
Convex hulls in R2

Sándor Kisfaludi-Bak

Computaional Geometry
Summer semester 2020

Overview

Overview

• Problem definition

Overview

• Problem definition

• Computaitonal models, input and output

Overview

• Problem definition

• Naive algorithm

• Computaitonal models, input and output

Overview

• Problem definition

• Naive algorithm

• Graham’s scan

• Computaitonal models, input and output

Overview

• Problem definition

• Naive algorithm

• Graham’s scan

• Computaitonal models, input and output

• Chan’s algorithm

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

conv(P) =


minimum convex set containing P

intersection of convex sets containing P

{α1p1 + · · ·+ αnpn | αi ≥ 0 and
∑n

i=1 αi = 1}

Convex hull:

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

conv(P) =


minimum convex set containing P

intersection of convex sets containing P

{α1p1 + · · ·+ αnpn | αi ≥ 0 and
∑n

i=1 αi = 1}

P

Convex hull:

Convex hull

Notations, definitions

Rd is d-dimensional Euclidean space

P = {p1, . . . , pn} set of n points

X ⊆ Rd is convex if for any p, q ∈ X we have pq ⊆ X

conv(P) =


minimum convex set containing P

intersection of convex sets containing P

{α1p1 + · · ·+ αnpn | αi ≥ 0 and
∑n

i=1 αi = 1}

P

conv(P)

Convex hull:

Real RAM vs. Word RAM

Real RAM Word RAM

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

Real RAM Word RAM

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real RAM Word RAM

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real inputs and outputs,
can extend with

√
., ln(.)

Exact arithmetic for
rational inputs with +−∗/

Real RAM Word RAM

Real RAM vs. Word RAM

arbitrary real numbers words of size Θ(log n)

no rounding/floor, no modulo realistic∗operations (shifts, etc)

Real inputs and outputs,
can extend with

√
., ln(.)

Exact arithmetic for
rational inputs with +−∗/

Unrealistic power Too restrictive?

Real RAM Word RAM

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3 p5

p4

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3 p5

p4

p1, p4, p5, p3

Output: ”corners” in clockwise order
smallest Q ⊆ P s.t. conv(Q) = conv(P)

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3 p5

p4

p1, p4, p5, p3

non-corner point on
bondary: not in output!

p6

Output: ”corners” in clockwise order
smallest Q ⊆ P s.t. conv(Q) = conv(P)

Convex hull: input and output

Input: Points with coordianate pairs (x, y) ∈ R2

(e, π), (3, 3), (2.95, 2.9), (
√

11, 3.05), (π, e)

p1

p2

p3 p5

p4

p1, p4, p5, p3

non-corner point on
bondary: not in output!

p6

Output: ”corners” in clockwise order
smallest Q ⊆ P s.t. conv(Q) = conv(P)

Everything works with rational inputs on Word RAM!

Naive algorithm

Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

p
p′

q

In O(1) time, decide if q is on left or right side of line pp′

sgn

∣∣∣∣∣∣
px py 1
p′x p′y 1
qx qy 1

∣∣∣∣∣∣


Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

p
p′

q

In O(1) time, decide if q is on left or right side of line pp′

sgn

∣∣∣∣∣∣
px py 1
p′x p′y 1
qx qy 1

∣∣∣∣∣∣


Naive Convex Hull in R2

For each p, p′ ∈ P ,
check if all q ∈ P \ {p, p′} is on the left of line pp′.
If yes, then p′ follows p in conv(P).

Assemble and output the hull

Naive Algorithm

Suppose no 3 points on one line. (no collinear triples)

p
p′

q

In O(1) time, decide if q is on left or right side of line pp′

Running time:
(
n
2

)
· (n− 2) ·O(1) = O(n3)

sgn

∣∣∣∣∣∣
px py 1
p′x p′y 1
qx qy 1

∣∣∣∣∣∣


Naive Convex Hull in R2

For each p, p′ ∈ P ,
check if all q ∈ P \ {p, p′} is on the left of line pp′.
If yes, then p′ follows p in conv(P).

Assemble and output the hull

Graham’s scan (1972)

Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Upper hull
part of the hull after p1 and before pn in clockwise order

Lower hull

Graham’s Scan idea

Suppose points have distinct x-coordinates.

Let p1, . . . , pn: points sorted with increasing x-coordinates.

p1, pn are on convex hull

p1 pn

Upper hull
part of the hull after p1 and before pn in clockwise order

Lower hull

Idea:
Add points left to right, update upper hull after each addition

Graham’s Scan: update

p1

Right turn

pi

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Add pi but remove previous hull
point until left turn disappears

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

Graham’s Scan: update

p1

Right turn

Add pi to the upper hull

pi

Add pi but remove previous hull
point until left turn disappears

Similalrly for lower hull, after adding pi:
while last three points of lower hull q, q′, pi are a right turn:

remove the middle point q′

Left turn

p1

pi

(pi is below last hull segment) (pi is above last hull segment)

Graham’s Scan: pseudocode + runtime

Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Graham’s Scan: pseudocode + runtime

Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting O(n log n)

Graham’s Scan: pseudocode + runtime

Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting

Each p ∈ P is:
added once to U (same for L)
removed at most once from U (same for L)

O(n log n)

O(n)
O(n)

Triplets checked in While loop heads O(n)

Graham’s Scan: pseudocode + runtime

Sort P by increasing x-coordinates
Add p1, p2 to U and L
for i = 3 to n do

Add pi to U and L
while last three pts of U form left turn do

Remove pt preceding pi from U

while last three pts of L form right turn do
Remove pt preceding pi from L

return L and reverse of U

Running time:
Sorting

Each p ∈ P is:
added once to U (same for L)
removed at most once from U (same for L)

O(n log n)

O(n)
O(n)

Triplets checked in While loop heads O(n)

Running time: O(n log n)

Graham’s Scan: correctness

Claim
After each iteration of main loop, U is upper hull of p1, . . . , pi.

Graham’s Scan: correctness

pi is added to U X

Claim
After each iteration of main loop, U is upper hull of p1, . . . , pi.

Induction on i. Works for i ≤ 2.
Suppose U is the upper hull of p1, . . . , pi−1

piU
q

q′

pi−1

⇒ Gray is empty

Graham’s Scan: correctness

pi is added to U X

Claim
After each iteration of main loop, U is upper hull of p1, . . . , pi.

Induction on i. Works for i ≤ 2.
Suppose U is the upper hull of p1, . . . , pi−1

q′, pi−1, pi ”left turn” ⇔ pi−1 is below q′pi.
Similarly, q′ is below qpi
⇒ All deleted vertices are below the new U .

piU
q

q′

pi−1

⇒ Gray is empty

Graham’s Scan: correctness

pi is added to U X

Claim
After each iteration of main loop, U is upper hull of p1, . . . , pi.

Induction on i. Works for i ≤ 2.
Suppose U is the upper hull of p1, . . . , pi−1

q′, pi−1, pi ”left turn” ⇔ pi−1 is below q′pi.
Similarly, q′ is below qpi
⇒ All deleted vertices are below the new U .

piU
q

q′

pi−1

⇒ Gray is empty

⇒ old U and all of p1, . . . pi−1
are on or below new U

Graham’s Scan: non-general position

Instead of deleting for left turn in U:
Delete if straight or left turn

• collinear triple:

q
q′

pi

Graham’s Scan: non-general position

Instead of deleting for left turn in U:
Delete if straight or left turn

• collinear triple:

q
q′

pi

Graham’s Scan: non-general position

Instead of deleting for left turn in U:
Delete if straight or left turn

• collinear triple:

q
q′

pi

• equal x-coordiantes:

Graham’s Scan: non-general position

Instead of deleting for left turn in U:
Delete if straight or left turn

• collinear triple:

q
q′

pi

• equal x-coordiantes:

Use lexicographic order for initial sort.

(x, y) <lex (x′, y′) iff x < x′ ∨ (x = x′ ∧ y < y′)

Graham’s Scan: non-general position

Instead of deleting for left turn in U:
Delete if straight or left turn

• collinear triple:

q
q′

pi

• equal x-coordiantes:

Use lexicographic order for initial sort.

(x, y) <lex (x′, y′) iff x < x′ ∨ (x = x′ ∧ y < y′)

p1, pn are still on the hull.
Upper hull U : part of hull after p1 and before pn in cw order

Practicalities

Collinear triples are common (grids!)

Practicalities

Collinear triples are common (grids!)

Almost collinear triples are also common!

Practicalities

Collinear triples are common (grids!)

Almost collinear triples are also common!

P uniform random in [0, 1]2:

E(max
p,q,r∈P

^pqr) = π −O(1/n3)

not peer-reviewed source

Practicalities

Collinear triples are common (grids!)

Almost collinear triples are also common!

Naive floating point implementation of Real RAM:
false positives and false negatives

P uniform random in [0, 1]2:

E(max
p,q,r∈P

^pqr) = π −O(1/n3)

not peer-reviewed source

Practicalities

Collinear triples are common (grids!)

Almost collinear triples are also common!

Naive floating point implementation of Real RAM:
false positives and false negatives

P uniform random in [0, 1]2:

E(max
p,q,r∈P

^pqr) = π −O(1/n3)

Good software libraries (e.g. CGAL) can protect you.

not peer-reviewed source

Chan’s algorithm (1996)

Output-sensitive algorithm

Input size: natural lower bound for most problems

Output size: same! (but useless for decsion problems)

Output-sensitive algorithm

Input size: natural lower bound for most problems

Output size: same! (but useless for decsion problems)

→ An alg. that is faster if the output is small.

→ running time expressed as function of input and output size

Output-sensitive algorithm:

Output-sensitive algorithm

Example: enumerating spanning trees of a graph in

O(nn−2 · n) vs. O(#of trees + n+ |E|) time

Input size: natural lower bound for most problems

Output size: same! (but useless for decsion problems)

→ An alg. that is faster if the output is small.

→ running time expressed as function of input and output size

Output-sensitive algorithm:

Output-sensitive algorithm

Here: h is # of convex hull vertices.

Can we get O(n+ h) as running time?

Example: enumerating spanning trees of a graph in

O(nn−2 · n) vs. O(#of trees + n+ |E|) time

Input size: natural lower bound for most problems

Output size: same! (but useless for decsion problems)

→ An alg. that is faster if the output is small.

→ running time expressed as function of input and output size

Output-sensitive algorithm:

Output-sensitive algorithm

Here: h is # of convex hull vertices.

Can we get O(n+ h) as running time?

What about O(n+ h log h)?

Example: enumerating spanning trees of a graph in

O(nn−2 · n) vs. O(#of trees + n+ |E|) time

Input size: natural lower bound for most problems

Output size: same! (but useless for decsion problems)

→ An alg. that is faster if the output is small.

→ running time expressed as function of input and output size

Output-sensitive algorithm:

Output-sensitive convex hull algorithms

• Kirkpatrick–Seidel (’86): O(n log h). Proven optimal!

Output-sensitive convex hull algorithms

• Kirkpatrick–Seidel (’86): O(n log h). Proven optimal!

• Chan (’96): O(n log h), and also ”works” in 3d.

Output-sensitive convex hull algorithms

• Kirkpatrick–Seidel (’86): O(n log h). Proven optimal!

• Chan (’96): O(n log h), and also ”works” in 3d.

Based on the Gift wrapping algorithm:
start from p1, and go around finding next hull vertex.

• Find p1: → O(n)

H1 = p1

Output-sensitive convex hull algorithms

• Kirkpatrick–Seidel (’86): O(n log h). Proven optimal!

• Chan (’96): O(n log h), and also ”works” in 3d.

Based on the Gift wrapping algorithm:
start from p1, and go around finding next hull vertex.

• Find p1: → O(n)

H1 = p1
• Given H1, . . . ,Hi, find Hi+1

s.t. ^Hi−1HiHi+1 is
maximized → O(n)

Hi
Hi−1

Output-sensitive convex hull algorithms

• Kirkpatrick–Seidel (’86): O(n log h). Proven optimal!

• Chan (’96): O(n log h), and also ”works” in 3d.

Based on the Gift wrapping algorithm:
start from p1, and go around finding next hull vertex.

• Find p1: → O(n)

H1 = p1
• Given H1, . . . ,Hi, find Hi+1

s.t. ^Hi−1HiHi+1 is
maximized → O(n)

Hi
Hi−1• Repeated h times

→ O(nh) time in total

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Gift wrapping:
Find largest angle Hi−1Hiq

j with
qj ∈ conv(Pj) for each j, pick best

Hi−1
Hi

Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Gift wrapping:
Find largest angle Hi−1Hiq

j with
qj ∈ conv(Pj) for each j, pick best

Hi−1
Hi

dn/me ·O(m logm)
Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Gift wrapping:
Find largest angle Hi−1Hiq

j with
qj ∈ conv(Pj) for each j, pick best

Hi−1
Hi

dn/me ·O(m logm)

hdn/me ·O(logm)

Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm

Let m ∈ {1, . . . , n} be a parameter.

Group P into groups of size m
⇒ dn/me groups: P1, P2, . . .

Gift wrapping:
Find largest angle Hi−1Hiq

j with
qj ∈ conv(Pj) for each j, pick best

Hi−1
Hi

dn/me ·O(m logm)

hdn/me ·O(logm)

Time to find tangent of conv(Pj)

Compute convex hull of each Pj with Graham’s scan.

Chan’s algorithm: running time and tangent finding

dn/me ·O(m logm) + hdn/me ·O(logm)

Chan’s algorithm: running time and tangent finding

dn/me ·O(m logm) + hdn/me ·O(logm)

= O(n logm+ (h/m)n logm)

Chan’s algorithm: running time and tangent finding

dn/me ·O(m logm) + hdn/me ·O(logm)

= O(n logm+ (h/m)n logm)

setting m = h:

= O(n log h)

Chan’s algorithm: running time and tangent finding

dn/me ·O(m logm) + hdn/me ·O(logm)

= O(n logm+ (h/m)n logm)

setting m = h:

= O(n log h)

Tangent finding in O(logm) time?

q1

q2

q3

q4

q5
q6

p

1. Set m = h

1. Set m = h

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

1. Set m = h

How to set m = h?
?

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

1. Set m = h

How to set m = h?
?

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

h∑
m=1

cn logm = Ω(hn)...

Idea 1: Let m = 1, 2, . . . , n, run giftwrapping for m steps
Stop when gift is wrapped. (Then m ≥ h holds.)

1. Set m = h

How to set m = h?
?

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

h∑
m=1

cn logm = Ω(hn)...

Idea 1: Let m = 1, 2, . . . , n, run giftwrapping for m steps
Stop when gift is wrapped. (Then m ≥ h holds.)

Too slow!

1. Set m = h

How to set m = h?
?

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

h∑
m=1

cn logm = Ω(hn)...

Idea 1: Let m = 1, 2, . . . , n, run giftwrapping for m steps
Stop when gift is wrapped. (Then m ≥ h holds.)

Too slow!dlog he∑
i=1

cn log 2i =

dlog he∑
i=1

cni = Θ(n log2 h)...

Idea 2: Let m = 21, 22, 23, . . . , 2logn, run wrapping for m steps

1. Set m = h

How to set m = h?
?

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

h∑
m=1

cn logm = Ω(hn)...

Idea 1: Let m = 1, 2, . . . , n, run giftwrapping for m steps
Stop when gift is wrapped. (Then m ≥ h holds.)

Too slow!dlog he∑
i=1

cn log 2i =

dlog he∑
i=1

cni = Θ(n log2 h)...

Idea 2: Let m = 21, 22, 23, . . . , 2logn, run wrapping for m steps

h∑
m=1

cn logm = Ω(hn)...Too slow!

1. Set m = h

How to set m = h?
?

2. Let Pj = {p(j−1)m+1, . . . , pjm}.

h∑
m=1

cn logm = Ω(hn)...

Idea 1: Let m = 1, 2, . . . , n, run giftwrapping for m steps
Stop when gift is wrapped. (Then m ≥ h holds.)

Too slow!dlog he∑
i=1

cn log 2i =

dlog he∑
i=1

cni = Θ(n log2 h)...

Idea 2: Let m = 21, 22, 23, . . . , 2logn, run wrapping for m steps

h∑
m=1

cn logm = Ω(hn)...Too slow!
dlog log he∑

i=0

cn log 22
i

=

dlog log he∑
i=0

cn2i

= cn(2dlog log he+1 − 1) = O(n log h)

Idea 3: Let m = 22
0

, 22
1

, 22
2

, . . . , 22
dlog log ne

, do m wrap-steps

Chan’s algorithm: Recap

for i = 1 to dlog log ne do
m = 22

i

for j = 1 to dn/me do
Create group Pj

(qj1, q
j
2, . . . ,) = Graham(Pj)

H1 =leftmost point in P
for s = 2 to m do

for j = 1 to dn/me do
qj = TangentF ind(Hs−1, (q

j
1, q

j
2, . . .))

Hs = point qj maximizing ^Hs−2Hs−1q
j

if Hs = H1 then return (H1, . . . ,Hs−1)

