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Overview

• Computaitonal model, input and output

• Chan’s algorithm in R3 (1996)

• Preparata–Hong divide&conquer algorithm (1977)

• Clarkson–Shor randomized incremental construction (1989)

• Higher-dimensional convex hulls



Convex hull: input and output

Input: Points with coordianate pairs (x, y, z) ∈ R3

(e, π, 1), (3, 3,
√

5), (2.95, 2.9, 21.2), (
√

11, 3.05, 3
√

3)



Convex hull: input and output

Input: Points with coordianate pairs (x, y, z) ∈ R3

(e, π, 1), (3, 3,
√

5), (2.95, 2.9, 21.2), (
√

11, 3.05, 3
√

3)

Output: planar graph of the vertices and edges of conv(P )



Convex hull: input and output

Input: Points with coordianate pairs (x, y, z) ∈ R3

(e, π, 1), (3, 3,
√

5), (2.95, 2.9, 21.2), (
√

11, 3.05, 3
√

3)

Output: planar graph of the vertices and edges of conv(P )

p1
p2

p3

p4

p1
p2

p3

p4

Doubly connected edge list, facets are ccw cycles from outside
arcs know: opposite, next, prev arc

e

Opp(e)

Next(e)

Prev(e)
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Convex hull: complexity

• Euler’s formula: h−#(edges) + #(faces) = 2.

• Each face has ≥ 3 incident edges.
Each edge is incident to 2 faces.

2 ·#(edges) ≥ 3 ·#(faces)

⇒ #(edges) = h+ #(faces)− 2

≤ h+
2

3
#(edges)− 2

⇒ #(edges) ≤ 3h− 6

Total complexity (vertices+edges): ≤ 4h− 6 = O(h).

Claim A convex hull with h vertices has complexity O(h).
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Basic operation and naive approach

Suppose no 3 pts on one line, no 4 pts in one plane.

p
p′

q

In O(1) time, decide if q is above/below/on plane pp′p′′

Running time:
(
n
3

)
· (n− 3) ·O(1) = O(n4)

Naive Convex Hull in R3

For each p, p′, p′′ ∈ P ,
check if all q ∈ P \ {p, p′, p′′} is on same side of plane pp′p′′.
If yes, then pp′p′′ is a face.

∣∣∣∣∣∣∣∣
p1 p2 p3 1
p′1 p′2 p′3 1
p′′1 p′′2 p′′3 1
q1 q2 q3 1

∣∣∣∣∣∣∣∣



R3 convex hull with divide and conquer

(Preparata–Hong, 1977)
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Divide and conquer

(p1, . . . , pn) = LexicographicSort(P )
H = Hull3dim((p1, . . . , pn)

function Hull3dim((p1, . . . , pn))
if n ≤ 4 then

return NaiveHull((p1, . . . , pn))

H1 = Hull3dim((p1, . . . , pbn/2c))
H2 = Hull3dim((pbn/2c+1, . . . , pn))
H = Merge(H1, H2)
return H

O(n log n)

T (n) = 2T (n/2) +O(n)

Recursion depth= O(log n) ⇒ T (n) = O(n log n)

We need to merge in O(n) time!
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Starting the merge

H1 H2

x

y

z

Project H1 and H2 to xy plane
Get common tangents (as in Assignment 1/7) → O(n)

π(pi) π(pj)

π(pi)π(pj) is segment of π(conv(H1)) ∪ π(conv(H2))
⇒ pipj is a segment of conv(P ).

pi

pj
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Merging naively

p′

Find q ∈ P s.t. plane pp′q has smallest angle with plane pp′π(p).

Last face found:Fi, last edge found: ei

Repeat: Find p ∈ P maximizing ^
(

(plane eip), (plane Fi)
)

p

q

→ O(n)

Naive runtime: O(n2)

The result is a “cylinder”.
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Smart merge idea

maxp∈P ^
(

(plane uvp), (plane Fi)
)
→ p must be neighbor of u or v

u

vFi

Maximize in N(u) and N(v) separately.
Let p′ ∈ N(v) s.t. vp′ ∈ conv(P ) is already known

v

p′ = v1

v2

v3

v4

v5

Check angles of N(v) in cw order.

If vi ∈ p has largest angle
⇒ v2, . . . , vi−1 are inside conv(P )!

= p



Smart merge
function Merge(H1, H2)

uv = starting edge (form common tangent of π(H1) and π(H2))
û = argmaxu′∈N(u) ^

(
uvu′, uvπ(u)

)
v̂ = argmaxv′∈N(v) ^

(
uvv′, uvπ(u)

)
repeat

if v̂ has larger angle than û then
vprev = v, v = v̂
Add face F = uvvprev to H
If F is coplanar with previous face, merge.
for i = 2 to |N(v)| do . in cw order

if ^
(
uvvi, uvvprev

)
> ^

(
uvvi−1, uvvprev

)
then

Remove edge vvi−1 from H2

else
v̂ = vi−1, Break

else
(same, but swap v and u, H2 and H1, cw and ccw)

until uv = starting edge
return merge of cylinder H with H1 and H2



Smart merge
function Merge(H1, H2)

uv = starting edge (form common tangent of π(H1) and π(H2))
û = argmaxu′∈N(u) ^

(
uvu′, uvπ(u)

)
v̂ = argmaxv′∈N(v) ^

(
uvv′, uvπ(u)

)
repeat

if v̂ has larger angle than û then
vprev = v, v = v̂
Add face F = uvvprev to H
If F is coplanar with previous face, merge.
for i = 2 to |N(v)| do . in cw order

if ^
(
uvvi, uvvprev

)
> ^

(
uvvi−1, uvvprev

)
then

Remove edge vvi−1 from H2

else
v̂ = vi−1, Break

else
(same, but swap v and u, H2 and H1, cw and ccw)

until uv = starting edge
return merge of cylinder H with H1 and H2

init

Step

Face add

Cylinder merge
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Smart merge analysis

Init: O(n)

Face add: O(1) (overall O(n))

Step: Each comparison results in either
→ deleting an edge
→ making the step

H1, H2 have O(n) edges
Final cylinder has size O(n)

⇒ Amortized O(1) (overall O(n)) time.

Cylinder merge: O(1) time per cylinder boundary edge.
Boundary has size O(n).

⇒ Merge takes O(n) time.

Preparata–Hong divide&conquer takes O(n log n) time.



R3 Convex hull with rand. incremental construction
(Clarkson and Shor 1989)
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Ideas

• Add points one at a time, update
Hi = planar graph for conv(p1, . . . , pi).

• Maintain a conflict graph: Ci

pi+1

pn

unprocessed pts
faces of Hi

Conflict edge from pi+j to face F of Hi

iff plane of F separates pi+j from conv(p1, . . . , pi)

pi+j

F

⇒ if we add pi+j , we must delete F
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Algorithm overview

Find 4 points forming a tetrahedron, set up H4

Randomly permute the other points: p4, . . . , pn, and set up C4

n− 4 unproc. pts
4 faces ⇒ O(n)”Randomized incremental construction”

pi

Adding pi:

horizon
conflicting faces

new faces to add → remove conflicting faces
using conflict graph

→ walk horizon and
add new faces

→
if coplanar face:
merge faces.
same conflict list!
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Updating conflict lists

• Remove pi from conflict graph

• Add new face F :

F pi

horizon edge

F1

F2

Conf(F ) ⊆ Conf(F1) ∪ Conf(F2)

For each p ⊆ Ue
i that sees F ,

add conflict edge (F, p)

e
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Running time analysis - lemmas

Lemma We have

E
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i=5

∑
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|Ue
i |

 = O(n log n).

Theorem The Clarkson-Shor 3d convex hull algorithm works
in O(n log n) time.

Lemma The algo. creates at most 6n− 20 faces in
expectation.

Long proof, see Dutch book
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Lemma The algo. creates at most 6n− 20 faces in
expectation.

Backwards analysis

Imagine removing pn, then pn−1, . . . , p5 from conv(P ). Fix i.
degi(p) := degree of p in the convex hull of p1, . . . , pi
• conv(p1, . . . , pi) has ≤ 3i− 6 edges

⇒
∑i

j=1 degi(pj) ≤ 6i− 12.

• deg(p1) + deg(p2) + deg(p3) + deg(p4) ≥ 12

• pi is a random element of {p5, . . . , pi}

E(degi(pi)) =

∑i
j=5 deg(pj)

i− 4
≤ 6i− 12− 12

i− 4
= 6

⇒ E(total #created faces) = 4 +
n∑

j=5

E(degj(pj)) ≤ 6n− 20.
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Chan’s algorithm recap and changes

P into size m groups Pj (j = 1, . . . , dn/me)

Precompute each conv(Pj) in O(m logm)

Run modified gift wrapping for m steps:

Find tangent qj in each Pj in O(logm)

Wrap to largest angle tangent among qj

i = 1, . . . , dlog log ne
m = 22

i

Graham’s scan
Preparata–Hong

Wrap done on edge e as in cylinder of Preparata–Hong
BFS on faces: new face → find neighboring edges
BFS has |E(H∗)| = |E(H)| ≤ 3h− 6 steps

Needs Dobkin–Kirkpatrick hierarchical representation for Pj

→ computing in O(n) coming up!

3n− 6

Running time analysis remains unchanged. O(n log h)



Dobkin–Kirkpatrick hierarchy

Given convex polytope Q in R3, a polytope sequence
Q1, Q2, . . . , Qk is a DK hierarchy of Q if
1. Q1 = Q and Qk is a tetrahedron
2. Qi ⊃ Qi+1 and V (Qi) ⊃ V (Qi+1)
3. V (Qi) \ V (Qi+1) is an independent set in G(Qi).
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1. Q1 = Q and Qk is a tetrahedron
2. Qi ⊃ Qi+1 and V (Qi) ⊃ V (Qi+1)
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Theorem Given Q, a DK hierarchy with k = O(log n), size∑k
i=1(|V (Qi)|) = O(n) and degree

max
i

max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11

can be computed in O(n) time.

Constructing the DK hierarchy
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max
i

max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11

can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent
set among vertices of degree ≤ 11.

Claim: |S| ≥ |V (Q)|/24.
Suppose not: |S| < |V (Q)|/24
⇒
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Theorem Given Q, a DK hierarchy with k = O(log n), size∑k
i=1(|V (Qi)|) = O(n) and degree

max
i

max{degG(Qi)(v) | v ∈ V (Qi) \ V (Qi+1)} ≤ 11

can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent
set among vertices of degree ≤ 11.

Claim: |S| ≥ |V (Q)|/24.
Suppose not: |S| < |V (Q)|/24
⇒
⋃

s∈S N [s] < |V (Q)|/2
⇒ G(Q) has ≥ |V (Q)|/2 vertices of degree ≥ 12
⇒ G(Q) has ≥ (|V (Q)|/2) · 12/2 = 3|V (Q)| edges

Euler’s formula:
E(Q) ≤ 3|V (Q)|−6

Euler’s formula:
E(Q) ≤ 3|V (Q)|−6

Constructing the DK hierarchy



for i = 1 to dlog log(3n− 6)e do
m = 22

i

for j = 1 to dn/me do
Create group Pj

Hj =Preparata–Hong(Pj)
Compute dual D–K hierarchy of Hj

F0 = starting face, e1, e2, e3: ccw arcs of E(F ),
H.add(F0), Queue = (e1,e2,e3), Seen = {e1,e2,e3},
for s = 2 to m do

e = Queue.next
for j = 1 to dn/me do

qj = TangentF ind(e, dualDK(Hj))

q = point qj maximizing ^
(
(plane e, qj), F (e)

)
H.add(face e, q), e′, e′′ = next arcs of face e, q
if e′ 6∈ Seen then Queue.add(e′), Seen.add(e′)
if e′′ 6∈ Seen then Queue.add(e′′), Seen.add(e′′)

return H
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for i = 1 to dlog log(3n− 6)e do
m = 22

i

for j = 1 to dn/me do
Create group Pj

Hj =Preparata–Hong(Pj)
Compute dual D–K hierarchy of Hj

F0 = starting face, e1, e2, e3: ccw arcs of E(F ),
H.add(F0), Queue = (e1,e2,e3), Seen = {e1,e2,e3},
for s = 2 to m do

e = Queue.next
for j = 1 to dn/me do

qj = TangentF ind(e, dualDK(Hj))

q = point qj maximizing ^
(
(plane e, qj), F (e)

)
H.add(face e, q), e′, e′′ = next arcs of face e, q
if e′ 6∈ Seen then Queue.add(e′), Seen.add(e′)
if e′′ 6∈ Seen then Queue.add(e′′), Seen.add(e′′)

return H

dn/me ·O(m)

Self-balancing BST
max size= h
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Handling degeneracies

u

v
e

F (e)

Among Q = argmaxq′
(
^F (e), (plane uvq′)

)
q should maximze ^(uvq)

and among these maximize dist(v, q)

q

H is a triangulation of the hull.

Postprocess: merge at edge if neighboring faces are coplanar

(→ O(n))



Higher-dimensional convex hulls
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In Rd, we have 0, 1, . . . , (d− 1)-dimensional faces.
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Let P be distinct points on the moment curve
{(x, x2, x3, . . . , xd) | x ∈ R}.

Then conv(P ) has the maximum number of k-faces
for all k ∈ [d].



Many faces, many facets

In Rd, we have 0, 1, . . . , (d− 1)-dimensional faces.

vertices edges facets

Given a set P of n points in Rd, compute:
(a) all facets of conv(P )
(b) all vertices of conv(P )
(c) all faces of conv(P )

There can be up to Θ(nbd/2c) facets!

Let P be distinct points on the moment curve
{(x, x2, x3, . . . , xd) | x ∈ R}.

Then conv(P ) has the maximum number of k-faces
for all k ∈ [d].

O(n log n+ nbd/2c) achieved by many algorithms


