Convex hulls in \mathbb{R}^3

Sándor Kisfaludi-Bak

Computaional Geometry Summer semester 2020

• Computaitonal model, input and output

• Computaitonal model, input and output

• Preparata–Hong divide&conquer algorithm (1977)

• Computaitonal model, input and output

• Preparata–Hong divide&conquer algorithm (1977)

• Clarkson–Shor randomized incremental construction (1989)

• Computaitonal model, input and output

• Preparata–Hong divide&conquer algorithm (1977)

• Clarkson–Shor randomized incremental construction (1989)

• Chan's algorithm in \mathbb{R}^3 (1996)

• Computaitonal model, input and output

• Preparata–Hong divide&conquer algorithm (1977)

• Clarkson–Shor randomized incremental construction (1989)

• Chan's algorithm in \mathbb{R}^3 (1996)

• Higher-dimensional convex hulls

Convex hull: input and output

Input: Points with coordianate pairs $(x, y, z) \in \mathbb{R}^3$ $(e, \pi, 1), (3, 3, \sqrt{5}), (2.95, 2.9, 2^{1.2}), (\sqrt{11}, 3.05, \sqrt[3]{3})$

Convex hull: input and output

Input: Points with coordianate pairs $(x, y, z) \in \mathbb{R}^3$ $(e, \pi, 1), (3, 3, \sqrt{5}), (2.95, 2.9, 2^{1.2}), (\sqrt{11}, 3.05, \sqrt[3]{3})$

Output: planar graph of the vertices and edges of conv(P)

Convex hull: input and output

Input: Points with coordianate pairs $(x, y, z) \in \mathbb{R}^3$ $(e, \pi, 1), (3, 3, \sqrt{5}), (2.95, 2.9, 2^{1.2}), (\sqrt{11}, 3.05, \sqrt[3]{3})$

Output: planar graph of the vertices and edges of conv(P)

Doubly connected edge list, facets are ccw cycles from outside arcs know: opposite, next, prev arc

Claim A convex hull with h vertices has complexity O(h).

• Euler's formula: h - #(edges) + #(faces) = 2.

Claim A convex hull with h vertices has complexity O(h).

- Euler's formula: h #(edges) + #(faces) = 2.
- Each face has ≥ 3 incident edges.
 Each edge is incident to 2 faces.

$$2 \cdot \#(edges) \ge 3 \cdot \#(faces)$$

Claim A convex hull with h vertices has complexity O(h).

• Euler's formula:
$$h - #(edges) + #(faces) = 2$$
.

• Each face has ≥ 3 incident edges. Each edge is incident to 2 faces.

$$\begin{aligned} 2 \cdot \#(edges) &\geq 3 \cdot \#(faces) \\ \Rightarrow \#(edges) &= h + \#(faces) - 2 \\ &\leq h + \frac{2}{3} \#(edges) - 2 \end{aligned}$$

Claim A convex hull with h vertices has complexity O(h).

• Euler's formula:
$$h - #(edges) + #(faces) = 2$$
.

• Each face has ≥ 3 incident edges. Each edge is incident to 2 faces.

$$2 \cdot \#(edges) \ge 3 \cdot \#(faces)$$
$$\Rightarrow \#(edges) = h + \#(faces) - 2$$
$$\le h + \frac{2}{3} \#(edges) - 2$$

$$\Rightarrow \#(edges) \le 3h - 6$$

Claim A convex hull with h vertices has complexity O(h).

• Euler's formula:
$$h - #(edges) + #(faces) = 2$$
.

• Each face has ≥ 3 incident edges. Each edge is incident to 2 faces.

$$2 \cdot \#(edges) \ge 3 \cdot \#(faces)$$
$$\Rightarrow \#(edges) = h + \#(faces) - 2$$
$$\le h + \frac{2}{3} \#(edges) - 2$$

$$\Rightarrow \#(edges) \le 3h - 6$$

Total complexity (vertices+edges): $\leq 4h - 6 = O(h)$.

Basic operation and naive approach

Suppose no 3 pts on one line, no 4 pts in one plane.

Basic operation and naive approach

Suppose no 3 pts on one line, no 4 pts in one plane.

In O(1) time, decide if q is above/below/on plane pp'p''

Basic operation and naive approach Suppose no 3 pts on one line, no 4 pts in one plane.

In O(1) time, decide if q is above/below/on plane pp'p''

Basic operation and naive approach Suppose no 3 pts on one line, no 4 pts in one plane.

In O(1) time, decide if q is above/below/on plane $pp^\prime p^{\prime\prime}$

Naive Convex Hull in \mathbb{R}^3

For each $p, p', p'' \in P$, check if all $q \in P \setminus \{p, p', p''\}$ is on same side of plane pp'p''. If yes, then pp'p'' is a face.

Running time: $\binom{n}{3} \cdot (n-3) \cdot O(1) = O(n^4)$

\mathbb{R}^3 convex hull with divide and conquer (Preparata–Hong, 1977)

 $(p_1, \ldots, p_n) = \text{LEXICOGRAPHICSORT}(P)$ $H = \text{HULL3DIM}((p_1, \ldots, p_n))$

function HULL3DIM($(p_1, ..., p_n)$) if $n \leq 4$ then return NAIVEHULL($(p_1, ..., p_n)$) $H_1 = HULL3DIM((p_1, ..., p_{\lfloor n/2 \rfloor}))$ $H_2 = HULL3DIM((p_{\lfloor n/2 \rfloor + 1}, ..., p_n))$ $H = MERGE(H_1, H_2)$ return H

 $(p_1, \ldots, p_n) = \text{LEXICOGRAPHICSORT}(P)$ $H = \text{HULL3DIM}((p_1, \ldots, p_n))$

 $O(n \log n)$

function HULL3DIM($(p_1, ..., p_n)$) if $n \le 4$ then return NAIVEHULL($(p_1, ..., p_n)$) $H_1 = HULL3DIM((p_1, ..., p_{\lfloor n/2 \rfloor}))$ $H_2 = HULL3DIM((p_{\lfloor n/2 \rfloor + 1}, ..., p_n))$ $H = MERGE(H_1, H_2)$ return H

 $(p_1, \ldots, p_n) = \text{LEXICOGRAPHICSORT}(P)$ $H = \text{HULL3DIM}((p_1, \ldots, p_n)$

 $O(n \log n)$

function HULL3DIM($(p_1, ..., p_n)$) if $n \le 4$ then return NAIVEHULL($(p_1, ..., p_n)$) $H_1 = HULL3DIM((p_1, ..., p_{\lfloor n/2 \rfloor}))$ $H_2 = HULL3DIM((p_{\lfloor n/2 \rfloor+1}, ..., p_n))$ $H = MERGE(H_1, H_2)$ return H

$$T(n) = 2T(n/2) + O(n)$$

Recursion depth= $O(\log n) \Rightarrow T(n) = O(n \log n)$

 $(p_1, \ldots, p_n) = \text{LEXICOGRAPHICSORT}(P)$ $H = \text{HULL3DIM}((p_1, \ldots, p_n))$

 $O(n \log n)$

function HULL3DIM($(p_1, ..., p_n)$) if $n \le 4$ then return NAIVEHULL($(p_1, ..., p_n)$) $H_1 = HULL3DIM((p_1, ..., p_{\lfloor n/2 \rfloor}))$ $H_2 = HULL3DIM((p_{\lfloor n/2 \rfloor + 1}, ..., p_n))$ $H = MERGE(H_1, H_2)$ return H

$$T(n) = 2T(n/2) + O(n)$$

Recursion depth= $O(\log n) \Rightarrow T(n) = O(n \log n)$

We need to merge in O(n) time!

Starting the merge

Starting the merge

Project H_1 and H_2 to xy plane Get common tangents (as in Assignment 1/7) $\rightarrow O(n)$

Starting the merge

Project H_1 and H_2 to xy plane Get common tangents (as in Assignment 1/7) $\rightarrow O(n)$

 $\pi(p_i)\pi(p_j)$ is segment of $\pi(\operatorname{conv}(H_1)) \cup \pi(\operatorname{conv}(H_2))$ $\Rightarrow p_i p_j$ is a segment of $\operatorname{conv}(P)$.

Find $q \in P$ s.t. plane pp'q has smallest angle with plane $pp'\pi(p)$.

Find $q \in P$ s.t. plane pp'q has smallest angle with plane $pp'\pi(p)$.

Find $q \in P$ s.t. plane pp'q has smallest angle with plane $pp'\pi(p)$.

Find $q \in P$ s.t. plane pp'q has smallest angle with plane $pp'\pi(p)$.

Find $q \in P$ s.t. plane pp'q has smallest angle with plane $pp'\pi(p)$.

Find $q \in P$ s.t. plane pp'q has smallest angle with plane $pp'\pi(p)$.

Find $q \in P$ s.t. plane pp'q has smallest angle with plane $pp'\pi(p)$.

Last face found: F_i , last edge found: e_i Repeat: Find $p \in P$ maximizing $\sphericalangle ((\text{plane } e_i p), (\text{plane } F_i)) \longrightarrow O(n)$

The result is a "cylinder". Naive runtime: $O(n^2)$

Smart merge idea

 $\max_{p \in P} \sphericalangle \left((\text{plane } uvp), (\text{plane } F_i) \right) \rightarrow p \text{ must be neighbor of } u \text{ or } v$

Smart merge idea

 $\max_{p \in P} \sphericalangle \left((\text{plane } uvp), (\text{plane } F_i) \right) \rightarrow p \text{ must be neighbor of } u \text{ or } v$

Maximize in N(u) and N(v) separately. Let $p' \in N(v)$ s.t. $vp' \in conv(P)$ is already known

Smart merge idea

 $\max_{p \in P} \sphericalangle \left((\text{plane } uvp), (\text{plane } F_i) \right) \rightarrow p \text{ must be neighbor of } u \text{ or } v$

Maximize in N(u) and N(v) separately. Let $p' \in N(v)$ s.t. $vp' \in conv(P)$ is already known

Check angles of N(v) in cw order.

Smart merge idea

 $\max_{p \in P} \sphericalangle \left((\text{plane } uvp), (\text{plane } F_i) \right) \rightarrow p \text{ must be neighbor of } u \text{ or } v$

Maximize in N(u) and N(v) separately. Let $p' \in N(v)$ s.t. $vp' \in conv(P)$ is already known

Check angles of N(v) in cw order. If $v_i \in p$ has largest angle $\Rightarrow v_2, \dots, v_{i-1}$ are *inside* conv(P)!

Smart merge

function $MERGE(H_1, H_2)$

 $uv = \text{starting edge (form common tangent of } \pi(H_1) \text{ and } \pi(H_2))$ $\hat{u} = \operatorname{argmax}_{u' \in N(u)} \triangleleft (uvu', uv\pi(u))$ $\hat{v} = \operatorname{argmax}_{v' \in N(v)} \triangleleft (uvv', uv\pi(u))$

repeat

if \hat{v} has larger angle than \hat{u} then

 $v_{prev} = v, \quad v = \hat{v}$ Add face $F = uvv_{prev}$ to HIf F is coplanar with previous face, merge. for i = 2 to |N(v)| do \triangleright in cw order if $\triangleleft (uvv_i, uvv_{prev}) > \triangleleft (uvv_{i-1}, uvv_{prev})$ then Remove edge vv_{i-1} from H_2 else $\hat{v} = v_{i-1}$, Break

else

(same, but swap v and u, H_2 and H_1 , cw and ccw) until uv = starting edge return merge of cylinder H with H_1 and H_2

Smart merge

function $MERGE(H_1, H_2)$

 $\begin{aligned} uv &= \text{starting edge (form common tangent of } \pi(H_1) \text{ and } \pi(H_2)) \\ \hat{u} &= \operatorname{argmax}_{u' \in N(u)} \sphericalangle(uvu', uv\pi(u)) \\ \hat{v} &= \operatorname{argmax}_{v' \in N(v)} \sphericalangle(uvv', uv\pi(u)) \end{aligned}$ init

repeat

if \hat{v} has larger angle than \hat{u} then

 $\begin{array}{ll} v_{prev} = v, \quad v = \hat{v} \\ \hline \text{Add face } F = uvv_{prev} \text{ to } H & \textbf{Face add} \\ \hline \text{If } F \text{ is coplanar with previous face, merge.} \\ \hline \text{for } i = 2 \text{ to } |N(v)| \text{ do } & \triangleright \text{ in cw order} \\ \textbf{if } \sphericalangle(uvv_i, uvv_{prev}) > \sphericalangle(uvv_{i-1}, uvv_{prev}) \text{ then} \\ \hline \text{Remove edge } vv_{i-1} \text{ from } H_2 \\ \hline else \\ \hat{v} = v_{i-1}, \text{ Break} & \textbf{Step} \end{array}$

else

(same, but swap v and u, H_2 and H_1 , cw and ccw)

until uv =starting edge

return merge of cylinder H with H_1 and H_2 Cylinder merge

Init: O(n)Face add: O(1) (overall O(n))

Init: O(n)Face add: O(1) (overall O(n))

Step: Each comparison results in either \rightarrow deleting an edge \rightarrow making the step

Init: O(n)Face add: O(1) (overall O(n))

Step: Each comparison results in either

- $\rightarrow \text{ deleting an edge} \qquad H_1, H_2 \text{ have } O(n) \text{ edges} \\ \rightarrow \text{ making the step} \qquad \text{Final cylinder has size } O(n)$
- \Rightarrow Amortized O(1) (overall O(n)) time.

Init: O(n)Face add: O(1) (overall O(n))

Step: Each comparison results in either \rightarrow deleting an edge H_1, H_2 have O(n) edges \rightarrow making the step Final cylinder has size O(n) \rightarrow Amertized O(1) (everall O(n)) time

 \Rightarrow Amortized O(1) (overall O(n)) time.

Cylinder merge: O(1) time per cylinder boundary edge. Boundary has size O(n).

Init: O(n)Face add: O(1) (overall O(n))

Step: Each comparison results in either \rightarrow deleting an edge H_1, H_2 have O(n) edges \rightarrow making the step Final cylinder has size O(n)

 \Rightarrow Amortized O(1) (overall O(n)) time.

Cylinder merge: O(1) time per cylinder boundary edge. Boundary has size O(n).

 \Rightarrow Merge takes O(n) time.

Init: O(n)Face add: O(1) (overall O(n))

Step: Each comparison results in either \rightarrow deleting an edge H_1, H_2 have O(n) edges \rightarrow making the step Final cylinder has size O(n)

 \Rightarrow Amortized O(1) (overall O(n)) time.

Cylinder merge: O(1) time per cylinder boundary edge. Boundary has size O(n).

 \Rightarrow Merge takes O(n) time.

Preparata-Hong divide&conquer takes $O(n \log n)$ time.

\mathbb{R}^3 Convex hull with rand. incremental construction (Clarkson and Shor 1989)

• Add points one at a time, update $H_i = \text{planar graph for } \operatorname{conv}(p_1, \ldots, p_i).$

- Add points one at a time, update $H_i = \text{planar graph for } \operatorname{conv}(p_1, \ldots, p_i).$
- Maintain a conflict graph: C_i

- Add points one at a time, update $H_i = \text{planar graph for } \operatorname{conv}(p_1, \ldots, p_i).$
- Maintain a conflict graph: C_i

Conflict edge from p_{i+j} to face F of H_i iff plane of F separates p_{i+j} from $conv(p_1, \ldots, p_i)$

- Add points one at a time, update $H_i = \text{planar graph for } \operatorname{conv}(p_1, \ldots, p_i).$
- Maintain a conflict graph: C_i

Conflict edge from p_{i+j} to face F of H_i iff plane of F separates p_{i+j} from $conv(p_1, \ldots, p_i)$

 \Rightarrow if we add p_{i+j} , we must delete F

Find 4 points forming a tetrahedron, set up H_4

Find 4 points forming a tetrahedron, set up H_4

Randomly permute the other points: p_4, \ldots, p_n , and set up C_4 n-4 unproc. pts 4 faces $\Rightarrow O(n)$

Find 4 points forming a tetrahedron, set up H_4

Randomly permute the other points: p_4, \ldots, p_n , and set up C_4 "Randomized incremental construction" n-4 unproc. pts 4 faces $\Rightarrow O(n)$

Find 4 points forming a tetrahedron, set up H_4

Randomly permute the other points: p_4, \ldots, p_n , and set up C_4 "Randomized incremental construction" n-4 unproc. pts 4 faces $\Rightarrow O(n)$

Adding p_i :

Find 4 points forming a tetrahedron, set up H_4

Randomly permute the other points: p_4, \ldots, p_n , and set up C_4 "Randomized incremental construction" n-4 unproc. pts 4 faces $\Rightarrow O(n)$

Find 4 points forming a tetrahedron, set up H_4

```
Randomly permute the other points: p_4, \ldots, p_n, and set up C_4
"Randomized incremental construction" n-4 unproc. pts
4 faces \Rightarrow O(n)
```


Find 4 points forming a tetrahedron, set up H_4

Randomly permute the other points:
$$p_4, \ldots, p_n$$
, and set up C_4
"Randomized incremental construction" $n-4$ unproc. pts
4 faces $\Rightarrow O(n)$

remove conflicting faces
using conflict graph

ightarrow walk horizon and add new faces

Find 4 points forming a tetrahedron, set up H_4

Randomly permute the other points:
$$p_4, \ldots, p_n$$
, and set up C_4
"Randomized incremental construction" $n-4$ unproc. pts
4 faces $\Rightarrow O(n)$

- ightarrow walk horizon and add new faces
 - if coplanar face:
- \rightarrow merge faces. same conflict list!

Updating conflict lists

• Remove p_i from conflict graph

Updating conflict lists

- Remove p_i from conflict graph
- Add new face *F*:

Updating conflict lists

- Remove p_i from conflict graph
- Add new face *F*:

Theorem The Clarkson-Shor 3d convex hull algorithm works in $O(n \log n)$ time.

Theorem The Clarkson-Shor 3d convex hull algorithm works in $O(n \log n)$ time.

Theorem The Clarkson-Shor 3d convex hull algorithm works in $O(n \log n)$ time.

Lemma We have
$$\mathbb{E}\left(\sum_{i=5}^{n} \sum_{e \in \text{horizon}(i)} |U_i^e|\right) = O(n \log n).$$

Theorem The Clarkson-Shor 3d convex hull algorithm works in $O(n \log n)$ time.

Long proof, see Dutch book

$$\mathbb{E}\left(\sum_{i=5}^{n}\sum_{e\in \mathrm{horizon}(i)}|U_{i}^{e}|\right) = O(n\log n).$$

Lemma The algo. creates at most 6n - 20 faces in expectation.

Imagine removing p_n , then p_{n-1}, \ldots, p_5 from conv(P). Fix *i*. $deg^i(p) := degree of p in the convex hull of <math>p_1, \ldots, p_i$

Lemma The algo. creates at most 6n - 20 faces in expectation.

Imagine removing p_n , then p_{n-1}, \ldots, p_5 from $\operatorname{conv}(P)$. Fix i. $\operatorname{deg}^i(p) := \operatorname{degree} \operatorname{of} p$ in the convex hull of p_1, \ldots, p_i • $\operatorname{conv}(p_1, \ldots, p_i)$ has $\leq 3i - 6$ edges $\Rightarrow \sum_{j=1}^i \operatorname{deg}^i(p_j) \leq 6i - 12.$

Lemma The algo. creates at most 6n - 20 faces in expectation.

Imagine removing p_n , then p_{n-1}, \ldots, p_5 from $\operatorname{conv}(P)$. Fix i. $\operatorname{deg}^i(p) := \operatorname{degree} of p$ in the convex hull of p_1, \ldots, p_i • $\operatorname{conv}(p_1, \ldots, p_i)$ has $\leq 3i - 6$ edges

$$\Rightarrow \sum_{j=1}^{i} \deg^{i}(p_j) \le 6i - 12.$$

• $\deg(p_1) + \deg(p_2) + \deg(p_3) + \deg(p_4) \ge 12$

Lemma The algo. creates at most 6n - 20 faces in expectation.

Imagine removing p_n , then p_{n-1}, \ldots, p_5 from $\operatorname{conv}(P)$. Fix *i*. $\operatorname{deg}^i(p) := \operatorname{degree} \operatorname{of} p$ in the convex hull of p_1, \ldots, p_i

- $\operatorname{conv}(p_1, \dots, p_i)$ has $\leq 3i 6$ edges $\Rightarrow \sum_{j=1}^i \operatorname{deg}^i(p_j) \leq 6i - 12.$
- $\deg(p_1) + \deg(p_2) + \deg(p_3) + \deg(p_4) \ge 12$
- p_i is a random element of $\{p_5, \ldots, p_i\}$

$$\mathbb{E}(\deg^{i}(p_{i})) = \frac{\sum_{j=5}^{i} \deg(p_{j})}{i-4} \le \frac{6i-12-12}{i-4} = 6$$

Lemma The algo. creates at most 6n - 20 faces in expectation.

Imagine removing p_n , then p_{n-1}, \ldots, p_5 from $\operatorname{conv}(P)$. Fix *i*. $\operatorname{deg}^i(p) := \operatorname{degree} \operatorname{of} p$ in the convex hull of p_1, \ldots, p_i

- $\operatorname{conv}(p_1, \dots, p_i)$ has $\leq 3i 6$ edges $\Rightarrow \sum_{j=1}^i \deg^i(p_j) \leq 6i - 12.$
- $\deg(p_1) + \deg(p_2) + \deg(p_3) + \deg(p_4) \ge 12$
- p_i is a random element of $\{p_5, \ldots, p_i\}$

$$\mathbb{E}(\deg^{i}(p_{i})) = \frac{\sum_{j=5}^{i} \deg(p_{j})}{i-4} \le \frac{6i-12-12}{i-4} = 6$$

n

 $\Rightarrow \mathbb{E}(\text{total } \#\text{created faces}) = 4 + \sum_{j=5} \mathbb{E}(\deg^j(p_j)) \le 6n - 20.$
Chan's algorithm in \mathbb{R}^3

Chan's algorithm recap and changes P into size m groups P_j $(j = 1, ..., \lceil n/m \rceil)$

Precompute each $conv(P_j)$ in $O(m \log m)$

Chan's algorithm recap and changes P into size m groups P_j $(j = 1, ..., \lceil n/m \rceil)$

Precompute each $conv(P_j)$ in $O(m \log m)$

Run modified gift wrapping for m steps: Find tangent q^j in each P_j in $O(\log m)$ Wrap to largest angle tangent among q^j Chan's algorithm recap and changes P into size m groups $P_j (j = 1, ..., \lceil n/m \rceil)$ Precompute each $conv(P_j)$ in $O(m \log m)$ Run modified gift wrapping for m steps: Find tangent q^j in each P_j in $O(\log m)$ Wrap to largest angle tangent among q^j Chan's algorithm recap and changes P into size m groups P_j $(j = 1, ..., \lceil n/m \rceil)$ Precompute each $conv(P_j)$ in $O(m \log m)$ Run modified gift wrapping for m steps: Find tangent q^j in each P_j in $O(\log m)$ Wrap to largest angle tangent among q^j

Chan's algorithm recap and changes Graham's scan Preparata–Hong P into size m groups $P_j (j = 1, \ldots, \lceil n/m \rceil)$ Precompute each $\operatorname{conv}(P_j)$ in $O(m \log m)$ $i = 1, \dots, \lceil \log \log n \rceil$ $f = 2^{2^i}$ Run modified gift wrapping for m steps: Find tangent q^j in each P_j in $O(\log m)$ Wrap to largest angle tangent among q^j

Wrap done on edge e as in cylinder of Preparata–Hong BFS on faces: new face \rightarrow find neighboring edges BFS has $|E(H^*)| = |E(H)| \leq 3h - 6$ steps

Chan's algorithm recap and changes Graham's scan P into size m groups $P_j (j = 1, \ldots, \lceil n/m \rceil)$ Preparata-Hong Precompute each $conv(P_i)$ in $O(m \log m)$ $i = 1, \dots, \lceil \log \log n \rceil$ $\succ \qquad m = 2^{2^i}$ Run modified gift wrapping for m steps: Find tangent q^j in each P_j in $O(\log m)$ Wrap to largest angle tangent among q^j Wrap done on edge e as in cylinder of Preparata–Hong BFS on faces: new face \rightarrow find neighboring edges BFS has $|E(H^*)| = |E(H)| \le 3h - 6$ steps Needs Dobkin–Kirkpatrick hierarchical representation for P_i \rightarrow computing in O(n) coming up!

Chan's algorithm recap and changes Graham's scan P into size m groups $P_i (j = 1, \dots, \lceil n/m \rceil)$ Preparata-Hong Precompute each $conv(P_i)$ in $O(m \log m)$ $\begin{array}{c} i = 1, \dots, \lceil \log \log n \rceil \\ \succ \qquad m = 2^{2^{i}} \end{array}$ Run modified gift wrapping for m steps: Find tangent q^j in each P_j in $O(\log m)$ 3n - 6Wrap to largest angle tangent among q^j Wrap done on edge e as in cylinder of Preparata–Hong BFS on faces: new face \rightarrow find neighboring edges BFS has $|E(H^*)| = |E(H)| \le 3h - 6$ steps Needs Dobkin–Kirkpatrick hierarchical representation for P_i \rightarrow computing in O(n) coming up!

Chan's algorithm recap and changes Graham's scan *P* into size *m* groups P_i $(j = 1, \ldots, \lceil n/m \rceil)$ Preparata-Hong Precompute each $conv(P_j)$ in $O(m \log m)$ $\begin{array}{c} i = 1, \dots, \lceil \log \log n \rceil \\ \succ \qquad m = 2^{2^{i}} \end{array}$ Run modified gift wrapping for m steps: Find tangent q^j in each P_j in $O(\log m)$ 3n - 6Wrap to largest angle tangent among q^{j} Wrap done on edge e as in cylinder of Preparata–Hong BFS on faces: new face \rightarrow find neighboring edges BFS has $|E(H^*)| = |E(H)| \le 3h - 6$ steps Needs Dobkin–Kirkpatrick hierarchical representation for P_i \rightarrow computing in O(n) coming up!

Running time analysis remains unchanged. $O(n \log h)$

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

- 1. $Q_1 = Q$ and Q_k is a tetrahedron
- 2. $Q_i \supset Q_{i+1}$ and $V(Q_i) \supset V(Q_{i+1})$
- 3. $V(Q_i) \setminus V(Q_{i+1})$ is an independent set in $G(Q_i)$.

Constructing the DK hierarchy

Theorem Given Q, a DK hierarchy with $k = O(\log n)$, size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n) \text{ and degree}$ $\max_{i} \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\} \le 11$ can be computed in O(n) time. Constructing the DK hierarchy

Theorem Given Q, a DK hierarchy with $k = O(\log n)$, size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n) \text{ and degree}$ $\max_{i} \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\} \le 11$ can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

 $\begin{array}{l} \mbox{Claim: } |S| \geq |V(Q)|/24. \\ \mbox{Suppose not: } |S| < |V(Q)|/24 \\ \Rightarrow \bigcup_{s \in S} N[s] < |V(Q)|/2 \\ \Rightarrow G(Q) \mbox{ has } \geq |V(Q)|/2 \mbox{ vertices of degree } \geq 12 \\ \Rightarrow G(Q) \mbox{ has } \geq (|V(Q)|/2) \cdot 12/2 = 3|V(Q)| \mbox{ edges} \end{array}$

Constructing the DK hierarchy

Theorem Given Q, a DK hierarchy with $k = O(\log n)$, size $\sum_{i=1}^{k} (|V(Q_i)|) = O(n) \text{ and degree}$ $\max_{i} \max\{\deg_{G(Q_i)}(v) \mid v \in V(Q_i) \setminus V(Q_{i+1})\} \le 11$ can be computed in O(n) time.

Proof. Iteratively remove set S, a greedy maximal independent set among vertices of degree ≤ 11 .

 $\begin{array}{ll} \mbox{Claim: } |S| \geq |V(Q)|/24. & \mbox{Euler's formula:} \\ \mbox{Suppose not: } |S| < |V(Q)|/24 & \mbox{$E(Q) \leq 3|V(Q)|-6$} \\ \Rightarrow \bigcup_{s \in S} N[s] < |V(Q)|/2 & \mbox{$extrm{errs} of degree \geq 12$} \\ \Rightarrow G(Q) \mbox{ has } \geq |V(Q)|/2 \mbox{ vertices of degree } \geq 12 & \mbox{$f(Q) | adges h} \\ \Rightarrow G(Q) \mbox{ has } \geq (|V(Q)|/2) \cdot 12/2 = 3|V(Q)| \mbox{ edges h} \end{array}$

for i = 1 to $\lceil \log \log(3n - 6) \rceil$ do $m = 2^{2^{i}}$ for j = 1 to $\lceil n/m \rceil$ do Create group P_i $H_i = \mathsf{Preparata-Hong}(P_i)$ Compute dual D–K hierarchy of H_i $F_0 =$ starting face, e_1, e_2, e_3 : ccw arcs of E(F), $H.add(F_0), Queue = (e_1, e_2, e_3), Seen = \{e_1, e_2, e_3\},\$ for s = 2 to m do e = Queue.nextfor j = 1 to $\lceil n/m \rceil$ do $q^{j} = TangentFind(e, dualDK(H_{i}))$ $q = \text{point } q^j \text{ maximizing } \sphericalangle((\text{plane } e, q^j), F(e))$ H.add(face e, q), e', e'' = next arcs of face e, qif $e' \notin Seen$ then Queue.add(e'), Seen.add(e')if $e'' \notin Seen$ then Queue.add(e''), Seen.add(e'')return H

for i = 1 to $\lceil \log \log(3n - 6) \rceil$ do $m = 2^{2^{i}}$ for j = 1 to $\lfloor n/m \rfloor$ do Create group P_i $H_i = \mathsf{Preparata-Hong}(P_i)$ Compute dual D–K hierarchy of H_i $\lceil n/m \rceil \cdot O(m)$ $F_0 =$ starting face, e_1, e_2, e_3 : ccw arcs of E(F), $H.add(F_0), Queue = (e_1, e_2, e_3), Seen = \{e_1, e_2, e_3\},\$ for s = 2 to m do e = Queue.nextfor j = 1 to $\lceil n/m \rceil$ do $q^{j} = TangentFind(e, dualDK(H_{i}))$ $q = \text{point } q^j \text{ maximizing } \sphericalangle((\text{plane } e, q^j), F(e))$ H.add(face e, q), e', e'' = next arcs of face e, qif $e' \notin Seen$ then Queue.add(e'), Seen.add(e')if $e'' \notin Seen$ then Queue.add(e''), Seen.add(e'')return H

for i = 1 to $\lceil \log \log(3n - 6) \rceil$ do $m = 2^{2^{i}}$ for j = 1 to $\lceil n/m \rceil$ do Create group P_i $H_i = \mathsf{Preparata-Hong}(P_i)$ Compute dual D–K hierarchy of $H_i [n/m] \cdot O(m)$ $F_0 =$ starting face, e_1, e_2, e_3 : ccw arcs of E(F), $H.add(F_0), Queue = (e_1, e_2, e_3), Seen = \{e_1, e_2, e_3\},\$ for s = 2 to m do Self-balancing BST e = Queue.nextmax size = hfor j = 1 to $\lceil n/m \rceil$ do $q^{j} = TangentFind(e, dualDK(H_{i}))$ $q = \text{point } q^j \text{ maximizing } \sphericalangle((\text{plane } e, q^j), F(e))$ H.add(face e, q), e', e'' = next arcs of face e, qif $e' \notin Seen$ then Queue.add(e'), Seen.add(e')if $e'' \notin Seen$ then Queue.add(e''), Seen.add(e'')return H

Among $Q = \operatorname{argmax}_{q'} (\triangleleft F(e), (\text{plane } uvq'))$ q should maximze $\triangleleft (uvq)$ and among these maximize $\operatorname{dist}(v,q)$

Among $Q = \operatorname{argmax}_{q'} \left(\sphericalangle F(e), (\text{plane } uvq') \right)$ q should maximze $\sphericalangle(uvq)$ and among these maximize $\operatorname{dist}(v,q)$

Among $Q = \operatorname{argmax}_{q'} (\triangleleft F(e), (\text{plane } uvq'))$ q should maximze $\triangleleft (uvq)$ and among these maximize $\operatorname{dist}(v,q)$

Among $Q = \operatorname{argmax}_{q'} (\triangleleft F(e), (\text{plane } uvq'))$ q should maximze $\triangleleft (uvq)$ and among these maximize $\operatorname{dist}(v,q)$

Among $Q = \operatorname{argmax}_{q'} (\triangleleft F(e), (\text{plane } uvq'))$ q should maximze $\triangleleft (uvq)$ and among these maximize $\operatorname{dist}(v,q)$

H is a triangulation of the hull.

Postprocess: merge at edge if neighboring faces are coplanar $(\rightarrow O(n))$

Higher-dimensional convex hulls

There can be up to $\Theta(n^{\lfloor d/2 \rfloor})$ facets!

There can be up to $\Theta(n^{\lfloor d/2 \rfloor})$ facets!

Let P be distinct points on the moment curve $\{(x, x^2, x^3, \dots, x^d) \mid x \in \mathbb{R}\}.$ Then $\operatorname{conv}(P)$ has the maximum number of k-faces for all $k \in [d]$.

There can be up to $\Theta(n^{\lfloor d/2 \rfloor})$ facets!

Let P be distinct points on the moment curve $\{(x, x^2, x^3, \dots, x^d) \mid x \in \mathbb{R}\}.$ Then $\operatorname{conv}(P)$ has the maximum number of k-faces for all $k \in [d]$.

 $O(n \log n + n^{\lfloor d/2 \rfloor})$ achieved by many algorithms