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Input: Points with coordianate pairs (z,y, z) € R?

(e,m,1),(3,3,v5),(2.95,2.9,212), (/11,3.05, v/3)
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Convex hull: complexity

[Claim A convex hull with h vertices has complexity O(h).

e Euler's formula: h — #(edges) + #(faces) = 2.

e Each face has > 3 incident edges.
Each edge is incident to 2 faces.

2 - #(edges) > 3 - #(faces)
= #(edges) = h + #(faces) — 2

2
< h+ g#(edges) — 2

= #(edges) < 3h — 6

Total complexity (verticest-edges): < 4h —6 = O(h).
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Basic operation and naive approach

In O(1) time, decide if ¢ is above/below/on plane pp'p”

D p1 p2 p3 1
(@) / / / 1

D o 4 P1 Dy D3
° p"o pi 2 P31
g1 q2 q3 1

‘Naive Convex Hull in R?
For each p,p’,p"” € P,
check if all g € P\ {p,p’,p”} is on same side of plane pp’p”.

1N/

If yes, then pp'p" is a face.

- J

Running time: () - (n — 3) - O(1) = O(n*)




R? convex hull with divide and conquer
(Preparata—Hong, 1977)
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Divide and conquer

(p1,---,Pn) = LEXICOGRAPHICSORT (P)
H = HurLL3DIM((p1,- .., Dn)

function HULL3DIM((p1,...,Pn))
if n <4 then
return NAIVEHULL((p1,...,pn))

H; = HULL3DIM((p1, - - -, D|n/2]))

Hy = HULLSDIM((an/2J+17 ey Pn))
H =|MERGE(H1, H>)

return H

T(n)=2T(n/2)+ O(n)
Recursion depth= O(logn) = T(n) = O(nlogn)

We need to merge in O(n) time!
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Starting the merge

Hy
z A D;
m(p;)
~ -
Project H; and Hs to xy plane
Get common tangents (as in Assignment 1/7) — O(n)

m(p;)m(p;) is segment of m(conv(H;)) U m(conv(H2))
= p;p; is a segment of conv(P).
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Merging naively

Find ¢ € P s.t. plane pp’q has smallest angle with plane pp’7(p).

Last face found:Fj, last edge found: ¢;
Repeat: Find p € P maximizing <{((p|ane e;p), (plane Fz)) — O(n)

\ The result is a “cylinder”.

Naive runtime: O(n?)
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Smart merge idea

maxp,ec p <Z((p|ane uvp), (plane Fz))% p must be neighbor of u or v

Maximize in N(u) and N(v) separately.
Let p’ € N(v) s.t. vp’ € conv(P) is already known

V3= P
Check angles of N(v) in cw order. |
U2
If v; € p has largest angle V4
= Vs,...,0;_1 are inside conv(P)!
p' =



Smart merge

function MERGE(Hl, Hg)
uv = starting edge (form common tangent of w(H;) and w(H>))
i = argmax, c N (u) < (uwou', uvr(u))
O = argmax,, ¢ n(y) < (uvv', uor(u))
repeat
if v has larger angle than u then
Uprey =V, V=17
Add face I’ = uvvpre, to H
If F'is coplanar with previous face, merge.
for : =2 to |[N(v)| do > in cw order
if <I(uvvi,uvvprev) > <I(uvvi_1,uvvprev) then
Remove edge vv,_1 from H,
else
V= Vi—1, Break

else
(same, but swap v and u, Hy and H;, cw and ccw)

until uv = starting edge
return merge of cylinder H with H; and H



Smart merge

function MERGE(Hl, Hg)
uv = starting edge (form common tangent of w(H1) and 7w(H3))
i = argmax, c N (u) < (uwou', uvr(u))

b = argmax,, ¢ y(,) (v’ uor(u)) Init
repeat
if v has larger angle than u then
Uprey =V, V=17

Add face F — UU’UPTGU tO H Face add
If F'is coplanar with previous face, merge.
for : =2 to |[N(v)| do > in cw order

if <Z(uvvi,uvvprev) > <I(uvvi_1,uvvprev) then
Remove edge vv,_1 from H,
else

V= UVi—1, Break Step

else
(same, but swap v and u, Hy and H;, cw and ccw)

until vv = starting edge
return merge of cylinder H with H; and Ho Cylinder merge
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Smart merge analysis

Init: O(n)
Face add: O(1) (overall O(n))

Step: Each comparison results in either
— deleting an edge Hi, Hy have O(n) edges
— making the step Final cylinder has size O(n)

= Amortized O(1) (overall O(n)) time.

Cylinder merge: O(1) time per cylinder boundary edge.
Boundary has size O(n).

= Merge takes O(n) time.

Preparata—Hong divide&conquer takes O(nlogn) time. W



R3 Convex hull with rand. incremental construction

(Clarkson and Shor 1989)
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|deas

e Add points one at a time, update
H; = planar graph for conv(p1,...,p;).

e Maintain a conflict graph: C;

Pi+1
un d Pi+j
processed pts faces of H.
1
Pn e
Conflict edge from p;; to face F' of H,
iff plane of F' separates p;1; from conv(py,...,Dp;)

= if we add p;4;, we must delete I
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Algorithm overview
Find 4 points forming a tetrahedron, set up Hy

Randomly permute the other points: p4,...,p,, and set up Cy

/

) _ _ o n — 4 unproc. pts
Randomized incremental construction 4 faces = O(n)

remove conflicting faces
using conflict graph

walk horizon and
%

add new faces

if coplanar face:
conflicting faces — merge faces.
horizon same conflict list!
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Updating conflict lists

e Remove p; from conflict graph

e Add new face F":

horizon edge

\ = »,
2

Conf(F) C Conf(Fy)UConf(Fy)

— _/
—

For each p C Uf that sees I,
add conflict edge (F', p)
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Running time analysis - lemmas

Theorem The Clarkson-Shor 3d convex hull algorithm works
in O(nlogn) time.

Lemma The algo. creates at most 6n — 20 faces in
expectation.

_— —» Long proof, see Dutch book
'Lemma We have |

Z Z US| | = O(nlogn).

1=5 e€horizon(7)
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Backwards analysis

Lemma The algo. creates at most 6n — 20 faces in
expectation.

|

Imagine removing p,,, then p,_1,...,ps from conv(P). Fix i.

deg’(p) := degree of p in the convex hull of pq,...,p;
e conv(py,...,p;) has < 3i — 6 edges

= 25— deg'(p;) < 6i — 12
o deg(p1) + deg(p2) + deg(ps) + deg(ps) > 12
e p; is a random element of {ps5,...,p;}

Y=z deg(p;) _6i—12-12 _

6
1 — 4 - 1 — 4

E(deg’ (p:)) =



Backwards analysis

Lemma The algo. creates at most 6n — 20 faces in
expectation.
Imagine removing p,,, then p,_1,...,ps from conv(P). Fix i.

deg’(p) := degree of p in the convex hull of pq,...,p;
e conv(py,...,p;) has < 3i — 6 edges

= 25— deg'(p;) < 6i — 12
o deg(p1) + deg(p2) + deg(ps) + deg(ps) > 12
e p; is a random element of {ps5,...,p;}

6

; > _sdeg(p;)  6i— 12— 12
E(deg'(pi)) = =———— < ———; =

= [E(total #created faces) =4 + Z E(deg’ (p;)) < 6n — 20.
j=5 []
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Chan's algorithm recap and changes

P into size m groups P; (j = 1,..., [n/m]) Graham-s-sean

Precompute each conv(P;) in O(mlogm)

7 Preparata—Hong

d

Run modiﬁELgift wrapping| for m steps:

>z’ =1,...,[loglog+]

m:22i/

Find tangent ¢’ in each P; in O(logm) 3n —6

Wrap to largest angle tangent among qﬂj

B

i‘ B

Need

Wrap done on edge e as in cylinder of Preparata—Hong

-S on faces: new face — find neighboring edges
S has |[E(H*)| = |E(H)| < 3h — 6 steps

s Dobkin—Kirkpatrick hierarchical representation for P;
— computing in O(n) coming up!

Running time analysis remains unchanged. O(nlogh)
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Given convex polytope @ in R3, a polytope sequence
1,02, ...,Qr 1s a DK hierarchy of () if
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Given convex polytope @ in R3, a polytope sequence

1,02, ...,Qr 1s a DK hierarchy of () if
1. 1 = @ and Q. is a tetrahedron

2. Qz D) Qz’—|—1 and V(QZ) D V(Qz—l—l)
3. V(Q;) \ V(Q;11) is an independent set in G(Q);).
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Constructing the DK hierarchy

\

‘Theorem Given @, a DK hierarchy with k& = O(logn), size
Zf:1(|V(Qi)|) — O(n) and degree

max max{degg g, (v) | v € V(Qi)\ V(Qis1)} < 11

can be computed in O(n) time.
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‘Theorem Given @, a DK hierarchy with k& = O(logn), size
Zf:1(|V(Qi)|) — O(n) and degree

max max{degg g, (v) | v € V(Qi)\ V(Qis1)} < 11

can be computed in O(n) time.
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Proof. lteratively remove set S, a greedy maximal independent
set among vertices of degree < 11.

Claim: |S| > [V (Q)|/24.

Suppose not: |S| < |V (Q)|/24
= Uses NVls] < [V(Q)]/2
= G(Q) has > |V (Q)|/2 vertices of degree > 12
= G(Q) has > (|[V(Q)[/2) - 12/2 = 3|V (Q)] edges



Constructing the DK hierarchy

\

‘Theorem Given @, a DK hierarchy with k& = O(logn), size
Zle(\V(Qi)D = O(n) and degree

max max{degg g, (v) | v € V(Q:) \ V(Qi1)} < 11

can be computed in O(n) time.

J

Proof. lteratively remove set S, a greedy maximal independent
set among vertices of degree < 11.

Claim: |S| > [V (Q)|/24. , |
Suppose not: |S| < |V(Q)|/24 E(qu;)le;s;c‘)/rr(néj)la‘a._fi
= Uses NVls] < [V(Q)]/2 -
= G(Q) has > |V (Q)|/2 vertices of degree > 12 é
= G(Q) has > (|[V(Q)[/2) - 12/2 = 3|V (Q)] edges




for i =1 to [loglog(3n — 6)] do
m = 22
for j =1to [n/m] do
Create group P;
H; =Preparata—Hong(P;)
Compute dual D-K hierarchy of H;

Fy = starting face, eq,eq,e3: ccw arcs of E(F),
H.add(Fp), Queue = (e1,e2,e3), Seen = {eq1,eq,e3},
for s =2 tom do
e = Queue.next
for j =1to [n/m] do
¢’ = TangentFind(e,dual DK (H;))

g = point ¢/ maximizing <z((plane e, q’), F(e))
H.add(face e, q), €', e’ = next arcs of face e, ¢
if ¢/ & Seen then Queue.add(e’), Seen.add(e’)

if ¢/ ¢ Seen then Queue.add(e”), Seen.add(e”)
return H



for i =1 to [loglog(3n — 6)] do
m = 2%
for j =1to [n/m| do
Create group P;
H; =Preparata—Hong(P;)
Compute dual D-K hierarchy of H; |[n/m|-O(m)

Fy = starting face, eq,eq,e3: ccw arcs of E(F),
H.add(Fp), Queue = (e1,e2,e3), Seen = {eq1,eq,e3},
for s =2 tom do
e = Queue.next
for j =1to [n/m] do
¢’ = TangentFind(e,dual DK (H;))

g = point ¢/ maximizing <z((plane e, q’), F(e))
H.add(face e, q), €', e’ = next arcs of face e, ¢
if ¢/ & Seen then Queue.add(e’), Seen.add(e’)

if ¢/ ¢ Seen then Queue.add(e”), Seen.add(e”)
return H



for i =1 to [loglog(3n —6)] do
m = 2%
for j =1to [n/m| do
Create group P;
H; =Preparata—Hong(P;)
Compute dual D-K hierarchy of H; |[n/m|-O(m)

Fy = starting face, eq,es,e3: ccw arcs of E(F),
H.add(Fp), Queue = (e1,e2,e3), [Seen|= {e1,eq,e3},
for s =2 tom do s Self-balancing BST
e = Queue.next max size= h
for j =1to [n/m] do
¢’ = TangentFind(e,dual DK (H;))

g = point ¢/ maximizing <z((plane e,qj),F(e))
H.add(face e, q), €', e’ = next arcs of face e, ¢
if ¢/ & Seen then Queue.add(e’), Seen.add(e’)

if ¢/ ¢ Seen then Queue.add(e”), Seen.add(e”)
return H
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Handling degeneracies

Among () = argmax (<ZF(€), (plane UUC]/))
q should maximze <t(uvq)
and among these maximize dist(v, q)
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Handling degeneracies

Among () = argmax (<ZF(€), (plane UUC]/))
q should maximze <t(uvq)
and among these maximize dist(v, q)

H is a triangulation of the hull.

Postprocess: merge at edge if neighboring faces are coplanar

(= O(n))



Higher-dimensional convex hulls



Many faces, many facets

In R¢, we have 0,1, ..., (d — 1)-dimensional faces.

Py N

vertices edges facets
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(Given a set P of n points in R?, compute:
(a) all facets of conv(P)

(b) all vertices of conv(P)

\(c) all faces of conv(P)
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There can be up to ©(nl?/2]) facets!




Many faces, many facets

In R¢, we have 0,1, ..., (d — 1)-dimensional faces.
vertices edges facets

Given a set P of n points in RY, compute:
(a) all facets of conv(P)

(b) all vertices of conv(P)

(c) all faces of conv(P)

There can be up to ©(nl?/2]) facets!

Let P be distinct points on the moment curve
{(x,2%,2%,...,2%) | x € R}.

Then conv(P) has the maximum number of k-faces

for all k € |d].




Many faces, many facets

In R¢, we have 0,1, ..., (d — 1)-dimensional faces.
vertices edges facets

Given a set P of n points in RY, compute:
(a) all facets of conv(P)

(b) all vertices of conv(P)

(c) all faces of conv(P)

There can be up to ©(nl4/2]) facets!

Let P be distinct points on the moment curve
{(x,2%,2%,...,2%) | x € R}.

Then conv(P) has the maximum number of k-faces

for all k € [d].

O(nlogn + nl4/2]) achieved by many algorithms




