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Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real inputs and outputs,
can extend with

√
., ln(.)

Exact arithmetic for
rational inputs with +−∗/

Unrealistic power Too restrictive?

Real RAM Word RAM
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Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3 p5

p4

p1, p4, p5, p3

non-corner point on
bondary: not in output!

p6

Output: ”corners” in clockwise order
smallest Q ⊆ P s.t. conv(Q) = conv(P )

Everything works with rational inputs on Word RAM!
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Suppose no 3 points on one line. (no collinear triples)

p
p′

q

In O(1) time, decide if q is on left or right side of line pp′

Running time:
(
n
2

)
· (n− 2) ·O(1) = O(n3)

sgn

∣∣∣∣∣∣
px py 1
p′x p′y 1
qx qy 1

∣∣∣∣∣∣


Naive Convex Hull in R2

For each p, p′ ∈ P ,
check if all q ∈ P \ {p, p′} is on the left of line pp′.
If yes, then p′ follows p in conv(P ).

Assemble and output the hull



Graham’s scan (1972)



Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.



Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn



Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Upper hull
part of the hull after p1 and before pn in clockwise order

Lower hull



Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Upper hull
part of the hull after p1 and before pn in clockwise order

Lower hull

Idea:
Add points left to right, update upper hull after each addition
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Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Add pi but remove previous hull
point until left turn disappears

Similalrly for lower hull, after adding pi:
while last three points of lower hull q, q′, pi are a right turn:

remove the middle point q′

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)
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Graham’s Scan: pseudocode + runtime

Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting

Each p ∈ P is:
added once to U (same for L)
removed at most once from U (same for L)

O(n log n)

O(n)
O(n)

Triplets checked in While loop heads O(n)

Running time: O(n log n)
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Graham’s Scan: correctness

pi is added to U X

Claim
After each iteration of main loop, U is upper hull of p1, . . . , pi.

Induction on i. Works for i ≤ 2.
Suppose U is the upper hull of p1, . . . , pi−1

q′, pi−1, pi ”left turn” ⇔ pi−1 is below q′pi.
Similarly, q′ is below qpi
⇒ All deleted vertices are below the new U .

piU
q

q′

pi−1

⇒ Gray is empty

⇒ old U and all of p1, . . . pi−1
are on or below new U
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Graham’s Scan: non-general position

Instead of deleting for left turn in U:
Delete if straight or left turn

• collinear triple:

q
q′

pi

• equal x-coordiantes:

Use lexicographic order for initial sort.

(x, y) <lex (x′, y′) iff x < x′ ∨ (x = x′ ∧ y < y′)

p1, pn are still on the hull.
Upper hull U : part of hull after p1 and before pn in cw order
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Practicalities

Collinear triples are common (grids!)

Almost collinear triples are also common!

Naive floating point implementation of Real RAM:
false positives and false negatives

P uniform random in [0, 1]2:

E( max
p,q,r∈P

^pqr) = π −O(1/n3)

Good software libraries (e.g. CGAL) can protect you.

not peer-reviewed source
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Output-sensitive algorithm

Here: h is # of convex hull vertices.

Can we get O(n+ h) as running time?

What about O(n+ h log h)?

Example: enumerating spanning trees of a graph in

O(nn−2 · n) vs. O(#of trees + n+ |E|) time

Input size: natural lower bound for most problems

Output size: same! (but useless for decsion problems)

→ An alg. that is faster if the output is small.

→ running time expressed as function of input and output size

Output-sensitive algorithm:
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Output-sensitive convex hull algorithms

• Kirkpatrick–Seidel (’86): O(n log h). Proven optimal!

• Chan (’96): O(n log h), and also ”works” in 3d.

Based on the Gift wrapping algorithm:
start from p1, and go around finding next hull vertex.

• Find p1: → O(n)

H1 = p1
• Given H1, . . . ,Hi, find Hi+1

s.t. ^Hi−1HiHi+1 is
maximized → O(n)

Hi
Hi−1• Repeated h times

→ O(nh) time in total
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Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Gift wrapping:
Find largest angle Hi−1Hiq

j with
qj ∈ conv(Pj) for each j, pick best

Hi−1
Hi

dn/me ·O(m logm)

hdn/me ·O(logm)

Time to find tangent of conv(Pj)

Compute convex hull of each Pj with Graham’s scan.
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Chan’s algorithm: running time and tangent finding

dn/me ·O(m logm) + hdn/me ·O(logm)

= O(n logm+ (h/m)n logm)

setting m = h:

= O(n log h)

Tangent finding in O(logm) time?

q1

q2

q3

q4

q5
q6

p
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1. Set m = h

How to set m = h?
?

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

h∑
m=1

cn logm = Ω(hn)...

Idea 1: Let m = 1, 2, . . . , n, run giftwrapping for m steps
Stop when gift is wrapped. (Then m ≥ h holds.)

Too slow!dlog he∑
i=1

cn log 2i =

dlog he∑
i=1

cni = Θ(n log2 h)...

Idea 2: Let m = 21, 22, 23, . . . , 2logn, run wrapping for m steps

h∑
m=1

cn logm = Ω(hn)...Too slow!
dlog log he∑

i=0

cn log 22
i

=

dlog log he∑
i=0

cn2i

= cn(2dlog log he+1 − 1) = O(n log h)

Idea 3: Let m = 22
0

, 22
1

, 22
2

, . . . , 22
dlog log ne

, do m wrap-steps



Chan’s algorithm: Recap

for i = 1 to dlog log ne do
m = 22

i

for j = 1 to dn/me do
Create group Pj

(qj1, q
j
2, . . . , ) = Graham(Pj)

H1 =leftmost point in P
for s = 2 to m do

for j = 1 to dn/me do
qj = TangentF ind(Hs−1, (q

j
1, q

j
2, . . . ))

Hs = point qj maximizing ^Hs−2Hs−1q
j

if Hs = H1 then return (H1, . . . ,Hs−1)


