Convex hulls in \mathbb{R}^2

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• Problem definition

- Problem definition
- Computaitonal models, input and output

- Problem definition
- Computaitonal models, input and output
- Naive algorithm

- Problem definition
- Computaitonal models, input and output
- Naive algorithm
- Graham's scan

- Problem definition
- Computaitonal models, input and output
- Naive algorithm
- Graham's scan
- Chan's algorithm

Notations, definitions \mathbb{R}^d is *d*-dimensional Euclidean space $P = \{p_1, \ldots, p_n\}$ set of *n* points $X \subseteq \mathbb{R}^d$ is *convex* if for any $p, q \in X$ we have $pq \subseteq X$

Notations, definitions \mathbb{R}^d is *d*-dimensional Euclidean space $P = \{p_1, \ldots, p_n\}$ set of *n* points $X \subseteq \mathbb{R}^d$ is *convex* if for any $p, q \in X$ we have $pq \subseteq X$

Convex hull: $\operatorname{conv}(P) = \begin{cases} \text{minimum convex set containing } P \\ \text{intersection of convex sets containing } P \\ \{\alpha_1 p_1 + \dots + \alpha_n p_n \mid \alpha_i \ge 0 \text{ and } \sum_{i=1}^n \alpha_i = 1 \} \end{cases}$

Notations, definitions \mathbb{R}^d is *d*-dimensional Euclidean space $P = \{p_1, \ldots, p_n\}$ set of *n* points $X \subseteq \mathbb{R}^d$ is *convex* if for any $p, q \in X$ we have $pq \subseteq X$

Convex hull: $\operatorname{conv}(P) = \begin{cases} \text{minimum convex set containing } P \\ \text{intersection of convex sets containing } P \\ \{\alpha_1 p_1 + \dots + \alpha_n p_n \mid \alpha_i \ge 0 \text{ and } \sum_{i=1}^n \alpha_i = 1 \} \end{cases}$

Notations, definitions \mathbb{R}^d is *d*-dimensional Euclidean space $P = \{p_1, \dots, p_n\}$ set of *n* points $X \subseteq \mathbb{R}^d$ is *convex* if for any $p, q \in X$ we have $pq \subseteq X$

Real RAM vs. Word RAM

Real RAM vs. Word RAM

Word RAM

words of size $\Theta(\log n)$

Real RAM

arbitrary real numbers

Real RAM vs. Word RAM	
Real RAM	Word RAM
arbitrary real numbers	words of size $\Theta(\log n)$
no rounding/floor, no modulo	realistic*operations (shifts, etc)

Real RAM vs. Word RAM Real RAM Word RAM arbitrary real numbers words of size $\Theta(\log n)$ no rounding/floor, no modulo realistic^{*}operations (shifts, etc) Real inputs and outputs, Exact arithmetic for can extend with $\sqrt{.}, \ln(.)$ rational inputs with + - */

Real RAM vs. Word RAM Word RAM Real RAM arbitrary real numbers words of size $\Theta(\log n)$ realistic^{*}operations (shifts, etc) no rounding/floor, no modulo Real inputs and outputs, Exact arithmetic for can extend with $\sqrt{.}$, $\ln(.)$ rational inputs with + - */Too restrictive? Unrealistic power

Input: Points with coordianate pairs $(x, y) \in \mathbb{R}^2$ $(e, \pi), (3, 3), (2.95, 2.9), (\sqrt{11}, 3.05), (\pi, e)$

Input: Points with coordianate pairs $(x, y) \in \mathbb{R}^2$ $(e, \pi), (3, 3), (2.95, 2.9), (\sqrt{11}, 3.05), (\pi, e)$

Output: "corners" in clockwise order smallest $Q \subseteq P$ s.t. conv(Q) = conv(P)

 p_1, p_4, p_5, p_3

Input: Points with coordianate pairs $(x, y) \in \mathbb{R}^2$ $(e, \pi), (3, 3), (2.95, 2.9), (\sqrt{11}, 3.05), (\pi, e)$

Output: "corners" in clockwise order smallest $Q \subseteq P$ s.t. conv(Q) = conv(P)

Input: Points with coordianate pairs $(x, y) \in \mathbb{R}^2$ $(e, \pi), (3, 3), (2.95, 2.9), (\sqrt{11}, 3.05), (\pi, e)$

Output: "corners" in clockwise order smallest $Q \subseteq P$ s.t. conv(Q) = conv(P)

Everything works with rational inputs on Word RAM!

Suppose no 3 points on one line. (no collinear triples)

Suppose no 3 points on one line. (no collinear triples)

In O(1) time, decide if q is on left or right side of line pp'

Suppose no 3 points on one line. (no collinear triples)

In O(1) time, decide if q is on left or right side of line pp'

Naive Convex Hull in \mathbb{R}^2

For each $p, p' \in P$, check if all $q \in P \setminus \{p, p'\}$ is on the left of line pp'. If yes, then p' follows p in conv(P). Assemble and output the hull

Suppose no 3 points on one line. (no collinear triples)

In O(1) time, decide if q is on left or right side of line pp'

Naive Convex Hull in \mathbb{R}^2

For each $p, p' \in P$, check if all $q \in P \setminus \{p, p'\}$ is on the left of line pp'. If yes, then p' follows p in conv(P). Assemble and output the hull

Running time: $\binom{n}{2} \cdot (n-2) \cdot O(1) = O(n^3)$

Graham's scan (1972)

Suppose points have distinct x-coordinates.

Let p_1, \ldots, p_n : points sorted with increasing x-coordinates.

Suppose points have distinct x-coordinates.

Let p_1, \ldots, p_n : points sorted with increasing x-coordinates.

 $\rightarrow p_1, p_n$ are on convex hull

Suppose points have distinct x-coordinates.

Let p_1, \ldots, p_n : points sorted with increasing x-coordinates.

 $\rightarrow p_1, p_n$ are on convex hull

Upper hull

part of the hull after p_1 and before p_n in clockwise order

Suppose points have distinct x-coordinates.

Let p_1, \ldots, p_n : points sorted with increasing x-coordinates.

 $\rightarrow p_1, p_n$ are on convex hull

Upper hull

part of the hull after p_1 and before p_n in clockwise order

Idea:

Add points left to right, update upper hull after each addition

Right turn $(p_i \text{ is below last hull segment})$

Left turn $(p_i \text{ is above last hull segment})$

Right turn $(p_i \text{ is below last hull segment})$

Add p_i to the upper hull

Left turn (p_i is above last hull segment)

Right turn $(p_i \text{ is below last hull segment})$

Add p_i to the upper hull

Left turn (p_i is above last hull segment)

Right turn $(p_i \text{ is below last hull segment})$

Add p_i to the upper hull

Left turn $(p_i \text{ is above last hull segment})$

Add p_i but remove previous hull point until left turn disappears

Right turn $(p_i \text{ is below last hull segment})$

Add p_i to the upper hull

Left turn $(p_i \text{ is above last hull segment})$

Add p_i but remove previous hull point until left turn disappears

Similally for lower hull, after adding p_i : **while** last three points of lower hull q, q', p_i are a right turn: remove the middle point q' Graham's Scan: pseudocode + runtime

```
Sort P by increasing x-coordinates
Add p_1, p_2 to U and L
for i = 3 to n do
Add p_i to U and L
while last three pts of U form left turn do
Remove pt preceding p_i from U
while last three pts of L form right turn do
Remove pt preceding p_i from L
return L and reverse of U
```
Graham's Scan: pseudocode + runtime

```
Sort P by increasing x-coordinates
Add p_1, p_2 to U and L
for i = 3 to n do
   Add p_i to U and L
   while last three pts of U form left turn do
       Remove pt preceding p_i from U
   while last three pts of L form right turn do
       Remove pt preceding p_i from L
return L and reverse of U
```

Running time: Sorting

 $\longrightarrow O(n \log n)$

Graham's Scan: pseudocode + runtime

Sort P by increasing x-coordinates Add p_1, p_2 to U and Lfor i = 3 to n do Add p_i to U and Lwhile last three pts of U form left turn do Remove pt preceding p_i from Uwhile last three pts of L form right turn do Remove pt preceding p_i from Lreturn L and reverse of U

Running time:

Sorting $\longrightarrow O(n \log n)$ Each $p \in P$ is:added once to U (same for L) $\longrightarrow O(n)$ removed at most once from U (same for L) $\longrightarrow O(n)$ Triplets checked in While loop heads $\longrightarrow O(n)$

Graham's Scan: pseudocode + runtime

```
Sort P by increasing x-coordinates
Add p_1, p_2 to U and L
for i = 3 to n do
Add p_i to U and L
while last three pts of U form left turn do
Remove pt preceding p_i from U
while last three pts of L form right turn do
Remove pt preceding p_i from L
return L and reverse of U
```

Running time: $O(n \log n)$

Claim

After each iteration of main loop, U is upper hull of p_1, \ldots, p_i .

Claim

After each iteration of main loop, U is upper hull of p_1, \ldots, p_i .

Induction on *i*. Works for $i \leq 2$. Suppose *U* is the upper hull of p_1, \ldots, p_{i-1} \Rightarrow Gray is empty p_i is added to $U \checkmark$

 $\begin{array}{c} q \\ U \\ q' \\ p_{i-1} \end{array} \begin{array}{c} p_i \\ p_i \\ p_{i-1} \end{array}$

Claim

After each iteration of main loop, U is upper hull of p_1, \ldots, p_i .

Induction on *i*. Works for $i \le 2$. Suppose *U* is the upper hull of p_1, \ldots, p_{i-1} \Rightarrow Gray is empty

 p_i is added to $U \checkmark$

 q', p_{i-1}, p_i "left turn" $\Leftrightarrow p_{i-1}$ is below $q'p_i$. Similarly, q' is below qp_i \Rightarrow All deleted vertices are below the new U.

Claim

After each iteration of main loop, U is upper hull of p_1, \ldots, p_i .

Induction on *i*. Works for $i \le 2$. Suppose *U* is the upper hull of p_1, \ldots, p_{i-1} \Rightarrow Gray is empty

 p_i is added to $U \checkmark$

 q', p_{i-1}, p_i "left turn" $\Leftrightarrow p_{i-1}$ is below $q'p_i$. Similarly, q' is below qp_i \Rightarrow All deleted vertices are below the new U.

 \Rightarrow old U and all of $p_1, \dots p_{i-1}$ are on or below new U \Box \bigvee $\frac{q}{\sqrt{q'}}$

• collinear triple:

Instead of deleting for left turn in U: Delete if straight or left turn

• collinear triple:

Instead of deleting for left turn in U: Delete if straight or left turn

- collinear triple:
- Instead of deleting for left turn in U: Delete if straight or left turn

• equal *x*-coordiantes:

• collinear triple:

Instead of deleting for left turn in U: Delete if straight or left turn

• equal *x*-coordiantes:

Use *lexicographic* order for initial sort.

 $(x, y) <_{lex} (x', y') \text{ iff } x < x' \lor (x = x' \land y < y')$

• collinear triple:

Instead of deleting for left turn in U: Delete if straight or left turn

• equal *x*-coordiantes:

Use *lexicographic* order for initial sort.

$$(x, y) <_{lex} (x', y') \text{ iff } x < x' \lor (x = x' \land y < y')$$

 p_1, p_n are still on the hull. Upper hull U: part of hull after p_1 and before p_n in cw order

Collinear triples are common (grids!)

Collinear triples are common (grids!)

Almost collinear triples are also common!

Collinear triples are common (grids!)

Almost collinear triples are also common!

 $\begin{array}{l} P \text{ uniform random in } [0,1]^2 \\ \mathbb{E}(\max_{p,q,r\in P} \sphericalangle pqr) = \pi - O(1/n^3) \\ & \stackrel{\text{A}}{\longleftarrow} \text{ not peer-reviewed source} \end{array}$

Collinear triples are common (grids!)

Almost collinear triples are also common!

 $\begin{array}{l} P \text{ uniform random in } [0,1]^2 \\ \mathbb{E}(\max_{p,q,r\in P} \sphericalangle pqr) = \pi - O(1/n^3) \\ & \stackrel{\wedge}{\frown} \text{ not peer-reviewed source} \end{array}$

Naive floating point implementation of Real RAM: false positives and false negatives

Collinear triples are common (grids!)

Almost collinear triples are also common!

 $\begin{array}{l} P \text{ uniform random in } [0,1]^2 \\ \mathbb{E}(\max_{p,q,r\in P} \sphericalangle pqr) = \pi - O(1/n^3) \\ & \stackrel{\texttt{A}}{\longleftarrow} \text{ not peer-reviewed source} \end{array}$

Naive floating point implementation of Real RAM: false positives and false negatives

Good software libraries (e.g. CGAL) can protect you.

Chan's algorithm (1996)

Input size: natural lower bound for most problems Output size: same! (but useless for decsion problems)

Input size: natural lower bound for most problems

Output size: same! (but useless for decsion problems)

Output-sensitive algorithm:

 \rightarrow An alg. that is faster if the output is small.

 \rightarrow running time expressed as function of input and output size

Input size: natural lower bound for most problems Output size: same! (but useless for decsion problems)

Output-sensitive algorithm:

 \rightarrow An alg. that is faster if the output is small.

 \rightarrow running time expressed as function of input and output size

Example: enumerating spanning trees of a graph in

$$O(n^{n-2} \cdot n)$$
 vs. $O(\# of trees + n + |E|)$ time

Input size: natural lower bound for most problems Output size: same! (but useless for decsion problems)

Output-sensitive algorithm:

 \rightarrow An alg. that is faster if the output is small.

 \rightarrow running time expressed as function of input and output size

Example: enumerating spanning trees of a graph in

$$O(n^{n-2} \cdot n)$$
 vs. $O(\# of trees + n + |E|)$ time

Here: h is # of convex hull vertices.

Can we get O(n+h) as running time?

Input size: natural lower bound for most problems Output size: same! (but useless for decsion problems)

Output-sensitive algorithm:

 \rightarrow An alg. that is faster if the output is small.

 \rightarrow running time expressed as function of input and output size

Example: enumerating spanning trees of a graph in

$$O(n^{n-2} \cdot n)$$
 vs. $O(\# of trees + n + |E|)$ time

Here: h is # of convex hull vertices.

Can we get O(n + h) as running time? What about $O(n + h \log h)$?

• Kirkpatrick–Seidel ('86): $O(n \log h)$. Proven optimal!

- Kirkpatrick–Seidel ('86): $O(n \log h)$. Proven optimal!
- Chan ('96): $O(n \log h)$, and also "works" in 3d.

- Kirkpatrick–Seidel ('86): $O(n \log h)$. Proven optimal!
- Chan ('96): $O(n \log h)$, and also "works" in 3d.

Based on the *Gift wrapping* algorithm: start from p_1 , and go around finding next hull vertex.

• Find
$$p_1: \to O(n)$$

 $H_1 = p_1$

- Kirkpatrick–Seidel ('86): $O(n \log h)$. Proven optimal!
- Chan ('96): $O(n \log h)$, and also "works" in 3d.

Based on the *Gift wrapping* algorithm: start from p_1 , and go around finding next hull vertex.

- Find $p_1: \to O(n)$
- Given H_1, \ldots, H_i , find H_{i+1} s.t. $\triangleleft H_{i-1}H_iH_{i+1}$ is maximized $\rightarrow O(n)$

 $H_1 = p_1$

- Kirkpatrick–Seidel ('86): $O(n \log h)$. Proven optimal!
- Chan ('96): $O(n \log h)$, and also "works" in 3d.

Based on the *Gift wrapping* algorithm: start from p_1 , and go around finding next hull vertex.

- Find $p_1: \to O(n)$
- Given H_1, \ldots, H_i , find H_{i+1} s.t. $\triangleleft H_{i-1}H_iH_{i+1}$ is maximized $\rightarrow O(n)$
- Repeated h times $\rightarrow O(nh)$ time in total

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \dots

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Compute convex hull of each P_j with Graham's scan.

Gift wrapping: Find largest angle $H_{i-1}H_iq^j$ with $q^j \in \operatorname{conv}(P_j)$ for each j, pick best

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Compute convex hull of each P_j with Graham's scan. $\lceil n/m \rceil \cdot O(m \log m)$

Gift wrapping: Find largest angle $H_{i-1}H_iq^j$ with $q^j \in \operatorname{conv}(P_j)$ for each j, pick best
Chan's algorithm

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Compute convex hull of each P_j with Graham's scan. $\lceil n/m \rceil \cdot O(m \log m)$

Gift wrapping: Find largest angle $H_{i-1}H_iq^j$ with $q^j \in \operatorname{conv}(P_j)$ for each j, pick best $h\lceil n/m\rceil \cdot O(\log m)$

Chan's algorithm

Let $m \in \{1, \ldots, n\}$ be a parameter.

Group P into groups of size m $\Rightarrow \lceil n/m \rceil$ groups: P_1, P_2, \ldots

Compute convex hull of each P_j with Graham's scan. $\lceil n/m \rceil \cdot O(m \log m)$

Gift wrapping: Find largest angle $H_{i-1}H_iq^j$ with $q^j \in \operatorname{conv}(P_j)$ for each j, pick best $h\lceil n/m\rceil \cdot O(\log m)$ Time to find tangent of $\operatorname{conv}(P_i)$

Chan's algorithm: running time and tangent finding $\lceil n/m \rceil \cdot O(m \log m) + h \lceil n/m \rceil \cdot O(\log m)$

Chan's algorithm: running time and tangent finding $\lceil n/m \rceil \cdot O(m \log m) + h \lceil n/m \rceil \cdot O(\log m)$

 $= O(n\log m + (h/m)n\log m)$

Chan's algorithm: running time and tangent finding $\lceil n/m \rceil \cdot O(m \log m) + h \lceil n/m \rceil \cdot O(\log m)$ $= O(n \log m + (h/m)n \log m)$

setting m = h:

 $= O(n \log h)$

Chan's algorithm: running time and tangent finding $\lceil n/m \rceil \cdot O(m \log m) + h \lceil n/m \rceil \cdot O(\log m)$ $= O(n \log m + (h/m)n \log m)$ setting m = h: $= O(n \log h)$

1. Set m = h

1. Set m = h2. Let $P_j = \{p_{(j-1)m+1}, \dots, p_{jm}\}.$

How to set
$$m = h$$
?
1. Set $m = h$?
2. Let $P_j = \{p_{(j-1)m+1}, \dots, p_{jm}\}.$

How to set
$$m = h$$
?
1. Set $m = h$?
2. Let $P_j = \{p_{(j-1)m+1}, \dots, p_{jm}\}.$

Idea 1: Let m = 1, 2, ..., n, run giftwrapping for m steps Stop when gift is wrapped. (Then $m \ge h$ holds.) $\sum_{h} cn \log m = \Omega(hn)...$

$$\sum_{m=1}^{cn} \cos m$$

How to set
$$m = h$$
?
1. Set $m = h$?
2. Let $P_j = \{p_{(j-1)m+1}, \dots, p_{jm}\}.$

Idea 1: Let $m = 1, 2, \ldots, n$, run giftwrapping for m steps

Too slow!

How to set
$$m = h$$

1. Set $m = h$?
2. Let $P_j = \{p_{(j-1)m+1}, \dots, p_{jm}\}.$

Idea 1: Let m = 1, 2, ..., n, run giftwrapping for m steps Idea 2: Let $m = 2^1, 2^2, 2^3, ..., 2^{\log n}$, run wrapping for m steps

$$\sum_{i=1}^{\lceil \log h \rceil} cn \log 2^i = \sum_{i=1}^{\lceil \log h \rceil} cni = \Theta(n \log^2 h) \dots$$

How to set
$$m = h$$

1. Set $m = h$?
2. Let $P_j = \{p_{(j-1)m+1}, \dots, p_{jm}\}.$

Idea 1: Let m = 1, 2, ..., n, run giftwrapping for m steps Idea 2: Let $m = 2^1, 2^2, 2^3, ..., 2^{\log n}$, run wrapping for m steps

Too slow!

How to set
$$m = h$$
?
1. Set $m = h$?
2. Let $P_j = \{p_{(j-1)m+1}, \dots, p_{jm}\}.$

Idea 1: Let m = 1, 2, ..., n, run giftwrapping for m steps Idea 2: Let $m = 2^1, 2^2, 2^3, ..., 2^{\log n}$, run wrapping for m steps

Idea 3: Let
$$m = 2^{2^0}, 2^{2^1}, 2^{2^2}, \dots, 2^{2^{\lceil \log \log n \rceil}}$$
, do m wrap-steps

$$\sum_{i=0}^{\lceil \log \log h \rceil} cn \log 2^{2^i} = \sum_{i=0}^{\lceil \log \log h \rceil} cn 2^i$$
$$= cn (2^{\lceil \log \log h \rceil + 1} - 1) = O(n \log h)$$

Chan's algorithm: Recap

for
$$i = 1$$
 to $\lceil \log \log n \rceil$ do
 $m = 2^{2^i}$
for $j = 1$ to $\lceil n/m \rceil$ do
Create group P_j
 $(q_1^j, q_2^j, \dots,) = Graham(P_j)$
 $H_1 = \text{leftmost point in } P$
for $s = 2$ to m do
for $j = 1$ to $\lceil n/m \rceil$ do
 $q^j = TangentFind(H_{s-1}, (q_1^j, q_2^j, \dots))$
 $H_s = \text{point } q^j \text{ maximizing } \triangleleft H_{s-2}H_{s-1}q^j$
if $H_s = H_1$ then return (H_1, \dots, H_{s-1})