes intersecting D?

Problem 10: Discrepancy

How well does a set S of n points in a unit disc D reflect the area of halfplanes intersecting D?

$$h \quad \text{halfplane}$$
$$a_D(h) = \frac{\operatorname{area}(h \cap D)}{\operatorname{area}(D)}$$
$$a_S(h) = \frac{|h \cap S|}{|S|}$$

discrepancy(S) =
$$\inf_{h} |a_D(h) - a_S(h)|$$

Is S degenerate, i.e. are there 3 points of S on a common (straight) line?

Solution 1: brute force, check every triple of points in S $\Theta(n^3)$ time

Solution 2: For every $p \in S$ check whether among the n-1 lines spanned with the other points in S there are two with the same slope.

 $O(n^2 \log n)$ time

 $\bullet p$

Is S degenerate, i.e. are there 3 points of S on a common (straight) line?

Solution 1: brute force, check every triple of points in \boldsymbol{S}

 $\Theta(n^3)$ time

Solution 2: For every $p \in S$ check whether among the n-1 lines spanned with the other points in S there are two with the same slope.

 $O(n^2 \log n)$ time

Is S degenerate, i.e. are there 3 points of S on a common (straight) line?

 $O(n^2)$ solution ?

Geometric point-line duality (polarity)

$$\begin{array}{ll} x - y - \text{plane} & \xi - \eta - \text{plane} \\ y + \eta = x \cdot \xi & \\ \end{array}$$

$$\begin{array}{ll} \text{point } p \text{ given by } (a, b) & \underbrace{\mathcal{D}}_{} & \\ \end{array} \quad \textbf{line } \lambda \text{ given by } \eta = a \cdot \xi - b \\ \end{array}$$

$$\begin{array}{ll} \text{line } \ell \text{ given by } y = \alpha \cdot x - \beta & \underbrace{\mathcal{D}}_{} & \\ \end{array} \quad \textbf{point } \pi \text{ given by } (\alpha, \beta) \end{array}$$

Geometric point-line duality (polarity)

$$\begin{array}{ll} x - y - \text{plane} & \xi - \eta - \text{plane} \\ y + \eta = x \cdot \xi & \\ \end{array}$$

$$\begin{array}{ll} \text{point } p \text{ given by } (a, b) & \underbrace{\mathcal{D}}_{} & \\ \end{array} & \begin{array}{ll} \text{line } \lambda \text{ given by } \eta = a \cdot \xi - b \\ \end{array}$$

$$\begin{array}{ll} \text{line } \ell \text{ given by } y = \alpha \cdot x - \beta & \underbrace{\mathcal{D}}_{} & \\ \end{array} & \begin{array}{ll} \text{point } \pi \text{ given by } (\alpha, \beta) \end{array}$$

point p lies $\stackrel{\text{above}}{\underset{\text{below}}{\text{on}}}$ line ℓ iff point $\pi = \mathcal{D}(\ell)$ lies $\stackrel{\text{above}}{\underset{\text{below}}{\text{on}}}$ line $\lambda = \mathcal{D}(p)$

Geometric point-line duality (polarity)

$$\begin{array}{ll} x - y - \text{plane} & \xi - \eta - \text{plane} \\ y + \eta = x \cdot \xi & \\ \end{array}$$

$$\begin{array}{ll} \text{point } p \text{ given by } (a, b) & \underbrace{\mathcal{D}}_{} & \\ \end{array} & \begin{array}{ll} \text{line } \lambda \text{ given by } \eta = a \cdot \xi - b \\ \end{array}$$

$$\begin{array}{ll} \text{line } \ell \text{ given by } y = \alpha \cdot x - \beta & \underbrace{\mathcal{D}}_{} & \\ \end{array} & \begin{array}{ll} \text{point } \pi \text{ given by } (\alpha, \beta) \end{array}$$

point p lies $\stackrel{\text{above}}{\underset{\text{below}}{\text{on}}}$ line ℓ iff point $\pi = \mathcal{D}(\ell)$ lies $\stackrel{\text{above}}{\underset{\text{below}}{\text{on}}}$ line $\lambda = \mathcal{D}(p)$

Signed vertical distance between p and ℓ is the same as the signed vertical distance between $\mathcal{D}(\ell)$ and $\mathcal{D}(p)$.

Geometric point-line duality (polarity), other version

$$\begin{array}{l} x \cdot y - \text{plane} & \xi \cdot \eta - \text{plane} \\ x \cdot \xi + y \cdot \eta = 1 & \end{array}$$

$$\begin{array}{l} \text{point } p \text{ given by } (a, b) & \underbrace{\mathcal{D}}_{} & \\ & & \end{array} \text{ line } \lambda \text{ given by } a \cdot \xi + b \cdot \eta = 1 \\ \\ \text{line } \ell \text{ given by } \alpha \cdot x + \beta \cdot y = 1 & \underbrace{\mathcal{D}}_{} & \\ & \end{array} \text{ point } \pi \text{ given by } (\alpha, \beta) \end{array}$$

point p lies $\stackrel{\text{above}}{\underset{\text{below}}{\text{on}}}$ line ℓ iff point $\pi = \mathcal{D}(\ell)$ lies $\stackrel{\text{above}}{\underset{\text{below}}{\text{on}}}$ line $\lambda = \mathcal{D}(p)$

"above" means "on different side as the origin" "below" means "on the same side as the origin"

Point-line duality — geometric interpretation

Embed x-y plane in 3-space as the z = 1 plane. Embed ξ - η plane in 3-space as the z = -1 plane.

p in x-y-1 plane: $\mathcal{D}(p)$ is given by the line formed by the intersection of the ξ - η -(-1) plane with the plane through the origin o that is normal to \overrightarrow{op}

 ℓ in x-y-1 plane: $\mathcal{D}(\ell)$ is given by the point formed by the intersection of the ξ - η -(-1) plane with the line through the origin o that is normal to the plane spanned by the o and ℓ .

Point-line duality — Degeneracy problems

Do 3 points in a set S of n point lie on a common line?

Under duality this become:

Do 3 lines in a set L of n lines contain a common point? (i.e. do 3 lines intersect in a common point)

Arrangements of lines

For a set L of n lines $\mathcal{A}(L)$, the arrangement of L, is the partition of the plane induced by L (viewed as a planar graph).

 $\binom{n}{2} \text{ vertices}$ $n^2 \text{ edges}$ $\binom{n}{2} + \binom{n}{1} + \binom{n}{0} \text{ cells}$

This maximum is achieved when there is no degeneracy.

Given a set L of n lines, we need to construct $\mathcal{A}(L)$ (as a plane graph).

Given a set L of n lines, we need to construct $\mathcal{A}(L)$ (as a plane graph).

Incremental Construction

Given a set L of n lines, we need to construct $\mathcal{A}(L)$ (as a plane graph).

Incremental Construction

1. pick some $\ell \in L$

Given a set L of n lines, we need to construct $\mathcal{A}(L)$ (as a plane graph).

Incremental Construction

- 1. pick some $\ell \in L$
- 2. construct $\mathcal{A}(L')$, where $L' = L \setminus \{\ell\}$

Given a set L of n lines, we need to construct $\mathcal{A}(L)$ (as a plane graph).

Incremental Construction

- 1. pick some $\ell \in L$
- 2. construct $\mathcal{A}(L')$, where $L' = L \setminus \{\ell\}$
- 3. construct $\mathcal{A}(L)$ from $\mathcal{A}(L')$ by "threading in" line ℓ

"Threading a line" into an arrangement

Cost of threading ℓ into A(L'):
1. O(n) for locating cell of A(L'), where ℓ starts "from the left"
2. O(sum of the sizes of the cells intersected by ℓ)

 $\operatorname{zone}(\ell, L') = \operatorname{cells} \operatorname{of} \mathcal{A}(L') \text{ that intersect } \ell$ $z(\ell, L') = \sum_{c \in \operatorname{zone}(\ell, L')} \# \text{ edges of } c$

"Threading a line" into an arrangement

Cost of threading ℓ into $\mathcal{A}(L')$: 1. O(n) for locating cell of $\mathcal{A}(L')$, where ℓ starts "from the left" 2. O(sum of the sizesof the cells intersected by $\ell)$ $= O(z(\ell, L')) \leq 6n$

 $zone(\ell, L') = cells of \mathcal{A}(L') \text{ that intersect } \ell$ $z(\ell, L') = \sum_{c \in zone(\ell, L')} \# \text{ edges of } c$

Zone Theorem

 $zone(\ell, L') = cells of \mathcal{A}(L') \text{ that intersect } \ell$ $z(\ell, L') = \sum_{c \in zone(\ell, L')} \# \text{ edges of } c$

Theorem: Let L be a set of n lines in the plane. For every $\ell \in L$ we have $z(\ell, L') \leq 6n$.

Line Arrangements

Theorem Given a set L of n lines its arrangement can be constructed in $O(n^2)$ time (and space).

Line Arrangements

Theorem Given a set L of n lines its arrangement can be constructed in $O(n^2)$ time (and space).

Consequences:

- The point degeneracy problem (and the line degeneracy problem) can be solve in ${\cal O}(n^2)$ time.
- For a set S of n points the smallest (largest) area triangle spanned by 3 points of S can be found in $O(n^2)$ time.
- For a set R of n red points and a set B of n blue points a ham-sandwich line can be found in $O(n^2)$ time.
- The discrepancy problem can be solved in $O(n^2)$ time.