Computational Geometry

Sándor Kisfaludi-Bak Raimund Seidel

sandor.kisfaludi-bak@mpi-inf.mpg.de rseidel@cs.uni-saarland.de

André Nusser andre.nusser@mpi-inf.mpg.de

Sessions: Tu, Th 10–12 on Zoom (roughly every 4th session will be a tutorial)

Homeworks: about every other week; half of the homework points necessary to qualify for the final exam

Exam: take-home exam; date to be determined

1

Coursepage: https://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/summer20/computational-geometry

Problem 1: Let S be a set of n points in the plane:

Are all points distinct?

Problem 2: Let S be a set of n points in the plane:

Is S degenerate, i.e. are there 3 points of S on a common (straight) line?

Computational Model and Geometric Primitives

Real RAM: RAM that also has cells that can hold real numbers.

- arithmetic operations and comparisons of reals exactly and in constant time;
- possibly other operations such as squareroot, logarithm, etc. exactly and in constant time as well;

This model is convenient for concentrating on the geometric issues in the problems at hand. It can be unrealistic, i.e. difficult to realize. A lot of "abuse" is possible.

Computational Model and Geometric Primitives

Possible solution: Encapsulate all arithmetic on input reals into geometric primitives:

For example: how does point p lie with respect to the oriented line through the points q and r ?

\n
$$
\text{sidedness}(p; q, r) =\n \begin{cases}\n 1 & \text{if } p \text{ left of } \overrightarrow{qr} \\
 0 & \text{if } p \text{ on } \overrightarrow{qr} \\
 -1 & \text{if } p \text{ right of } \overrightarrow{qr}\n \end{cases}
$$
\n

This can be arithmetically realized as the sign of the determinant

$$
\begin{vmatrix} 1 & p_1 & p_2 \\ 1 & q_1 & q_2 \\ 1 & r_1 & r_2 \end{vmatrix}
$$

5

Problem 3: Let S be a set of n points in the plane:

Which 3 points of S span the smallest area triangle?

- Which 3 points of S span the largest area
- triangle?

Problem 3: Let S be a set of n points in the plane:

Which 3 points of S span the smallest area triangle?

Which 3 points of S span the largest area triangle?

The area of the triangle spanned by p, q, r is given the absolute value of

$$
\frac{1}{2} \begin{vmatrix} 1 & p_1 & p_2 \\ 1 & q_1 & q_2 \\ 1 & r_1 & r_2 \end{vmatrix}
$$

Problem 4: Let S be a set of n points in the plane:

What is the smallest circle that contains S ?

Problem 4: Let S be a set of n points in the plane:

What is the smallest circle that contains S ?

Geometric primitive:

The location of point p with respect to the circle through r, s, t is determined by the sign of the determinant

Geometric primitive:

The location of point p with respect to the circle through r, s, t is determined by the sign of the determinant

in relation to the sign of the determinant

$$
\begin{vmatrix} 1 & r_1 & r_2 \\ 1 & s_1 & s_2 \\ 1 & t_1 & t_2 \end{vmatrix}
$$

Problem 5: Let S be a set of n points in the plane:
What is the smallest convex polygon to contains S ? What is the smallest convex polygon that contains S?

What is the smallest convex polygon that contains S ?

convex hull of S

"Delaunay triangulation"

For a given integer k , compute or count the k -sets of S .

Problem 8: Let S be a set of n points in the plane:

For a given integer k, compute or cour

k-sets of S.
 Definition: A k-set of S is a subset B of

with k elements for which there is a line to separates B from $S \setminus$ Definition: A k-set of S is a subset B of S with k elements for which there is a line that separates B from $S \setminus B$.

For a given integer k , compute or count the k -sets of S .

Definition: A k-set of S is a subset B of S with k elements for which there is a line that separates B from $S \setminus B$.

Problem 8: Let S be a set of *n* points in the plane:

For a given integer *k*, compute or court *k*-sets of *S*.

 20 Pefinition: A *k*-set of S is a subset *B* of with *k* elements for which there is a line to sepa The geometric-combinatorial problem of giving good bounds for $f_k(S)$, the number of k-sets of S is still open:

$$
n \cdot e^{\Omega(\sqrt{\log k})} \le f_k(S) \le O(n^{\sqrt[3]{k}})
$$

Let R be a set of n red points and B be a set of n blue points, compute a line that simultaneously halves R and B .

Let R be a set of n red points and B be a set of n blue points, compute a line that simultaneously halves R and B .

Problem 10: Discrepancy

How well does a set S of n points in a unit disc D

halfplanes intersecting D ?

23 How well does a set S of n points in a unit disc D reflect the area of halfplanes intersecting D ?

How well does a set S of n points in a unit disc D reflect the area of halfplanes intersecting D ?

$$
h \qquad \text{halfplane}
$$
\n
$$
a_D(h) = \frac{\text{area}(h \cap D)}{\text{area}(D)}
$$
\n
$$
a_S(h) = \frac{|h \cap S|}{|S|}
$$

$$
discrepancy(S) = \inf_{h} |a_D(h) - a_S(h)|
$$

Solution 1: brute force, check every triple of points in S $\Theta(n^3)$ time

2: Let S be a set of n points in the plane:

Is S degenerate, i.e. are there 3 points of S on a common (straight) line?
 Solution 1: brute force, check every triple of

points in S
 $\Theta(n^3)$ time
 Solution 2: For ev **Solution 2:** For every $p \in S$ check whether among the $n-1$ lines spanned with the other points in S there are two with the same slope. k whether

th the other

same slope.

log n) time

 $O(n^2)$

Solution 1: brute force, check every triple of points in S

 $\Theta(n^3)$ time

Solution 2: For every $p \in S$ check whether among the $n-1$ lines spanned with the other points in S there are two with the same slope.

 $O(n^2)$

²⁷ Problem 2: Let ^S be a set of ⁿ points in the plane: Is ^S degenerate, i.e. are there 3 points of ^S on a common (straight) line?

 $O(n^2)$ solution?

o(n 2) solution ?????????????????

Geometric point–line duality (polarity)

\n
$$
x-y-\text{plane}
$$
\n
$$
y+\eta=x\cdot\xi
$$
\npoint p given by (a,b)

\n
$$
\xrightarrow{\mathcal{D}}
$$
\nline λ given by $\eta=a\cdot\xi-b$

\nline ℓ given by $y=\alpha\cdot x-\beta$

\n
$$
\xrightarrow{\mathcal{D}}
$$
\npoint π given by (α,β)

\npoint p lies above line ℓ iff point $\pi = \mathcal{D}(\ell)$ lies above line $\lambda = \mathcal{D}(\ell)$

\n29

point p lies above below line ℓ iff point $\pi = \mathcal{D}(\ell)$ lies above below line $\lambda = \mathcal{D}(p)$

Geometric point–line duality (polarity)

\n*x*-*y*–plane

\n*y* + *η* = *x* · *ξ*

\npoint *p* given by
$$
(a, b)
$$

\nSince *ℓ* given by $y = \alpha \cdot x - \beta$

\nSince *ℓ* given by $y = \alpha \cdot x - \beta$

\nSo, *p* is a base of *p* point *α* from *φ* is a base of *p* point *φ* from *p* lies above. Since *θ* is the base of *p* point *φ* is the same as the signed vertical distance between *p* and *ℓ* is the same as the signed vertical distance between *D(ℓ* and *D(p)*.

\n30

point p lies above below line ℓ iff point $\pi = \mathcal{D}(\ell)$ lies above below line $\lambda = \mathcal{D}(p)$

Signed vertical distance between p and ℓ is the same as the signed vertical distance between $\mathcal{D}(\ell)$ and $\mathcal{D}(p)$.

Geometric point–line duality (polarity), other version
\n
$$
x-y
$$
–plane
\n $x \cdot \xi + y \cdot \eta = 1$
\npoint *p* given by (a, b)
\n \overline{D}
\nline λ given by $a \cdot \xi + b \cdot \eta = 1$
\nline ℓ given by $\alpha \cdot x + \beta \cdot y = 1$
\npoint *p* lies $\frac{ab_0 \vee c}{bc_0}$ line ℓ iff point $\pi = D(\ell)$ lies $\frac{ab_0 \vee c}{bc_0}$ line $\lambda = D(p)$
\n"above" means "on different side as the origin"
\n"below" means "on the same side as the origin"
\n31

point p lies above below line ℓ iff point $\pi = \mathcal{D}(\ell)$ lies above below line $\lambda = \mathcal{D}(p)$

"above" means "on different side as the origin" "below" means "on the same side as the origin"

Embed x-y plane in 3-space as the $z = 1$ plane. Embed $\xi-\eta$ plane in 3-space as the $z=-1$ plane.

p in x-y-1 plane: $\mathcal{D}(p)$ is given by the line formed by the intersection of the $\xi-\eta-(-1)$ plane with the plane through the origin o that is normal to \overrightarrow{op}

Point-line duality — geometric interpretation
Embed x-y plane in 3-space as the $z = 1$ plane.
Embed ξ - η plane in 3-space as the $z = -1$ plane.

p in $x-y-1$ plane: $\mathcal{D}(p)$ is given by the line formed by the

inters ℓ in x-y-1 plane: $\mathcal{D}(\ell)$ is given by the point formed by the intersection of the $\xi-\eta-(-1)$ plane with the line through the origin o that is normal to the plane spanned by the o and ℓ .

Do 3 points in a set S of n point lie on a common line?

Under duality this become:

Point-line duality — Degeneracy problems
Do 3 points in a set S of n point lie on a common line?
Under duality this become:
Do 3 lines in a set L of n lines contain a common point?
(i.e. do 3 lines intersect in a Do 3 lines in a set L of n lines contain a common point? (i.e. do 3 lines intersect in a common point)

For a set L of n lines $A(L)$, the arrangement of L, is the partition of the plane induced by L (viewed as a planar graph).

 $\binom{n}{2}$ 2 vertices n^2 edges $\binom{n}{2}$ 2 $+\binom{n}{1}$ 1 $+\binom{n}{0}$ 0 cells

This maximum is achieved when there is no degeneracy.

Incremental Construction of a line arrangement
Given a set L of n lines, we need to construct $A(L)$ (as a plane graph).
35

1. pick some $\ell \in L$

- 1. pick some $\ell \in L$
- 2. construct $\mathcal{A}(L')$, where $L'=L\setminus\{\ell\}$

- 1. pick some $\ell \in L$
- 2. construct $\mathcal{A}(L')$, where $L'=L\setminus\{\ell\}$
- 3. construct $\mathcal{A}(L)$ from $\mathcal{A}(L')$ by "threading in" line ℓ

Cost of threading ℓ into $\mathcal{A}(L')$: 1. $O(n)$ for locating cell of $A(L')$, where ℓ starts "from the left" 2. O(sum of the sizes

of the cells intersected by ℓ)

zone $(\ell, L') =$ cells of $\mathcal{A}(L')$ that intersect ℓ $z(\ell, L') = \sum_{c \in \textsf{zone}(\ell, L')} \#$ edges of c

Cost of threading ℓ into $\mathcal{A}(L')$: 1. $O(n)$ for locating cell of $A(L')$, where ℓ starts "from the left" 2. O(sum of the sizes of the cells intersected by ℓ) $= O(z(\ell, L')) \leq 6n$

zone $(\ell, L') =$ cells of $\mathcal{A}(L')$ that intersect ℓ $z(\ell, L') = \sum_{c \in \textsf{zone}(\ell, L')} \#$ edges of c

zone $(\ell, L') =$ cells of $\mathcal{A}(L')$ that intersect ℓ $z(\ell, L') = \sum_{c \in \textsf{zone}(\ell, L')} \#$ edges of c

Theorem: Let L be a set of n lines in the plane. For every $\ell \in L$ we have $z(\ell, L') \leq 6n$.

Line Arrangements
 Theorem Given a set L of n lines its arranger

constructed in $O(n^2)$ time (and space). **Theorem** Given a set L of n lines its arrangement can be constructed in $O(n^2)$ time (and space).

Theorem Given a set *L* of *n* lines its arrangements
constructed in $O(n^2)$ time (and space).
Consequences:
• The point degeneracy problem (and the linean be solve in $O(n^2)$ time.
• For a set *S* of *n* points the s **Theorem** Given a set L of n lines its arrangement can be constructed in $O(n^2)$ time (and space).

Consequences:

- The point degeneracy problem (and the line degeneracy problem) can be solve in $O(n^2)$ time.
- For a set S of n points the smallest (largest) area triangle spanned by 3 points of S can be found in $O(n^2)$ time.
- For a set R of n red points and a set B of n blue points a ham-sandwich line can be found in $O(n^2)$ time.
- The discrepancy problem can be solved in $O(n^2)$ time.